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Abstract. In this paper we study the behavior as p→∞ of solutions
up,q to −∆pu−∆qu = 0 in a bounded smooth domain Ω with a Lipschitz
Dirichlet boundary datum u = g on ∂Ω. We find that there is a uniform
limit of a subsequence of solutions, that is, there is pj → ∞ such that
upj ,q → u∞ uniformly in Ω and we prove that this limit u∞ is a solu-
tion to a variational problem, that, when the Lipschitz constant of the
boundary datum is less or equal than one, is given by the minimization
of the Lq-norm of the gradient with a pointwise constraint on the gradi-
ent. In addition, we show that the limit is a viscosity solution to a limit
PDE problem that involves the q−Laplacian and the ∞−Laplacian.

1. Introduction.

In this paper we deal with solutions to the following elliptic problem

(1.1)

{
−∆pu−∆qu = 0, in Ω,

u = g, on ∂Ω,

when p is large. Here ∆pu = div(|∇u|p−2∇u) is the well-known p−Laplacian
operator, Ω is a smooth bounded domain in RN , the boundary datum, g, is
a Lipschitz function and we assume that p > q.

Existence and uniqueness of weak solutions to (??) can be easily obtained
from a variational argument. In fact, we just have to look for the unique
minimizer of the functional

(1.2) Fp,q(u) =

∫
Ω

|∇u|p

p
+

∫
Ω

|∇u|q

q

in the set S =
{
u ∈W 1,p(Ω) : u = g on ∂Ω

}
. We note that, as in [?, ?],

it can be proved that a continuous weak solution is also a solution in the
viscosity sense (we refer to [?] for the definition of viscosity solutions).

Once we have existence and uniqueness of a solution, that we call up,q
in the sequel, we deal with our main goal in this paper, the study of the
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asymptotic behavior of up,q as p → ∞. We find that there is a uniform
limit, u∞, extracting a subsequence if necessary, and show that there is a
variational limit problem as well as a limit PDE that are verified by u∞.
This is the content of our main result that we state below.

Theorem 1.1. Let up,q be the solution to (??). Then, for any fixed q there
is a sequence pj →∞ such that

upj ,q → u∞

weakly in W 1,r(Ω) (for any fixed r ∈ (1,∞)) and uniformly in Ω. The limit
u∞ belongs to W 1,∞(Ω) and verifies

‖∇u∞‖L∞(Ω) ≤ max{L, 1}
where L is the Lipschitz constant of the boundary datum g.

If L ≤ 1, then u∞ is the unique solution to the following variational
problem

(1.3) min
|∇u|≤1, u|∂Ω=g

∫
Ω

|∇u|q

q
,

while when L > 1 we have that u∞ is a minimal Lipschitz extension, that
is, u∞ is a solution to

(1.4) min
u|∂Ω=g

‖∇u‖L∞(Ω).

In addition, u∞ is a viscosity solution to the following PDE problem

(1.5)

−∆∞u = 0, in Ω ∩ {|∇u| > 1},
−∆∞u = 0, in Ω ∩ {|∇u| = 1},
−∆qu = 0, in Ω ∩ {|∇u| < 1}.

Remark that, due to the strict convexity of the Lq-norm, there exists a
unique solution to (??) therefore we have existence of the limit limp→∞ up,q
in the case L ≤ 1, but we point out that uniqueness of the limit is left open
for L > 1.

Note that the fact that u∞ is a solution to (??) when L ≤ 1 does not
imply that it verifies the equation −∆qu = 0 in the whole Ω since we have
the constraint |∇u| ≤ 1 in (??) (that is not necessarily fulfilled by the
q−harmonic extension of the datum g even if it has a Lipschitz constant less
than one). Also note that when L > 1 we don’t necessarily have −∆∞u = 0
in the whole Ω.

Equations involving the sum of a p−Laplacian and a Laplacian (also
known as (p; 2)-equations) arise in mathematical physics, see, for example,
[?] (quantum physics), [?] (plasma physics) and [?, ?]. On the other hand,
the limit of p−harmonic functions as p→∞, that is, solutions to −∆pu = 0
in Ω, has been extensively studied in the literature (see [?] and the survey [?])
and leads naturally to the infinity Laplacian given by ∆∞u =

(
D2u∇u

)
·∇u.
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Infinity harmonic functions (solutions to −∆∞u = 0) are related to the op-
timal Lipschitz extension problem (see [?] and the survey paper [?]) and
find applications in optimal transportation, image processing and tug-of-
war games (see, e.g., [?], [?], [?], [?], [?], [?] and the references therein).
Also limits of the eigenvalue problem related to the p-laplacian has been ex-
haustively studied, see [?], [?], [?], [?], [?]. For limits in anisotropic problems
like −

∑
i(|uxi |p−2uxi)xi = 0 we refer to [?], [?], [?], [?] and [?].

Regarding the ideas and methods used in the proofs we point out the
following facts: the proof of the uniform convergence of up,q to u∞ is based
on a priori estimates, that imply weak compactness in Sobolev spaces. After
that, one can verify the passage to the limit in the viscosity sense taking
care of the different cases that appear. Remark that (??) is not continuous
as a function of the gradient and hence we have to use the upper and lower
semicontinuous envelopes of the PDE in the definition of a viscosity solution.

In the next section we prove our main result, Theorem ??; in Section
?? we present as an example that illustrates the main features of the limit
problem the radial case in an annulus; and in the final section we comment
briefly on possible extensions.

2. Proof of Theorem ??.

First, we show that up,q is uniformly bounded in a Sobolev space. We
use v the absolutely minimizing Lipschitz extension (AMLE) of g (that is,
a function that extends g inside Ω and minimizes the Lipschitz constant in
every subdomain, see [?] for the existence and properties of AMLE functions)
as a test function in the variational problem for up,q, (??), and we get∫

Ω

|∇up,q|p

p
+

∫
Ω

|∇up,q|q

q
≤
∫

Ω

|∇v|p

p
+

∫
Ω

|∇v|q

q
≤ |Ω|

(
Lp

p
+
Lq

q

)
.

Here L is the Lipschitz constant of g (note that for the AMLE extension of
g we have |∇v| ≤ L a.e. in Ω). Therefore, we get(∫

Ω

|∇up,q|p

p

)1/p

≤ |Ω|1/p
(
Lp

p
+
Lq

q

)1/p

.

Hence, we obtain, taking p→∞,

(2.1) lim sup
p→∞

(∫
Ω

|∇up,q|p

p

)1/p

≤ max{L, 1}.

Now, we argue as follows: we fix r ∈ (1,∞) and for any p > r large enough
we obtain (∫

Ω
|∇up,q|r

)1/r

≤
(∫

Ω
|∇up,q|p

)1/p

|Ω|(p−r)/rp ≤ C.

Hence, extracting a subsequence pj →∞ if necessary, we have that

up,q ⇀ u∞
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weakly in W 1,r(Ω) for any 1 < r < ∞ and uniformly in Ω. From (??), we
obtain that this weak limit verifies(∫

Ω
|∇u∞|r

)1/r

≤ |Ω|1/r max{L, 1}.

As we can assume that the above inequality holds for every r (using a
diagonal argument), we get that u∞ ∈ W 1,∞(Ω) and moreover, taking the
limit as r →∞, we obtain

|∇u∞| ≤ max{L, 1}, a.e. x ∈ Ω.

Now assume that L ≤ 1 and take v such that |∇v| ≤ 1 and v = g on ∂Ω
(the set of such functions v is not empty since we can just consider as before
the AMLE of g in Ω). From our previous arguments we get∫

Ω

|∇up,q|q

q
≤
∫

Ω

|∇up,q|p

p
+

∫
Ω

|∇up,q|q

q
≤
∫

Ω

|∇v|p

p
+

∫
Ω

|∇v|q

q

≤ |Ω|
p

+

∫
Ω

|∇v|q

q
.

Hence, passing to the limit as pj →∞ we obtain∫
Ω

|∇u∞|q

q
≤
∫

Ω

|∇v|q

q

and we conclude that u∞ is a solution to the variational problem (??).

The fact that u∞ is a solution to (??) when L > 1 is immediate since
we have proved that |∇u∞| ≤ L a.e. x ∈ Ω in this case (note that L is
the smallest value that ‖∇v‖L∞(Ω) can have among functions that take the
boundary datum g on the boundary).

Now, we look for the equation verified by the limit u∞ in the viscosity
sense.

To this end, we first recall the definition of viscosity sub and supersolution
to a nonlinear PDE problem of the form

(2.2)

{
H(∇u,D2u) = 0, in Ω,
u = g, on ∂Ω.

In general the function H can be discontinuous. Then we denote by H∗

and H∗ the upper and lower semicontinuous envelopes of H, respectively,
defined as

H∗(z, S) = lim
ε→0

sup
{
H(z′, S′) : |z − z′|+ |S − S′| < ε

}
for z ∈ RN and S ∈ SN (we denote by SN the set of symmetric matrices in
RN×N ) and

H∗(z, S) = −(−H)∗(z, S).



A p−LAPLACIAN AND A q−LAPLACIAN FOR p LARGE 5

Definition 2.1. A lower semicontinuous function u defined in Ω is a viscos-
ity supersolution of (??) if, u|∂Ω ≥ g and, whenever x0 ∈ Ω and φ ∈ C2(Ω)
are such that u− φ has a minimum at x0, then

H∗(∇φ(x0), D2φ(x0)) ≥ 0.

An upper semicontinuous function u defined in Ω is a viscosity subsolution
of (??) if, u|∂Ω ≤ g and, whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that
u− ϕ has a maximum at x0, then

H∗(∇ϕ(x0), D2ϕ(x0)) ≤ 0.

Finally, a continuous function u defined in Ω is a viscosity solution of
(??) if it is both a viscosity supersolution and a viscosity subsolution.

In what follows we will keep the notation used in the above definitions.
That is, by φ we will denote the test functions such that u−φ has a minimum
in Ω and by ϕ the test functions such that u−ϕ has a maximum somewhere
in Ω.

We refer to [?] for more details about general theory of viscosity solu-
tions, and to [?] for viscosity solutions related to the ∞−Laplacian and the
p−Laplacian operators.

In our case, to deal with (??), we define, for z ∈ RN and S ∈ SN a
symmetric real matrix,

(2.3) H(z, S) =

 −〈S · z, z〉 for |z| > 1,
−〈S · z, z〉 for |z| = 1,
−|z|q−2trace(S)− (q − 2)|z|q−4〈S · z, z〉 for |z| < 1.

As this function H is discontinuous, our first step is to characterize its
upper and lower semicontinuous envelopes, H∗ and H∗. The upper semi-
continuous envelope of H∞ is given by

H∗(z, S) =


−〈S · z, z〉 for |z| > 1,

max
{
− 〈S · z, z〉,

−|z|q−2trace(S)− (q − 2)|z|q−4〈S · z, z〉
}

for |z| = 1,

−|z|q−2trace(S)− (q − 2)|z|q−4〈S · z, z〉 for |z| < 1.

The lower semicontinuous envelope has the same expression except for the
case |z| = 1 in which the max is replaced by

min
{
− 〈S · z, z〉, −|z|q−2trace(S)− (q − 2)|z|q−4〈S · z, z〉

}
.

Now, we show that a uniform limit of up,q is a viscosity solution to (??).
We only have to check that u∞ is a solution in the sense of Definition ?? with
H given by (??) since the boundary condition, u = g on ∂Ω, is immediate
from the uniform convergence in Ω.
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First, we check that u∞ is a viscosity supersolution. Let x0 ∈ Ω and a
test function φ such that u∞ − φ has a strict minimum at x0.

From the uniform convergence of up,q to u∞ as pj → ∞ we obtain the
existence of a sequence xj ∈ Ω such that xj → x0 and upj ,q − φ has a
minimum at xj .

As upj ,q is a viscosity solution to (??) we have

(2.4)
−(pj − 2)|∇φ|pj−4∆∞φ(xj)− |∇φ|pj−2∆φ(xj)

−(q − 2)|∇φ|q−4∆∞φ(xj)− |∇φ|q−2∆φ(xj) ≥ 0.

First, assume that |∇φ(x0)| > 1. We want to show that

−∆∞φ(x0) ≥ 0.

From (??), using that |∇φ(xj)| → |∇φ(x0)| > 1, we get,

−∆∞φ(x0) = lim
j→∞

(−∆∞φ(xj)) ≥ lim
j→∞

|∇φ|2

(pj − 2)
∆φ(xj)

+
(q − 2)

(pj − 2)

|∇φ|q−4

|∇φ|pj−4 ∆∞φ(xj) +
|∇φ|q−2

|∇φ|pj−4 ∆φ(xj) = 0,

as we wanted to show.

Now, assume that |∇φ(x0)| < 1. We want to show that

−∆qφ(x0) ≥ 0.

Using again (??) together with the fact that |∇φ(xj)| → |∇φ(x0)| < 1, we
obtain

−∆qφ(x0) = lim
j→∞

(−∆qφ(xj)) ≥ lim
j→∞

|∇φ|pj−2∆φ(xj)

+(pj − 2)|∇φ|pj−4∆∞φ(xj) = 0,

as we wanted to show.

In the case |∇φ(x0)| = 1 we need to show that

max
{
−∆∞φ(x0), −∆qφ(x0)

}
≥ 0.

Here we argue by contradiction. Assume that

(2.5) −∆∞φ(x0) < 0, and −∆qφ(x0) < 0.

Note that (??) implies that ∇φ(x0) 6= 0 and hence ∇φ(xj) 6= 0 for j large
enough.

Suppose first that

(pj − 2)|∇φ|pj−4(xj) 6→ 0
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for a subsequence. Then, we use again (??) to obtain

−∆∞φ(xj)−
|∇φ|2

(pj − 2)
∆φ(xj)

− (q − 2)

(pj − 2)

|∇φ|q−4

|∇φ|pj−4 ∆∞φ(xj)−
|∇φ|q−2

(pj − 2)|∇φ|pj−4 ∆φ(xj) ≥ 0.

Taking limit as pj →∞, we get −∆∞φ(x0) ≥ 0, a contradiction.

When

(pj − 2)|∇φ|pj−4(xj)→ 0,

we just use (??),

−(pj − 2)|∇φ|pj−4∆∞φ(xj)− |∇φ|pj−2∆φ(xj)−∆qφ(xj) ≥ 0,

and we reach again a contradiction letting j → ∞ since in this case we
obtain −∆qφ(x0) ≥ 0 (note that since we have (pj − 2)|∇φ|pj−4(xj)→ 0 it
also holds that |∇φ|pj−2(xj)→ 0).

Now, to prove that u∞ is a viscosity supersolution we argue similarly. In
this case, take x0 ∈ Ω and a test function ϕ such that u − ϕ has a strict
minimum at x0.

From the uniform convergence of up,q to u∞ as pj → ∞ we obtain the
existence of a sequence xj ∈ Ω such that xj → x0 and upj ,q − ϕ has a
minimum at xj .

Now as upj ,q is a viscosity solution to (??) we have the reverse inequality
to (??) for ϕ that is

(2.6)
−(pj − 2)|∇ϕ|pj−4∆∞ϕ(xj)− |∇ϕ|pj−2∆ϕ(xj)

−(q − 2)|∇ϕ|q−4∆∞ϕ(xj)− |∇ϕ|q−2∆ϕ(xj) ≤ 0.

If |∇ϕ(x0)| > 1, we aim to show that

−∆∞ϕ(x0) ≤ 0.

From (??), using the fact that |∇ϕ(xj)| → |∇ϕ(x0)| > 1, we get

−∆∞ϕ(x0) = lim
j→∞

−∆∞ϕ(xj) ≤ lim
j→∞

|∇ϕ|2

(pj − 2)
∆ϕ(xj)

+
(q − 2)

(pj − 2)

|∇ϕ|q−4

|∇ϕ|pj−4 ∆∞ϕ(xj) +
|∇ϕ|q−2

|∇ϕ|pj−4 ∆ϕ(xj) = 0,

as we wanted to show.

Now, assume that |∇ϕ(x0)| < 1. We want to show that

−∆qϕ(x0) ≤ 0.
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Using again (??) together with the fact that |∇ϕ(xj)| → |∇ϕ(x0)| < 1, we
obtain

−∆qϕ(x0) = lim
j→∞

−∆qϕ(xj) ≤ lim
j→∞

|∇ϕ|pj−2∆ϕ(xj)

+(pj − 2)|∇ϕ|pj−4∆∞ϕ(xj) = 0,

as we wanted to show.

Finally, for the case |∇ϕ(x0)| = 1 we want to show that

min
{
−∆∞ϕ(x0), −∆qϕ(x0)

}
≤ 0.

Again we argue by contradiction. Assume that

(2.7) −∆∞ϕ(x0) > 0, and −∆qϕ(x0) > 0.

Note that this implies that ∇ϕ(xj) 6= 0 for j large enough.

Suppose first that

(pj − 2)|∇ϕ|pj−4(xj) 6→ 0

for a subsequence. Then, we use again (??) to obtain

−∆∞ϕ(xj)−
|∇ϕ|2

(pj − 2)
∆ϕ(xj)

− (q − 2)

(pj − 2)

|∇ϕ|q−4

|∇ϕ|pj−4 ∆∞ϕ(xj)−
|∇ϕ|q−2

(pj − 2)|∇ϕ|pj−4 ∆ϕ(xj) ≤ 0.

Taking limit as pj →∞, we get −∆∞φ(x0) ≤ 0, a contradiction with (??).

If

(pj − 2)|∇ϕ|pj−4(xj)→ 0,

we use (??) in the form

−(pj − 2)|∇ϕ|pj−4∆∞ϕ(xj)− |∇ϕ|pj−2∆ϕ(xj)−∆qϕ(xj) ≤ 0

and we reach again a contradiction letting j → ∞ since in this case we
obtain −∆qϕ(x0) ≤ 0 (note that (pj − 2)|∇ϕ|pj−4(xj) → 0 implies that
|∇ϕ|pj−4(xj)→ 0).

The proof of Theorem ?? is thus completed.

3. An example

As an example, we consider the case in which the domain is an annulus,

Ω = {x : a < |x| < b}

and the boundary datum is given by

g(x) = ga for |x| = a,
g(x) = gb for |x| = b,
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for two constants ga, gb. Let as assume that ga < gb. In this case we look
for radial solutions to our limit problem. We have that a radial solution to
the q-Laplacian is given by

(3.1) u(r) = c1

∫ r

r0

1

sα
ds+ c2

with

α =
n− 1

q − 1
and r = |x|.

If u∞ = uq then we look for c1 and c2 such that

u(a) = ga and u(b) = gb.

Taking r0 = a in (??) we get

c2 = ga and c1 =
gb − ga∫ b
a

1
sαds

.

Now we note that the maximum of |∇u| is located at r = a and there we
have

u′(a) =
c1

aα
=

gb − ga∫ b
a
aα

sα ds
,

and we need

gb − ga ≤
∫ b

a

aα

sα
ds

to fulfill the constraint |∇u| ≤ 1. When this condition holds we have that
our limit u∞ is the q−harmonic extension of the boundary datum and is
given by (??).

When this condition does not hold, then we look for a zone close to r = a
in which the solution u is a cone of slope one, that is

u(r) = ga + r − a for a < r < r0,

and a q−harmonic function, given by (??), for r0 < r < b. In this case,
continuity reasons imply

ga + r0 − a = c2, and c1 = rα0 .

Now we have to choose r0 in such a way that

gb = u(b) =

∫ b

r0

rα0
sα
ds+ ga + r0 − a

that is,

gb − ga =

∫ b

r0

rα0
sα
ds+ r0 − a := H(r0).

Note that

H(a) < gb − ga, H ′(r0) > 0 and H(b) = b− a ≥ gb − ga



10 D. BONHEURE AND J. D. ROSSI

when the Lipschitz constant of the boundary datum is less or equal than
one. Hence, for

b− a > gb − ga >
∫ b

a

aα

sα
ds,

we infer that there is a unique solution to H(r0) = gb − ga such that a <
r0 < b and in this case the solution u∞ is a cone for a < r < r0 and a
q−Harmonic function for r0 < r < b.

Finally, for

gb − ga ≥ b− a

we have that the solution is the AMLE of the boundary datum and hence
it is given by the cone

u∞(r) = ga +
(gb − ga)(r − a)

b− a
.

Therefore, we conclude that for an annulus the limit function u∞ is given
by

u∞ =

 uq, for gb − ga ≤
∫ b
a
aα

sα ds,

coneχ(a,r0) + uqχ(r0,b), for b− a > gb − ga >
∫ b
a
aα

sα ds,
cone, for gb − ga ≥ b− a.

Here uq stands for a q−harmonic function with appropriate boundary values.

Remark 3.1. Remark that the example of the annulus shows that there
are boundary data g with Lipschitz constant strictly less that one such that
the limit u∞ is not given by the q−harmonic extension.

Remark 3.2. For a small boundary datum it holds that u∞ = uq the
q−harmonic extension of g in Ω. This fact holds for general domains and
data not only for the annulus. In fact, if we take a fixed g and consider
as boundary datum a multiple of it, gk = kg, we have that the solution
to −∆qu = 0 with u|∂Ω = gk, that we denote by uq,k, is a multiple of
the solution with datum g, that is, uq,k = kuq,1 and since ‖∇uq,1‖L∞(Ω) is
finite we conclude that there exists k0 such that for all k < k0 it holds that
‖∇uq,k‖L∞(Ω) = k‖∇uq,1‖L∞(Ω) ≤ 1 and then for those k we get u∞ = uq.

Remark 3.3. In the case of the annulus it also holds that for large k the
limit u∞ is the AMLE of gk = kg in Ω. In fact, this phenomena is general
for every datum g such that the AMLE v of g in Ω is such that there exists
a positive constant c such that |∇v| ≥ c > 0. Indeed, in this case, for k
large enough, we have k|∇v| ≥ 1 and therefore |∇u∞| ≥ 1 a.e in Ω. Hence
u∞ is infinity harmonic in Ω with boundary values gk and we conclude that
u∞ is the AMLE of gk in Ω, see [?].
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4. Extensions

We can also consider the case in which q →∞ as well as p→∞. In this
case (that is simpler than the one presented here) we just obtain that there
is a unique limit u∞ that can be characterized as being the unique viscosity
solution to

(4.1)

{
−∆∞u = 0, in Ω,

u = g, on ∂Ω,

that is, u∞ is the AMLE extension of g in Ω. Remark that in this case we
have uniqueness for the limit problem (see [?]) and hence the existence of
the full limit limp,q→∞ up,q.

The results presented here can be extended to the non-homogeneous case,
that is, we can consider the problem

(4.2)

{
−∆pu−∆qu = f, in Ω,

u = g, on ∂Ω,

and we obtain that, for a continuous right hand side f and a fixed q, the
limit PDE problem is given by −∆∞u = 0 when |∇u| > 1 and −∆qu = f
in Ω when |∇u| < 1 with the boundary condition u = g on ∂Ω, while the
variational limit problem is given by

min
|∇u|≤1, u|∂Ω=g

∫
Ω

|∇u|q

q
−
∫

Ω
uf,

when L ≤ 1. The uniform bounds needed to pass to the limit can be obtained
as in [?].

Finally, let us point out that we can consider the pointwise gradient con-
straint to hold only in a subdomain D ⊂ Ω, that is,

min
|∇u| ≤ 1 in D,

u|∂Ω = g

∫
Ω

|∇u|q

q
.

In this case, we only have to consider the functional

Fp,q(u) =

∫
D

|∇u|p

p
+

∫
Ω

|∇u|q

q

and assume that the set{
u ∈W 1,q(Ω) : u = g on ∂Ω and |∇u| ≤ 1 in D

}
is not empty.
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