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Introduction.

Let J : RN → R be a nonnegative, smooth function such that∫
RN J(y)dy = 1. Equations of the form

(1.1) ut(x, t) =

∫

RN

J(x− y)u(y, t) dy − u(x, t) in RN × [0,∞)

have been widely used to model diffusion processes, see [2], [4], [10], [11],
[12]. As stated in [10] if u(x, t) is thought of as a density at the point
x at time t and J(x − y) is thought of as the probability distribution
of jumping from location y to location x, then

∫
RN J(x− y)u(y, t)dy is

the rate at which individuals are arriving to position x from all other
places. On the other hand−u(x, t) = − ∫

RN J(x−y)u(x, t)dy is the rate
at which they are leaving location x to travel to all other sites. This
consideration, in the absence of external sources, leads immediately to
the fact that the density u satisfies equation (1.1).

Throughout this note we shall assume also that J is a decreasing
radial function whose support is the unit ball. Under these hypotheses
we have that individuals that are at a position x are not allowed, with
probability 1, to jump to a locations y such that ||x− y|| > 1. In this
fashion we like to think of this process as a, continuos in time, random
walk of step’s size 1.

Another equation that has been widely used to model diffusion pro-
ceses is the classical heat equation

(1.2) vt = D∆v.

Equations (1.1) and (1.2) share several properties. For example the
initial value problem is well posed for suitable initial data and a max-
imum principle, and hence a comparison one, holds for both of them.
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An important relation between equations (1.1) and (1.2) is that so-
lutions of a properly rescaled version of (1.2) converge to the solution
of (1.1) when the scaling parameter tends to zero. More precisely, let
ε > 0 and consider the rescaled equation

(1.3) ε2ut(x, t) =

∫

RN

J

(
x− y

ε

)
u(y, t)

εN
dy − u(x, t).

We observe that solutions to (1.3) are random walks, in the sense ex-
plained above, where the probability density of jumping from position
y to position x is given by

J

(
x− y

ε

)
1

εN

so in this case the size of the step of the random walk is ε. On the
other hand the ε2 that appears in the left hand side of (1.3) stands for
an increment in the number of steps per unit of time.

The following result is classic:

Theorem 1.1. Let uε be a solution of (1.3) and let v be a solution of
(1.2). Assume that

uε(x, 0) = v(x, 0) ∈ L1(RN),

then
lim
ε→0

uε(x, t) = v(x, t)

in L1(RN × [0, T ]) for any T > 0.

The aim of this note is to exhibit a similar relation between solu-
tions of the porous medium equation, vt = ∆(vm), and suitable random
walks. Since solutions v of the porous medium equation have the prop-
erty that if v(·, 0) is compactly supported in RN then so is v(·, t) for all
t > 0, see [1], we would like to approximate them by random walks that
also have this property. Such a random walk was constructed in [6].

Our result.

The well known porous medium equation

(1.4) vt = D∆(vm) in RN × [0,∞),

where m > 1 and D > 0 is any constant, has been also widely used to
model diffusion.

Solutions to (1.4) and (1.2) share several properties such as the fact
that the initial value problem is well posed for suitable initial data
and a comparison principle holds for both of them. However there
exists quite a difference in their behavior as we explain now. While
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solutions to (1.2) do have the so called infinite speed of propagation
of disturbances, this means that if u is a non trivial solution of (1.2)
with u(x, 0) ≥ 0 then u(x, t) > 0 for all (x, t) with t > 0, solutions of
(1.4) do not. See [1]. It is actually proved that if u ≥ 0 is a solution
of (1.4) such that the support of u(·, 0) is contained in a finite interval
[−a, a], then there exits a non decreasing function s : [0,∞) → [0,∞)
such that u(·, t) is supported inside [−s(t), s(t)].

At this point it is worth to note here that solutions of (1.3) do have
infinite speed of propagation of disturbances. This is no difficult to
prove and is left as an exercise.

In [6] a random walk was proposed, in the case N = 1, which has
the property that if the initial condition has compact support, then
the spacial support of the solution is compact for any t > 0. This was
achieved by considering functions of the form

J

(
x− y

u(y, t)

)
1

u(y, t)

to represent the probability of jumping from position y to position x.
In this case the random walk, continuous in time, is regulated by the

equation

(1.5) ut(x, y) =

∫

R
J

(
x− y

u(y, t)

)
dy − u(x, t) in R× [0,∞).

Existence, uniqueness and a comparison principle for (1.5) have been
proved in [6]. See [3] for the case of arbitrary dimension, that is, in RN .

We are now in a position to describe the main result of this note. To
do this let an initial condition u0 be given and let ε > 0. Consider the
re-scaled problem

(1.6) ut(x, y) =
1

ε2

(∫

R
J

(
x− y

εu(y, t)

)
dy

ε
− u(x, t)

)
in R× [0,∞).

and let uε be a solution of (1.6) with initial condition uε(x, 0) = u0(x).
We want to determine the escaled limit

lim
ε→0

uε.

Unfortunately at this point we have to make an extra assumption
that we are sure it can be removed. The extra assumption is

uε(x, 0) = w0(x) + δ

where w0(x) is a non negative compactly supported C∞ function and
δ > 0.
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We need first the following definition. For ε > 0 and a positive
bounded function h we define

Tεh(x) =

∫

R
J

(
y − x

εh(y)

)
dy

ε
− h(x).

We also the need the following lemma.

Lemma 1.1. Let δ > 0 and let h be a smooth function such that
h(x) ≥ δ. Then

Tεh(x) = C(h3)xxε
2 + R(x, ε)

where R(·, ε) ∈ L1(R) and C =
∫

J(z)z2dz. Moreover

||R(·, ε)||1 ≤ K
ε3

δ6

where K depends on J , ||h||∞, ||h′||∞, ||h′′||∞, ||h′′′||∞, ||h′||1, ||h′′||1
and ||h′′′||1 but is independent of ε, δ and ||h||1.
Proof: The proof consists of expanding the function Tεh(x) in a Taylor
series in ε about the point ε = 0.

Performing the change of variables z = y−x
ε

we get

Tεh(x) =

∫

R
J

(
z

h(x + εz)

)
dz − h(x).

Hence

(1.7) T0h(x) = 0.

Now

d

dε
Tεh(x) = −

∫

R
J ′

(
z

h(x + εz)

)
z2 h′(x + εz)

h2(x + εz)
dz.

and using the fact that J ′ is an odd function we get

(1.8)
d

dε
Tεh(x)|ε=0 = 0.

Differentiating with respect to ε one more time we obtain

d2

dε2
Tεh(x) =

∫

R
J ′′

(
z

h(x + εz)

)
z4

(
h′(x + εz)

h2(x + εz)

)2

dz

−
∫

R
J ′

(
z

h(x + εz)

)
z3

(
h′(x + εz)

h2(x + εz)

)′
dz.
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Thus

d2

dε2
Tεh(x)|ε=0 =

∫

R
J ′′

(
z

h(x)

)
z4dz

(
h′(x)

h2(x)

)2

−
∫

R
J ′

(
z

h(x)

)
z3dz

(
h′(x)

h2(x)

)′

=

∫

R
J ′′(w)w4dwh(x)(h′(x))2 −

∫

R
J ′(w)w3dwh4(x)

(
h′(x)

h2(x)

)′
.

But∫

R
J ′′

(
z

h(x)

)
z4dz = −4

∫

R
J ′(

z

h(x)
)z3dz = 12

∫

R
J(

z

h(x)
)z2dz

and ∫

R
J ′(

z

h(x)
)z3dz = −3

∫

R
J(

z

h(x)
)z2dz.

So setting

C =

∫

R
J(z)z2dz

we get

d2

dε2
Tεh(x)|ε=0 = C

(
12h(x)(h′(x))2 + 3h4(x)

(
h′(x)

h2(x)

)′)

= C(6h(x)(h′(x))2 + 3h2(x)h′′(x)) = C(h3(x))′′.

Or

(1.9)
d2

dε2
Tεh(x)|ε=0 = C(h3(x))′′.

Using (1.7), (1.8) and (1.9) we obtain, by Taylor’s theorem,

Tεh(x) = C(h3)xxε
2 + R(x, ε)

where the remainder can be written as

R(x, ε) =
1

2

∫ ε

0

d3

ds3
Tsh(x)(ε− s)2ds.

Differentiating the formula for d2

dε2 Tεh(x) one more time with respect to

ε and plugging in d3

ds3 Tsh(x) into the above integral the desired estimate
is obtained after a straightforward calculation that uses the fact that
J is compactly supported. ¤

We will give now a proof of our result. We recall that we are assuming
that the initial condition is of the form u0(x) = w0(x) + δ with δ > 0
and w0 a compactly supported non negative C∞ function.
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Theorem 1.2. Let w0 ∈ C∞(R) be a nonnegative compactly supported
function and let δ > 0. For each ε > 0 let uε be the solution (1.6) with
initial condition uε(x, 0) = u0(x) = w0(x) + δ. Let v be a solution of

vt = C(v3)xx

with initial condition v(x, 0) = u0(x) = w0(x) + δ.
Then

lim
ε→0

uε = v

in L1(R× [0,∞]) for each T > 0.

Proof: Existence and uniqueness of the solutions uε can be found in
[6]. By Lemma 1.1 we can write

vt(x, t) =
1

ε2

(∫

R
J

(
y − x

εv(y, t)

)
dy

ε
− v(x, t)

)
+

1

ε2
R(x, t, ε)

where, due to our hypotheses on w0,

||R(·, t, ε)||1 ≤ K
ε3

δ6
for all t ∈ [0, T ]

with K independent of ε and δ.
Let now w y w solutions of

wt(x, t) =
1

ε2

(∫

R
J

(
y − x

εw(y, t)

)
dy

ε
− w(x, t)

)
− 1

ε2
|R(x, t, ε)|

and

wt(x, t) =
1

ε2

(∫

R
J

(
y − x

εw(y, t)

)
dy

ε
− w(x, t)

)
+

1

ε2
|R(x, t, ε)|

with initial data

w(x, 0) = w(x, 0) = u0(x) + δ,

respectively.
Clearly, by comparison,

w(x, t) ≤ v(x, t) ≤ w(x, t),

and

w(x, t) ≤ uε(x, t) ≤ w(x, t).

Now since the quantity inside the double integral is non negative, in
this step we are using strongly the hypothesis that J is decreasing in
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[0, 1], we can apply Fubini’s theorem and get

d

dt

∫

R
(w − w)(x, t) dx =

=
1

ε2

(∫

R
J

(
y − x

εw(y, t)

)
dy

ε
− w(x, t)

)
dx

−
∫

R

1

ε2

(∫

R
J

(
y − x

εw(y, t)

)
dy

ε
− w(x, t)

)

+2
1

ε2

∫

R
|R(x, t, ε)|dx

= 2
1

ε2

∫

R
|R(x, t, ε)|dx ≤ 2K

ε

δ6
.

This implies

‖w − w‖1 → 0, as ε → 0.

and hence

uε → v

en L1(R× [0, T )) for any T > 0 as ε → 0 as we wanted to prove. ¤
We end this note with the following remark: the extra hypothesis

uε(x, 0) = v(x, 0) = w0(x) + δ with δ > 0 in Theorem 1.2 has to be
replaced by uε(x, 0) = v(x, 0) = w0(x) with w0 ∈ L1(R). We hope we
can do this in the near future.

Once this is done an interesting question arises: Assume that w0 is
even with respect to the origin and supp w0 = [−a, a]. Then it is known
that there exist non decreasing functions, called the free boundaries,
s : [0,∞) → [0,∞) and sε : [0,∞) → [0,∞) such that supp v(·, t) =
[−s(t), s(t)] and supp uε(·, t) = [−sε(t), sε(t)]. A natural question to
ask is whether and in which sense lim

ε→0
sε = s.
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