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Abstract

In this paper we provide examples of blowing up solutions to parabolic problems in a
half space, RN

+ ×RM = {xN > 0} ×RM , with nontrivial blow-up sets of dimension strictly
smaller than the space dimension. To this end we prove existence of a nontrivial compactly
supported solution to ∇(|∇ϕ|p−2∇ϕ) = ϕ in the half space RN

+ = {xN > 0} with the
nonlinear boundary condition −|∇ϕ|p−2 ∂ϕ

∂xN
= ϕp−1 on ∂RN

+ = {xN = 0}.
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1 Introduction and main results

Our main concern in this paper is to find examples of blowing up solutions to parabolic
problems which exhibit a nontrivial compact blow-up set of dimension strictly less than
the space dimension.

For many parabolic equations it is well known that solutions may develop singularities
in finite time. In particular, it may happen that the L∞-norm of the solution goes to
infinity in finite time, that is, there exists T such that limt→T ‖u(·, t)‖∞ = +∞ (see [16]).
This phenomenon is called blow-up and has been object of active research in recent years,
see the surveys [1], [10], the book [16] and references therein.

An important aspect of blow-up problems is the spatial structure of the set where the
solution becomes unbounded, that is, the blow-up set. More precisely, the blow-up set of
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a solution u that blows up at time T is defined as

B(u) = {x; there exist xn → x, tn ↗ T, with u(xn, tn) →∞}.
A problem which has attracted some attention in the literature is the identification of
possible blow-up sets. There are several situations where the blow-up set is a single point
(single point blow-up), for instance for ut = ∆u+up with p > 1, [2], a proper subset of the
spatial domain of the same dimension (regional blow-up), for example for ut = ∆um +um,
with m > 1, [4], [5], or the whole space (global blow-up), as happens for ut = ∆(um) + up

with (1 < p < m), see [16]. Moreover, considering radial solutions to ut = ∆u + up it is
easy to construct an example with blow-up set a sphere, B(u) = {|x| = r}. In addition,
from the results of [18], [19], some regularity of the blow-up set is known for solutions to
the above mentioned equation ut = ∆u + up. So, up to now we have as possible blow-up
sets: isolated points, the whole space, balls and spheres.

As we will show in this paper, there exist many other examples of blow-up sets. For
instance, we can find a solution whose blow-up set is a segment, B(u) = [0, c] × {0}, in
R+ × R = {x1 > 0} × R. In general, given any dimensions, N , M , we can construct
a compact subset, K ⊂ RN

+ , of dimension N and a solution of a parabolic problem in
RN

+ × RM with blow-up set B(u) = K × {0}, or, more generally, B(u) = K × {y1, ..., yk}
for any given set of points {y1, ..., yk} ∈ RM .

To give those examples we propose to study self-similar solutions to the following
parabolic problem combining the doubly nonlinear operator in RN

+ (with p > 2 and m > 0
as parameters) and the Laplacian operator in RM , on the product space RN

+ × RM =
RN

+ ×RM = {xN > 0}×RM , with a nonlinear boundary reaction that produces blow-up,
namely,





(um)t = ∇x(|∇xu|p−2∇xu) + ∆yu
m, in RN

+ × RM × (0, T ),

−|∇xu|p−2 ∂u

∂xN

= up−1, on ∂RN
+ × RM × (0, T ),

(1.1)

where x ∈ RN
+ , y ∈ RM and ∇x(|∇xu|p−2∇xu) denotes the p−Laplacian in the x variable

and ∆yu is the usual Laplacian in the y variable.
As particular cases of (1.1) we have that if m = 1 the equation becomes ut =

∇x(|∇xu|p−2∇xu) + 4yu, that is, a combination of the p-Laplacian and the Laplacian
operators. If we do not consider the y variable in (1.1), we face the description of the
asymptotic behavior of the blowing-up solutions to the parabolic problem





(um)t = ∇(|∇u|p−2∇u), in RN
+ × (0, T ),

−|∇u|p−2 ∂u

∂xN

= up−1, on ∂RN
+ × (0, T ).

(1.2)

In the analysis of blow-up problems, self-similar profiles are used to study the fine
asymptotic behavior of a solution of the parabolic equation near its blow-up time, see, for
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instance, [13], [14]. It often happens that the spatial shape of the solution near blow-up
is close to a self-similar profile, [4], [5], [11], [14]. If we consider a solution to (1.2) of the
form u(x, t) = (T − t)−1/(p−2)v(x, t), the rescaled solution v(x, t) is expected to converge
to a stationary profile as t ↗ T . For the case N = 1 ((1.2) in an interval) we refer to
[9]. There, the authors show that the phenomenon of regional blow-up appears due to the
existence of compactly supported self-similar profiles. Note that the previous rescaling
preserves the original spatial variable. This fact means that the blow-up set of the solution
is directly related to the support of the profile.

When dealing with problem (1.1) we will consider self-similar solutions of the form

u(x, y, t) = ϕ(x)ψ(y, t). (1.3)

If u is a solution to (1.1) of the form (1.3) we obtain that ϕ and ψ must solve the following
elliptic and parabolic problems, respectively,





ϕm = ∇(|∇ϕ|p−2∇ϕ), in RN
+ ,

−|∇ϕ|p−2 ∂ϕ

∂xN

= ϕp−1, on ∂RN
+ ,

(1.4)

and
(ψm)t = ∆ψm + ψp−1, in RM × (0, T ), (1.5)

Observe that the former equation written for ψ̃ = ψm is the heat equation with a source
given by the term ψ̃(p−1)/m, whose solutions are global if p− 1 ≤ m. Since our interest is
to identify the blow-up set of u, we will consider p− 1 > m in the sequel.

Note that the blow-up set of a solution u(x, y, t) of the form (1.3) is given by

B(u) = supp(ϕ)×B(ψ),

where B(ψ) is the blow-up set of ψ. The set B(ψ) is known to be a finite set of points and
generically a single point, recall that we are assuming p−1 > m. Hence, to find the desired
blow-up set B(u) we need to determine the support of ϕ. As we have mentioned, in one
space dimension the support of ϕ is explicit, since (1.1) reduces to an O.D.E. problem,
see [9]. So we need to extend the existence result of a compactly supported profile ϕ to
several space dimensions. In doing this extension some new difficulties arise. If N ≥ 2
the boundary condition makes not possible to choose ϕ as a radial function, and hence
we cannot reduce (1.4) to an ODE. Nevertheless, we can look for solutions being radial
in the tangential variables, that is, if we denote x ∈ RN

+ by x = (x
′
, xN), x

′ ∈ RN−1, then
u verifies

u(x
′
, xN) = u(|x′|, xN). (1.6)

Now let us state our main result.

Theorem 1.1 There exists a nontrivial nonnegative compactly supported solution to (1.4),
verifying (1.6)
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We observe that the problem of uniqueness up to translations in the tangential vari-
ables (x1, ..., xN−1) of compactly supported solutions to (1.4) remains open.

Let us briefly explain our strategy to prove Theorem 1.1. First, for R > 0 large enough,
we consider the problem





∇(|∇uR|p−2∇uR) = (uR)m, in B+
R ,

−|∇uR|p−2 ∂uR

∂xN

= (uR)p−1, on Γ1,

uR = 0, on Γ2,

(1.7)

where B+
R denotes B(0, R)+ = {x, ||x|| < R, xN > 0} and Γi, i = 1, 2 the boundaries

∂B+
R ∪ {xN = 0} and ∂B+

R ∪ {xN > 0} respectively.
We will show that for R sufficiently large there exists a nonnegative nontrivial solution

of (1.7) such that
max

x∈supp(uR)
|x| < R.

Thus, uR is a compactly supported solution to (1.1).

At this stage let us recall that by well known results, it is possible to have compactly
supported solutions to ∇(|∇u|p−2∇u) = uα in the whole RN if and only if α + 1 < p, see
[15]. Therefore our assumption m + 1 < p is natural in this sense.

Once this analysis is performed we deduce some corollaries concerning problem (1.1).

Corollary 1.2 Every nonnegative nontrivial solution to (1.1) blows-up in finite time for
1 < (p− 1)/m < 1 + 2/M .

This fact follows by contradiction. Assume that v is a global nontrivial solution.
Since v is a solution to (1.1) its support in x expands (being the whole space in y) and
eventually covers the support of a self-similar solution u(x, y, t) = ϕ(x)ψ(y, t). The proof
ends with the use of a comparison argument using that every solution to (1.5) blows up
when (p− 1)/m is below the critical Fujita exponent, that is, 1 < (p− 1)/m < 1 + 2/M .

Corollary 1.3 There exists a solution to (1.1) with a blow-up set composed by an arbi-
trary number of connected components of dimension N .

In fact, we may consider a solution of the form (1.3) with a profile whose blow-up set
B(ψ) is composed by k points, {y1, ..., yk}. Therefore the blow-up set of u, consists of
k disjoint copies of the compactly supported solution provided by Theorem 1.1, that is,
B(u) = ∪k

i=1K × {yi}.
Moreover, we conjecture that these self-similar solutions introduced above give the

asymptotic behavior of any solution to (1.1) near its blow-up time.
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Let us remark that our study can also be performed in more general situations, for
example, imposing boundary conditions also in the y variable. In fact, we can consider
the problem for x ∈ RN+ and y ∈ RM+ and deal with





(um)t = ∇x(|∇xu|p−2∇xu) + ∆yu
m, in RN

+ × RM
+ × (0, T ),

−|∇xu|p−2 ∂u

∂xN

= up−1, on ∂RN
+ × RM

+ × (0, T ),

−∂um

∂yM

= um or
∂um

∂yM

= 0 or u = 0, on RN
+ × ∂RM

+ × (0, T ).

(1.8)

Also for these problems there are solutions of the form

u(x, y, t) = ϕ(x)ψ(y, t),

with ϕ a solution to (1.4) and ψ a solution to





(ψm)t = ∆ψm + ψp−1, in RM
+ × (0, T ),

−∂ψm

∂yM

= ψm or
∂ψm

∂yM

= 0 or ψ = 0, on ∂RM
+ × (0, T ).

Again, the blow-up set of u is given by B(u) = supp(ϕ) × B(ψ). Note that ψ solves a
parabolic problem easier than the original one (1.8).

Moreover, the same ideas can be applied to deal with porous medium type equations
as well 




ut = ∆xu
m + ∆yu, in RN

+ × RM × (0, T ),

−∂um

∂xN

= um, on ∂RN
+ × RM × (0, T ),

considering ψ a solution to ψt = ∆ψ + ψm and ϕ a compactly supported solution (con-
structed in [3], [7]) to the problem





∆ϕm = ϕ, in RN
+ ,

−∂ϕm

∂xN

= ϕm, on ∂RN
+ .

Organization of the paper: In Section 2 we study the auxiliary problem (1.7) in a
half-ball and give a comparison principle, some symmetry and growth properties of these
solutions. In Section 3 we prove that the support of such solutions is strictly included in
the half-ball providing a solution to our original problem.
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2 Existence and properties of the solutions of the

auxiliary problem.

In this section we deal with problem (1.7). To find nontrivial solutions we look for a natural
variational setting. Let us consider the space W = {u ∈ W 1,p(B+

R) verifying u|Γ2 = 0}
with the norm

||u||W =

∫

B+
R

|∇u|p.

Note that Poincaré’s inequality is also applicable to functions vanishing on a nontrivial
part of the boundary of the domain. Hence, ‖ ‖W is equivalent to the usual W 1,p-norm
in W .

Minimizing the functional

JR(u) =

m + 1

p

(∫

B+
R

|∇u|p −
∫

Γ1

up

)

(∫

B+
R

um+1

)p/(m+1)

over W , we will find a nontrivial solution to (1.7). See [8] for related arguments.

Lemma 2.1 For every R sufficiently large JR attains a minimum in W . Moreover, there
exists a nontrivial minimizer that is a weak solution to (1.7)

Proof. Let us show that for every R large there exists a constant K(R) such that

inf
u∈W, u6=0

JR(u) ≥ −K > −∞,

that is,

m + 1

p

∫

B+
R

|∇u|p + K

(∫

B+
R

um+1

)p/(m+1)

≥ m + 1

p

∫

Γ1

up, ∀u ∈ W.

If not, there exists a sequence un ∈ W such that
∫

Γ1
up

n = 1 verifying

m + 1

p

∫

B+
R

|∇un|p + n

(∫

B+
R

um+1
n

)p/(m+1)

≤ m + 1

p
, ∀n ≥ 1. (2.1)

From (2.1) it follows that, up to a subsequence, we have

un ⇀ u weakly in W,
un → u strongly in Lp(B+

R),
un|Γ1 → u strongly in Lp(Γ1).

(2.2)

6



By the last convergence we get
∫
Γ1

up = 1. On the other hand (2.1) also implies that
u = 0, which is a contradiction.

The next step consists of showing that

inf
u∈W, u6=0

JR(u) < 0,

which ensures that the minimizer is not trivial.
We apply JR to ϕ1,R, the eigenfunction associated to the first eigenvalue λ1(R) of the

following problem 



∇(|∇ϕ|p−2∇ϕ) = 0, in B+
R ,

−|∇ϕ|p−2 ∂ϕ

∂xN

= λϕp−1, on Γ1,

ϕ = 0, on Γ2.

(2.3)

Using the same ideas from [8] we get existence of such eigenvalue and a positive corre-
sponding eigenfunction. We claim that, for R large,

JR(ϕ1,R) =

(
m + 1

p

) (λ1(R)− 1)

∫

Γ1

ϕp
1,R

(∫

B+
R

ϕm+1
1,R

)p/(m+1)
< 0. (2.4)

The value of λ1(R) depends on R in the following way

λ1(R) = min
ϕ∈W\{0}

∫

B+
R

|∇ϕ|p
∫

Γ1

ϕp

=
1

R

∫

B+
1

|∇ϕ̃|p
∫

Γ1(B+
1 )

ϕ̃p

=
λ1(1)

R
,

where we have performed the change of variables ϕ̃(x) = ϕ(Rx). Taking R large enough
we obtain λ1(R) < 1 and the claim (2.4) follows.

Let us see that the minimum of JR in W is attained. Consider un, a minimizing
sequence for JR, such that

∫
Γ1

up
n = 1. For n large JR(un) < 0 by the previous step, which

implies that
∫

B+
R
|∇un|p < 1. This assures the convergences in (2.2) and that u is not

trivial. We can assume that u ≥ 0. From the lower semicontinuity of the norm and the
weak convergence in W it holds

inf JR ≤ JR(u) ≤ lim inf
n→∞

JR(un) = inf JR.

Finally, by homogeneity, multiplying a minimizer by the appropriate constant, we get a
solution of (1.7). We find this constant minimizing JR among the functions in W with∫

B+
R

um+1 = 1. This gives us the existence of a Lagrange multiplier

∫

B+
R

|∇u|p−2∇u∇v −
∫

Γ1

up−1v = λ

∫

B+
R

umv, ∀v ∈ W.
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Taking v = u in the expression above we see that λ < 0, since it has the same sign of
JR(u). It is not difficult to check that (−λ)−1/(p−m−1)u is a minimizer solving (1.7). 2

The following estimates will be used in the course of next section. As we will see later,
they are also valid for the solution to the original problem.

Lemma 2.2 Let R be sufficiently large. Then, if uR is a nonnegative minimizer of JR,
there exists a constant C independent of R such that

‖uR‖Lm+1(B+
R) ≤ C, ‖uR‖L∞(B+

R) ≤ C and ‖∇uR‖L∞(B+
R/2

) ≤ C.

Proof. Let us take R0 such that the first eigenvalue for problem (2.3) verifies

λ1(R0)− 1 < 0.

We extend by zero the first eigenfunction associated to λ1(R0). Then, for R > R0

inf JR ≤ JR(ϕ1,R0) =

(
m + 1

p

) (λ1(R0)− 1)

∫

Γ1

ϕp
1,R0

(∫

B+
R

ϕm+1
1,R0

)p/(m+1)
= −C0. (2.5)

On the other hand, multiplying (1.7) by uR and integrating by parts we get

−
∫

B+
R

|∇uR|p +

∫

Γ1

up
R =

∫

B+
R

um+1
R .

From this identity and (2.5) the first estimate easily follows. The remaining estimates
can be obtained from general regularity theory, see [17]. 2

We enclose in the following lemma some useful inequalities related to the p-Laplacian
operator.

Lemma 2.3 For all η, η′ ∈ RN , there exist positive constants such that

i) if p ≥ 1 and |η|+ |η′| > 0 it holds
∣∣∣|η|p−2η − |η′|p−2η′

∣∣∣ ≤ C1|η − η′|(|η|+ |η′|)p−2,

ii) if p ≥ 2 we have |η|p ≥ |η′|p + p|η|p−2〈η, η − η′〉+ C(p)|η − η′|p.

From the previous estimates we show that it is possible to compare two solutions to
(1.7) despite of the Neumann boundary condition, whenever the measure of the region of
this boundary is sufficiently small. This comparison principle plays a fundamental role in
several parts of the paper.
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Definition 2.1 We say that ω ∈ W 1,p(Ω) is a supersolution if it verifies





ωm ≥ ∇(|∇ω|p−2∇ω), in Ω,

ω ≥ 0, on ∂Ω ∩ {xN > 0},
−|∇ω|p−2 ∂ω

∂xN

≥ ωp−1, on ∂Ω ∩ {xN = 0},
(2.6)

Analogously we say that ω is a subsolution if it verifies (2.6) with the reverse inequalities.

Lemma 2.4 Let Ω ⊂ RN
+ be an open bounded domain, with a Lipschitz boundary. Suppose

that ωi ∈ W 1,p(Ω), i = 1, 2 are bounded super and subsolutions to the problem





∇(|∇ω|p−2∇ω)− ωm = 0, in Ω,

ω = 0, on ∂Ω ∩ {xN > 0},
−|∇ω|p−2 ∂ω

∂xN

= ωp−1, on ∂Ω ∩ {xN = 0},

respectively in the sense of Definition 2.1. If the N − 1 dimensional measure of the set
∂Ω ∩ {xN = 0} verifies µ(∂Ω ∩ {xN = 0}) < δ for some δ > 0 small, then (ω1 − ω2) ≥ 0
in Ω.

Proof. We multiply the inequalities satisfied by ωi, i = 1, 2 by h(ω2 − ω1) and integrate
in Ω, being h(x) = −min{0, x}. This gives

∫

Ω

(
∇(|∇ω2|p−2∇ω2)−∇(|∇ω1|p−2∇ω1)

)
h(ω2 − ω1) ≤

∫

Ω

(ωm
2 − ωm

1 )h(ω2 − ω1).

After integration by parts using the boundary condition it holds

∫

Ω∩{xN=0}∩A

(
|∇ω2|p−2∇ω2 − |∇ω1|p−2∇ω1

)
∇(ω2 − ω1) +

∫

Ω∩A

(ωm
2 − ωm

1 )(ω2 − ω1)

≤
∫

∂Ω∩A

(ωp−2
2 − ωp−2

1 )(ω2 − ω1),

where A = {x ∈ Ω such that ω2(x) ≤ ω1(x)}. Applying i) of the previous lemma to the
first and the second of the above integrals and ii) to the last one, we get

C1(p)

∫

Ω

|∇h(ω2 − ω1)|p +

∫

Ω∩A

(ωm
2 − ωm

1 )(ω2 − ω1)

≤ C2(‖ωi‖∞, p)

∫

∂Ω

(
h(ω2 − ω1)

)2

≤ C2

(∫

∂Ω∩{xN=0}
h(ω2 − ω1)

p∗
)2/p∗ (

µ(∂Ω ∩ {xN = 0})
)1−2/p∗

,

(2.7)
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where p∗ ≡ p(N−1)
N−p

denotes the critical exponent for the Sobolev trace embedding. From

here it is easy to see that, if µ(∂Ω ∩ {xN = 0}) is sufficiently small, the last integral in
(2.7) can be absorbed into the first one. This implies that h(ω2 − ω1) ≡ 0 in Ω and the
comparison principle holds. 2

In the sequel, by uR we denote a nontrivial nonnegative solution of (1.7) verifying (1.6),
which is a minimizer of JR on the space of the functions belonging to W that satisfy (1.6).
The existence of such minimizer can be proved as in Lemma 2.1.

We conclude this section by showing a tangential radial growth property, which will
be also satisfied by a solution to (1.4).

To carry this task, we establish some useful notation to apply the moving plane
method, introduced in [12]. We define Sλ = {x ∈ RN such that x1 > λ}, Πλ the hy-
perplane ∂Sλ and xλ = 2(λ − x1)e1 + x, that is, the reflection across Πλ. Finally,
uλ

R(x) = uR(xλ) and vλ = uλ
R − uR. Assume that D = supp(uR) is connected.

Lemma 2.5 Let uR be a solution to (1.4). Then it satisfies (1.6). Moreover, uR(|x′|, xN)
is decreasing in |x′| and xN .

Proof. This result is proved in several steps.

First step. Let us show that if vλ(x0) = 0 for any x0 ∈ Sλ, then vλ ≡ 0 in Sλ.
A similar proof is performed in Lemma 2.1 in [6] for any point x0 ∈ Sλ ∩ RN

+ . On
{xN = 0} we apply the Hopf boundary lemma to conclude that vλ ≡ 0.

Second step. Let us define

λ0 = inf{λ ∈ R such that vλ(x) ≥ 0, for all x ∈ Sλ}.

Since uR is compactly supported λ0 is well defined and we have that −∞ < λ0 < ∞.
Let us see that Sλ0 ∩D 6= ∅.

If λ is large then Sλ ∩ D = ∅ and consequently vλ ≥ 0, whereas if −λ is large then
(RN

+ \ Sλ) ∩D = ∅, which implies that vλ < 0. Note that it is possible to take a λ̃ such

that µ(S
eλ ∩ D ∩ {xN = 0}) is small enough, so as to apply Lemma 2.4 to u

eλ and u in

S
eλ ∩D ∩ RN

+ , getting v
eλ ≥ 0.

Third step. vλ0 vanishes in Sλ0 ∩ RN
+ .

Arguing by contradiction, we suppose that vλ0 6≡ 0, thus by the first step vλ0 > 0
in Sλ0 ∩ D. The second step assures that Sλ0 ∩ D ∩ {xN = 0} 6= ∅. Let us take a
compact K, K ⊂ Sλ0 ∩ D ∩ {xN = 0} and λ sufficiently close to λ0 such that µ((Sλ ∩
D \K) ∩ {xN = 0}) ≤ δ/2, for which vλ > 0 in K, since vλ0 > 0 in K. Let us denote by
D− = {x ∈ Sλ such that vλ < 0}. The definition of λ0 implies that D− 6= ∅ if λ < λ0.
Since D− ⊂ Sλ ∩ D \ K the previous considerations ensure that µ(D− ∩ {xN = 0}) is
small. Applying the comparison principle of Lemma 2.4 to uλ

R and uR in D− it follows
that vλ ≥ 0 in D−, which is a contradiction.
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Fourth step. We show now that uR is decreasing in xN . In the sequel of the proof let
us denote by Sλ = {x ∈ RN

+ such that xN > λ} and keep the remaining notation.
Take λ ∈ (R/2, R). It is easy to see that




∇(|∇uλ
R|p−2∇uλ

R)−∇(|∇uR|p−2∇uR) = (uλ
R)m − um

R , in Sλ ∩BR,

vλ = 0, on Πλ ∩BR,

vλ ≥ 0, on Sλ ∩ ∂BR.

(2.8)

Multiplying the equation by h(vλ) and integrating in Sλ ∩BR we get
∫

Sλ∩BR

(
|∇uλ

R|p−2∇uλ
R − |∇uR|p−2∇uR

)
∇h(vλ) +

∫

Sλ∩BR

((uλ
R)m − um

R )h(vλ)

≤
∫

∂(Sλ∩BR)

(
|∇uλ

R|p−2 ∂uλ
R

∂xN

− |∇uR|p−2 ∂uR

∂xN

)
h(vλ).

(2.9)

The boundary integral vanishes and consequently vλ ≥ 0 in Sλ∩BR for every λ ∈ (R/2, R).
We consider now λ ∈ (R/4, R/2). Then vλ verifies (2.8)1 in BR ∩ {λ < xN < 2λ}. To

argue as in (2.9) we show that the boundary integral corresponding to these values of λ
is nonpositive. It is immediate to see that vλ ≥ 0 on ∂BR ∩ {λ < xN < 2λ} and vanishes
over {xN = λ}. Finally, we show that the integrand is nonpositive over BR ∩ {xN = 2λ}.
If xN > R/2 we have already shown that uR is decreasing with respect to xN . Thus
∂uR

∂xN

≤ 0. Conversely,
∂uλ

R

∂xN

≥ 0, getting the desired result.

Repeating this argument using (2.9) we can conclude that vλ ≥ 0 for every λ > 0. 2

3 Existence of a compactly supported solution

The following task is to show that, for R sufficiently large, uR indeed solves (1.4).

Proposition 3.1 Let uR be a solution to (1.4) verifying (1.6). For R large enough

max
x∈supp(uR)

|x| < R.

Proof. We show first that uR is compactly supported in the variable xN . Note that by
Lemma 2.5 we have, for every |y′| ≤ |x′| and every 0 < yN ≤ xN ,

∫

A

um+1
R (x′, xN)dy ≤

∫

A

um+1
R (y′, yN)dy,

where A = {(y′, yN) : |y′| ≤ |x′|, 0 < yN ≤ xN}. Taking now into account the first
estimate of Lemma 2.2, we can deduce

uR(x′, xN) ≤ C

|x′|(N−1)/(m+1)|xN |1/(m+1)
≤ C(2L)(N−1)/(m+1)

R
1/(m+1)
1

≤ 1

2
, (3.1)
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for any |x′| ≥ 1
2L

, xN ≥ R1 for R1 ≤ R large enough, where by L we denote the uniform

bound ‖∇u‖L∞(B+
R/2

) ≤ L of Lemma 2.2. If y′ ∈ RN−1
+ is such that |x′ − y′| ≤ 1

2L
then

|uR(x′, R1)− uR(y′, R1)| ≤ L|x′ − y′| ≤ 1

2
,

which together with (3.1) gives

uR(x′, R1) ≤ 1, ∀x′. (3.2)

Let us consider a super solution with compact support in xN to the problem
{
∇(|∇ω|p−2∇ω) = ωm, in {xN > R1} ∩ B+

R ,

ω(R1) = 1, in {xN = R1} ∩ B+
R .

(3.3)

An integration by parts of the equations that ω and uR satisfy, multiplied by h(ω−u)
gives

∫

Ω∩{ω≤uR}

(
|∇ω|p−2∇ω − |∇uR|p−2∇uR

)
∇(ω − uR) +

∫

Ω∩{ω≤uR}
(ωm − um

R )(ω − uR)

≤ −
∫

∂Ω

(
|∇ω|p−2∂ω

∂η
− |∇u|p−2∂uR

∂η

)
h(ω − uR),

where Ω = {xN > R1} ∩ B+
R and η is the outer unit normal vector. Note that ω ≥ uR in

∂Ω, due to (3.2) and to the fact that uR ≡ 0 on {xN > R1} ∩ ∂B+
R . Thus the boundary

integral vanishes and we get that ω ≥ uR in {xN > R1}∩B+
R . Therefore, if xN ≥ R2 then

u(x′, xN) = 0.
As such super solution, we can take for instance

ω = β
(
(γ − xN)+

)α

, (3.4)

where f+ = max{f, 0} and α, β , γ being such that

α =
p

p− (m + 1)
,

2βp−(m+1)pp−1(m + 1)(p− 1) =
(
p− (m + 1)

)p

,

β(γ −R1)
p/(p−(m+1)) = 1.

(3.5)

We prove now that the support of uR is bounded in the direction of x′. Let us take
x0 ∈ {xN = 0}. We show that for |x0| and R sufficiently large, uR ≤ ψ, being ψ
a vanishing function in a small neighbourhood of x0. We construct such a function ψ
verifying as well the following:

∇(|∇ψ|p−2∇ψ) ≤ ψm, in Ω ∩ {xN > 0}, (3.6)
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−|∇ψ|p−2 ∂ψ

∂xN

≥ ψp−1, on ∂Ω ∩ {xN = 0}, (3.7)

ε := inf
∂Ω∩{xN>0}

ψ > 0, (3.8)

where Ω = B(x0, r0), with 0 < r0 < 1 chosen sufficiently small.
From the estimate (3.1) we can find R3 such that

uR(x′, xN) ≤ ε

2
, ∀|x′| ≥ R3, xN ≥ ε

2L
,

denoting by L the uniform bound for |∇uR| of Lemma 2.2. Arguing as in (3.2) it follows
that

uR(x′, xN) ≤ ε, ∀x′ such that |x′| = R3, ∀xN > 0.

Choosing x0 ∈ RN
+ such that |x0| = R3 + r0 the comparison provided by Lemma 2.4

holds and ψ ≥ uR in Ω ∩ RN
+ , with R ≥ R3 + 2r0. Note that x0 was any of the points in

∂BR3+r0 ∩ {xN = 0}, thus uR vanishes in a neighbourhood of this set. The monotonicity
of uR in |x′| and xN concludes the proof.

It remains to construct the function ψ with the desired properties. We denote x0 =
(x′0, 0). For simplicity, let us assume that ψ is radial around the point (x′0, d) , that is,
ψ = ψ(r2), where r2 = r2

1 + (xN − d)2, r2
1 = |x′ − x′0|2. More precisely, we look for a

function of the form

ψ = a
(
(r2 − b)+

)α

, with α =
p

p− 1−m
, (3.9)

where a, b, d > 0 will be fixed conveniently depending only on r0,m and p. Since

−|ψ′|p−2 ∂ψ

∂xN

= (2aα)p−1rp−2
(
(r2 − b)+

)(p−2)(α−1)

(xN − d),

condition (3.7) reads as

(2α)p−1rp−2d ≥
(
(r2 − b)+

)p−1

.

Taking
d ≥ rp

0

and
d2 − b < 0, (3.10)

we get that (3.7) holds. Note that (3.10) implies also that ψ vanishes in a neighbourhood
of r1 = 0 and xN = 0. To satisfy (3.8) we need the following inequality

r2
1 + (xN − d)2 − b = r2

1 + x2
N + d2 − 2xNd− b ≥ r0(r0 − 2d) + d2 − b, (3.11)

since r2
1 + x2

N = r2
0 and thus xN ≤ r0. Then, if d < r0/2 we can choose an appropriate b

such that (3.11) holds. Finally, we deal with (3.6), which written in radial variables reads

(p− 1)|ψ′|p−2ψ′′ + (N − 1)
|ψ′|p−2ψ′

r
≥ cψm.
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This holds if a is small enough. More precisely, if

ap−1−m(2α)p−1rp−2
(
2r2(α− 1)(p− 1) + (p + N − 2)(r2 − b)

)
≤ 1.

This ends the proof. 2

Lemma 3.1 If u ∈ W 1,p(RN
+ ) solves (1.4) then

‖u‖Lm+1(RN
+ ) ≤ C, ‖u‖L∞(RN

+ ) ≤ C and ‖∇u‖L∞(RN
+ ) ≤ C.

Proof. Multiplying the equation (1.4) and integrating by parts

∫

RN
+

|∇u|p +

∫

RN
+

um+1 =

∫

{xN=0}
up,

the first bound follows, since u ∈ W 1,p(RN
+ ). The remaining estimates are derived from

the first one as follows.
First we deal with the uniform bound for u. Note that if u solves (1.4) by the results

in Lemma 2.2 we know that u ∈ L∞(B+
R), and ∇u ∈ L∞(B+

R/2) for R > 0 large. Let

us argue by contradiction. Suppose that there exists a sequence {xn} ∈ RN
+ such that

|xn| → ∞ and |u(xn)| → ∞. Taking any y ∈ B(xn, R/2)+ one can see that

u(y) ≥ u(xn)− LR/2, (3.12)

where L is the uniform bound for the gradient of u in the ball B(xn, R/2)+. On the other
hand, by the previous step we have ‖u‖Lm+1(R+) ≤ C, which plugged in (3.12) gives

C ≥
∫

RN
+

um+1 ≥
∫

B+
R

um+1 ≥ µ(B+
R)(u(xn)− LR/2)m+1,

which is not bounded and gives the desired contradiction.
To prove the remaining estimate we argue similarly, but using the Hölder continuity

of the gradient of u, see [17], since we lack of the uniform bound for the second derivative.
We get the analogous to (3.12)

|∇u(y)| ≥ |∇u(xn)| − C(R/2)α,

for any y ∈ B(xn, R/2). But this contradicts that u ∈ W 1,p(RN
+ ) since

C ≥
∫

RN
+

|∇u|p ≥
∫

B(xn,R/2)+
|∇u|p ≥ µ(B(xn, R/2))(‖∇u(xn)‖ − C(R/2)α)p,

which is not bounded, and the lemma is proved. 2
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Proof of Theorem 1.1 We start by showing that u becomes small outside B+
R , that is

lim
R→∞

sup
RN

+ \B+
R

u = 0. (3.13)

If not, there exist ε0 > 0 and xn ∈ RN
+ , such that u(xn) ≥ ε0, as |xn| → ∞. Let L be the

uniform bound in RN
+ for the gradient of u provided by the previous lemma and r = ε0

2L
.

For every yn ∈ B(xn, r) it holds

|u(xn)− u(yn)| ≤ ‖∇u‖L∞(RN
+ )|xn − yn| ≤ ε0

2
.

Thus u ≥ ε0/2 in B(xn, r) ∩ RN
+ , ∀n. Then, for a subsequence of disjoint balls B(xn, r),

we have ∫

RN
+

um+1 ≥
∑

n

∫

B(xn,r)∩RN
+

um+1 = ∞,

which contradicts Lemma 3.1.
By (3.13) we can find R1 > 0 such that u(x′, R1) ≤ 1, ∀x′ ∈ RN−1. Considering the

same function ω of Proposition 3.1 for this R1 it follows that

ω ≥ u on {xN = R1} (3.14)

and
lim inf
|x|→∞

(ω − u) ≥ 0. (3.15)

Note that (3.14) and (3.15) imply that u ≤ ω in {xN > R1}. This fact can be easily seen
multiplying the equation that u and ω satisfy by h(ω − u) once more and integrating by
parts. It gives

∫

Ω∩{ω≤u}

(
|∇ω|p−2∇ω − |∇u|p−2∇u

)
∇(ω − u) +

∫

Ω∩{ω≤u}
(ωm − um)(ω − u)

≤ −
∫

∂Ω

(
|∇ω|p−2∂ω

∂η
− |∇u|p−2∂u

∂η

)
h(ω − u),

where Ω = {xN > R1}. Since the boundary integral vanishes h(ω − u) ≡ 0 in Ω and we
obtain the desired result. Thus there exists R2 such that u(x′, xN) = 0 for all x′ ∈ RN−1,
and xN > R2.

Next we show that u(x′, 0) = 0 for any x′ ∈ RN−1 with |x′| large. We apply the
comparison principle of Lemma 2.4 in B(x0, r0) ∩ RN

+ with r0 > 0 small enough and
x0 ∈ {xN = 0}, to the function ψ constructed in Proposition 3.1 in (3.9) and u. It follows
that

inf
∂B(x0,r0)∩{xN>0}

ψ = ε,

see (3.8). Since (3.13) holds, it is possible to find R3 > 0 large such that if |x0| > R3 then
u ≤ ε in B(x0, r0) ∩ RN

+ . Therefore, u ≤ ψ in this domain, and this fact implies that u
vanishes in a neighbourhood of x0, since ψ did.
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To conclude the proof of the compactness of the support of u we consider a function ω
with the same expression (3.4) but as a function of xk for any direction k = 1, ..., N − 1,
that is

ω = β
(
(γ − xk)

+
)α

,

with α, β, γ taken as in (3.5). Analogously, take R1 large enough ensuring that u(x) ≤ 1
if xk ≥ R1 and xN > 0. As before, considering problem (3.3) in {xk > R1}∩RN

+ it follows
that u ≤ ω in this region. Thus u = 0 for xk large and xN > 0. Since xk was arbitrary
we have deduced that u is compactly supported.

Once we have the compactness of the support of u, we easily deduce from steps 1-3 in
Lemma 2.5 the symmetry property (1.6). 2
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[6] C. Cortázar, M. Elgueta and P. Felmer. Symmetry in an elliptic problem and the
blow-up set of a quasilinear heat equation. Comm. Partial Diff. Eq. Vol. 21(3&4),
(1996), 507–520.

[7] J. Dávila and J. D. Rossi. Self-similar solutions of the porous medium equation
in a half-space with a nonlinear boundary condition. Existence and symmetry. J.
Math. Anal. Appl. Vol. 296, (2004), 634–649.

16



[8] J. Fernández Bonder and J. D. Rossi. Existence results for the p−Laplacian with
nonlinear boundary conditions. J. Math. Anal. Appl. Vol. 263(1), (2001) 195–223.
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