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Abstract
We study the possibility of defining a nontrivial continuation after the blow-up

time for a system of two heat equations with a nonlinear coupling at the bound-
ary. It turns out that any possible continuation that verify a maximum principle is
identically infinity after the blow-up time, that is, both components blow up com-
pletely. We also analyze the propagation of the singularity to the whole space, the
avalanche, when blow-up is non-simultaneous.

1 Introduction and main results

We consider solutions (u, v) to two heat equations in the half line, R+ = (0,∞),
{

ut = uxx,
vt = vxx,

(x, t) ∈ R+ × (0, T ), (1.1)

with a nonlinear flux coupling at the boundary{ −ux(0, t) = up11(0, t)vp12(0, t),
−vx(0, t) = up21(0, t)vp22(0, t),

t ∈ (0, T ). (1.2)
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The initial data {
u(x, 0) = u0(x),
v(x, 0) = v0(x),

x ∈ R+, (1.3)

are assumed to be nonnegative, nontrivial, continuous, integrable and bounded. We will
also assume that they are compatible with the boundary conditions, so that solutions
may be (and will be) understood in a classical sense. In order to have a totally coupled
system, we impose the condition pij > 0 on the nonlinearities. We also require the
monotonicity in time of the solution, ut, vt ≥ 0. This hypothesis, which is common in
the literature, is satisfied if u′′0 ≥ 0 and v′′0 ≥ 0.

The time T denotes the maximal existence time for the solution (u, v). If it is infinite
we say that the solution is global. If it is finite, we have

lim sup
t↗T

{‖u(·, t)‖∞ + ‖v(·, t)‖∞} = ∞,

and we say that the solution blows up. There are solutions of (1.1)–(1.3) which blow up
if and only if the exponents pij satisfy any of the following conditions,

p11 > 1, p22 > 1, p12p21 > (1− p11) (1− p22) ,

see [16]. The study of blow-up due to reaction at the boundary, both for scalar problems
and for systems (like the one under consideration here), has attracted a lot of attention
in recent years, see for example the surveys [4], [6], [11] and the references therein.

The speed at which blow up takes place (the so called blow-up rate), that can be
obtained as in [2], implies that for any x 6= 0 there is a constant K = K(x) such that
supt∈(0,T ){|u(x, t)| + |v(x, t)|} ≤ K. Hence, (u, v) blows up only at the origin. Thus,
there may be a nontrivial extension of the solution for times t > T in some weak sense.
If such a continuation exists, blow-up is said to be incomplete; otherwise, it is called
complete. Complete blow-up was first studied for problems where the nonlinearity occurs
in the equation as a reaction term, ut = uxx + f(u), see [1], [9], [10], [11], [12], [13], [18].
For the scalar version of the present problem complete blow-up is proved in [7], see
also [17].

Our first aim is to study whether blow-up for problem (1.1)–(1.3) is complete or
not. A natural way of obtaining a continuation consists of approximating the reaction
nonlinearities in the boundary conditions by a sequence of functions that yield global
in time solutions, and then pass to the limit in the approximations. Thus, we solve the
heat equations (1.1) with initial data (1.3) and boundary conditions

{
−ux(0, t) = f11

n (u(0, t))f12
n (v(0, t)),

−vx(0, t) = f21
n (u(0, t))f22

n (v(0, t)),
t > 0,

where
f ij

n (s) = min{spij , npij}, (1.4)

to obtain a globally defined solution (un, vn). Since the coupling functions f ij
n increase

with n, the same is true for un and vn. Hence one may attempt to extend the solution
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after T by taking the limit

lim
n→∞un = u, lim

n→∞ vn = v.

The extension (u, v) obtained in this way is known in the literature as the proper solution,
see [10], [11]. It is a minimal solution in the sense that any solution that satisfies a
comparison principle must be above it. Next theorem shows that both components
of the proper solution, and hence both components of any other reasonable extension,
become infinite after the blow-up time; i.e., blow-up is always complete.

Theorem 1.1 If a solution of (1.1)–(1.3) blows up at a finite time T , it blows up com-
pletely. More precisely, for all x ∈ [0,∞) the proper solution satisfies that

u(x, t) =





u(x, t), 0 < t < T,
lim
t↗T

u(x, t), t = T,

∞, t > T,

v(x, t) =





v(x, t), 0 < t < T,
lim
t↗T

v(x, t), t = T,

∞, t > T.

Observe that blow-up is complete for both components even if one of them remains
bounded up to the blow-up time, a possibility that is not excluded a priori. Indeed,
for certain choices of the parameters pij there are initial data for which one of the
components of the system remains bounded while the other blows up. This phenomenon
is commonly denoted as non-simultaneous blow-up. The possibility of non-simultaneous
blow-up in nonlinear parabolic systems was first mentioned in [19], and has been studied
more thoroughly later in [3], [15], [16] and [20]. For problem (1.1)–(1.3) this possibility
was analyzed in [14], [16]: there exist solutions such that u blows up at time T while v
remains bounded up to this time if and only if

p11 > p21 + 1. (1.5)

Since blow-up takes place only at one point and there is complete blow-up, at t = T
an instantaneous propagation of the blow-up singularity to the whole spatial domain
takes place, what is called an avalanche, see [17], [18].

The avalanche may be regarded as a discontinuity at the blow-up time between the
nontrivial blow-up profiles

u(x, T−) = lim
t↗T

u(x, t) and v(x, T−) = lim
t↗T

v(x, t),

and the trivial values taken afterwards,

u(x, T+) = ∞ = v(x, T+) for all x ∈ [0,∞).

In the case of non-simultaneous blow-up, say u blows up while v remains bounded up
to time T , the discontinuity at t = T between v(x, T−) (which is finite everywhere)
and v(x, T+) (which is infinite everywhere) is even more striking. In the sequel we will
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confine ourselves to this more appealing case, assuming that u blows up while v remains
bounded up to t = T−. In particular, (1.5) holds and we have p11 > 1.

The instantaneous propagation of the singularity to the whole domain has a coun-
terpart when we consider finite, but large, values of n: the propagation of k-level sets
for k large. Our next aim is to explain the evolution of such level sets. We will devote
special attention to k = nγ . Let us remark that the study of the approximate problems
for large n is in many cases (combustion, chemistry) more realistic than the blow-up
problem, which is a mathematical idealization.

Let tu(k) be the first time when un(0, t) = k and tv(k) be the first time when
vn(0, t) = k. Hence tu(n) and tv(n) are the times at which truncations (1.4) start taking
place. In the next result we estimate these times.

Theorem 1.2 Let n be large enough and let 0 < γ ≤ 1. It holds,

T − tu(nγ) ∼ n−2γ(p11−1), (1.6)

tv(nγ)− T ∼




n−2p21 , p22 > 1,

n−2p21 log n, p22 = 1,

n−2p21+2γ(1−p22), p22 < 1.

(1.7)

By f ∼ g we mean that there exist constants c1, c2 > 0 such that c1f ≤ g ≤ c2f .
Since p11 > 1, tu(n) ↗ T as n → ∞. However, the behaviour of tv(n) depends

on the involved exponents. It may happen that tv(n) → ∞ as n → ∞ (this occurs if
p21 +p22 < 1). This does not contradict the complete blow-up result for v, since the size
of vn for t > T can be very large for t ≈ T without reaching the level n before a long time
after T . In fact, when p22 < 1, tv(nγ) → T as n →∞ if and only if γ < p21/(1− p22).

When p22 ≥ 1, the order of magnitude of the quantities tv(nγ)− T does not depend
on γ. Are they equal up to leading order? The answer is given in the next theorem:
they are equal when p22 > 1 and differ by a constant coefficient depending on γ when
p22 = 1.

Theorem 1.3 Let n be large enough and let 0 < γ ≤ 1. It holds,

(i) If p22 > 1, then tv(n)− tv(nγ) ∼ n2(γ(p22−1)−p21).

(ii) If p22 = 1, then lim
n→∞

n2p21

log n
(tv(n)− tv(nγ)) = 1− γ.

Next, we want to describe how the level n starts to propagate to the interior of the
domain. To this aim, we define

vT = lim
t↗T

v(0, t)

and look at times which are close to tu(n), and scale un by a factor n so that we get
something of order one. If we want the new dependent variable to be a solution to the
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heat equation, we also have to scale the space variable. The following result shows how
the n-level set of un evolves for times t ≈ T close to the origin, x ≈ 0.

Theorem 1.4 There exists a nontrivial function Φ : R+ × R 7→ R such that

lim
n→∞n−1un(n−(p11−1)y, tu(n) + n−2(p11−1)τ) = Φ(y, τ),

lim
n→∞ vn(n−(p11−1)y, tu(n) + n−2(p11−1)τ) = vT ,

uniformly on compact subsets of R+ × R. The limit Φ depends on the initial data only
through vT .

Theorem 1.4 implies that the n-level set of un written in terms of (x, t) is given
approximately by the 1-level set of the limit function Φ written in (y, τ) variables,

{(x, t) : un(x, t) = n} ≈ {(y, τ) : Φ(y, τ) = 1}.

These sets are related through the transformation

x = n−(p11−1)y, t = tu(n) + n−2(p11−1)τ.

A monotonicity argument shows that the 1-level set of Φ can be expressed as the graph
of some increasing function g. Since tu(n) ≈ T , this in turn implies that the n-level set
of un is given approximately by

{(x, t) : x = n−(p11−1)g
(
n2(p11−1)(t− T )

)}.

Remark. The function that describes the onset of the avalanche for u reaches the
truncation level 1 at some finite time. Hence, its long time behaviour is given by a
self-similar solution of the heat equation in the half-line with inwards flux equal to vp12

T

at the boundary, i.e.
w(y, τ) ∼ vp12

T τ1/2Φ
( y

τ1/2

)
,

where Φ solves Φ′′(ξ) + 1
2ξΦ′(ξ)− 1

2Φ(ξ) = 0, −Φ′(0) = 1, see [17] for the details. Using
this asymptotic behaviour we see that the k-level set of un behaves as

y = τ1/2Φ−1

(
k

vp12

T τ1/2

)
.

We have described the onset of the avalanche for the u variable. However, since the
obtained profile for v is the constant vT , there is some lack of information concerning the
spatial shape of the v variable. To obtain a more precise description of the behaviour of
vn we have to look at times which are a little bit larger.
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Theorem 1.5 There exists a nontrivial function Ψ : R+ × [0, τ0) 7→ R such that

lim
n→∞ vn(n−p21y, T + n−2p21τ) = Ψ(y, τ), (1.8)

uniformly on compact subsets of R+× [0, τ0). The time τ0 verifies 0 < τ0 < ∞ if p22 > 1,
τ0 = ∞ if p22 ≤ 1. The limit Ψ depends on the initial data only through vT .

Remark. If p22 > 1 the limit function Ψ blows up at the threshold time τ = τ0.

Remark. The fact that τ0 has to be finite for p22 > 1 and not for p22 ≤ 1 could have
been guessed from Theorem 1.2.

The behaviour of the n-level set of vn in terms of the graph of some increasing
function follows arguing as we did before for un.

Theorems 1.4 and 1.5 provide information near the origin close to the blow-up time.
To completely describe the avalanche, we also give the behaviour of both components,
un and vn, for fixed (x, t), with t > T .

Theorem 1.6 Let

γ1 = p11 + p12, γ2 = p21 + p22 if p21 + p22 > 1,

γ1 = p11 +
p12p21

1− p22
, γ2 =

p21

1− p22
if p21 + p22 ≤ 1.

There exist profiles ϕ and ψ such that

lim
n→∞n−γ1un(x, t) = ϕ(x, t), lim

n→∞n−γ2vn(x, t) = ψ(x, t),

uniformly on compact subsets of [0,∞) × (T,∞). The limits ϕ, ψ are independent of
the initial data.

The quantity p21 +p22 measures the combined strength of the two reaction factors in
the boundary condition for v. If it is above 1, reaction is big, and vn reaches the n-level
quickly, in a time tv(n) → T as n → ∞. Hence, for any time t > T all truncations
have taken place for n large. Thus, un and vn are both solutions of the heat equation
with inwards boundary fluxes given respectively by np11+p12 and np21+p22 . What the
theorem says is that we have to scale precisely by these powers of n if we want to obtain
a non-trivial limit. Consider now p21 + p22 < 1. Given any fixed time t, the truncation
of vn takes place afterwards for all n large enough. In this case the exponent γ2 which
gives the size of vn coincides with the critical value of γ below which tv(nγ) goes to T .
The adequate value of γ1 follows by inserting the size of vn in the boundary condition
for un. In any case, the scaling exponents γ1, γ2 are the only ones such that tu(nγ1),
tv(nγ2) do not go neither to T nor to infinity, see Section 3.

Our last step consists in considering the asymptotic behaviour of un and vn as t →∞.
Since we are considering t > tv(n), both truncations have taken place. Again, un and
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vn are solutions of the heat equation with inwards boundary fluxes given respectively by
np11+p12 and np21+p22 . As is well known, solutions to this problem with integrable initial
datum converge, uniformly on compact subsets, as t goes to infinity to the solution of the
same problem with zero initial data, see for instance [17]. This solution is self-similar,
and coincides with the limit functions of Theorem 1.6 in the case p21 + p22 > 1.

Remark. The nontrivial limit profiles that appear in Theorems 1.4, 1.5, and 1.6 are
solutions of explicit problems, see Sections 4 and 5.

Organization of the paper. In Section 2 we prove complete blow-up for both
components, Theorem 1.1. The estimates for tu(nγ) − T and tv(nγ) − T that give us
the right scalings to describe the avalanche are gathered in Section 3. It includes both
the case γ ≤ 1, Theorem 1.2, and the case γ > 1. In order to deal with this latter case
we have to study the size of un at time tv(n), a result that is interesting on its own.
Section 4 is devoted to prove Theorems 1.4 and 1.5, which describe the onset of the
avalanche. Finally, in Section 5, we prove Theorem 1.6.

Throughout the paper C, c denote constants, independent of n, which may be dif-
ferent in different occurrences.

2 Complete blow-up

Proof of Theorem 1.1. We can assume without loss of generality that u blows up at
time t = T . If this not the case, then v has to blow up, and the same proof applies
interchanging the roles of u and v. The component v may blow up or not, since we have
not assumed a priori that blow-up is non-simultaneous.

For times before the blow-up time, t < T , (u, v) is bounded. Hence, if n is large
enough, (u, v) solves the truncated problem up to time t and therefore un(x, t) = u(x, t)
and vn(x, t) = v(x, t).

To study what happens exactly at t = T we use the monotonicity with respect to t
and a comparison argument. For t < T we have

lim
t↗T

u(x, t) ≥ un(x, T ) ≥ un(x, t).

Taking limits as n → ∞, and using that lim
n→∞un(x, t) = u(x, t) for t < T , and then

letting t ↗ T , we get

lim
t↗T

u(x, t) ≥ lim
n→∞un(x, T ) ≥ lim

t↗T
u(x, t).

The same applies to v.
To end the proof we have to study the behaviour for t > T . From the previous step

we know that lim
t↗T

u(0, t) = lim
n→∞un(0, T ). Since un is increasing in time and u blows up

at the origin,
∞ = lim

t↗T
u(0, t) = lim

n→∞un(0, T ) ≤ lim
n→∞un(0, t), (2.1)
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and we conclude that the proper solution, u = lim
n→∞un, is identically infinite at the

origin for t > T . In order to propagate the singularity to the whole interval for both
components we use the representation formula obtained from the heat kernel. Let Γ be
the fundamental solution of the heat equation in R+ × (0,∞), namely

Γ(x, t) =
1

(πt)1/2
exp

(
−x2

4t

)
.

For x ∈ R+ we have

un(x, t) =
∫

R+

un(y, 0)Γ(x− y, t) dy −
∫ t

0

∂un

∂x
(0, τ)Γ(x, t− τ) dτ

−
∫ t

0
un(0, τ)

∂Γ
∂x

(x, t− τ) dτ.

(2.2)

Since Γ and the boundary flux, −(un)x(0, τ), are both nonnegative we can bound un(x, t)
from below by

un(x, t) ≥ −
∫ t

0
un(0, τ)

∂Γ
∂x

(x, t− τ) dτ.

From (2.1) we have that un(0, t) ≥ M if n is large enough, how large depending on M .
Hence, for any 0 < δ < t− T ,

un(x, t) ≥ M

∫ T+δ

T

(
−∂Γ

∂x
(x, t− τ)

)
dτ.

We conclude that
lim

n→∞un(x, t) = ∞, t > T, x ∈ R+.

This proves complete blow-up for u.
To obtain complete blow-up for v we also use the representation formula. Since vn

grows due to the influence of un through the boundary flux, we keep the flux term in
the bound from below:

vn(x, t) ≥
∫ t

0
f21

n (un(0, τ))f22
n (vn(0, τ))Γ(x, t− τ) dτ.

From the monotonicity of the solutions we have that vn(0, t) ≥ vn(0, 0) = v(0, 0) = c > 0.
Therefore, if n is large enough and for any 0 < δ < t− T ,

vn(x, t) ≥ Mp21cp22

∫ T+δ

T
Γ(x, t− τ) dτ.

This implies complete blow-up for v, that is,

lim
n→∞ vn(x, t) = ∞, t > T, x ∈ R+.
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3 Time estimates

The aim of this section is to find estimates for the differences tu(nγ)−T and tv(nγ)−T
for different values of γ.

As blow-up is non-simultaneous, the u component touches the level n before the
v component, which is bounded up to time T . Since the solutions of the truncated
problems coincide with those of the non-truncated one until some component reaches the
level n, we have tu(n) < T < tv(nγ) for any γ > 0 and large n. If γ > 1, tu(nγ) > tu(n).
However, we cannot state at this point whether tu(nγ) lies before or after T . The aim
of this section is to estimate the times tu(nγ) and tv(nγ) for any γ > 0. In order to
compute tu(nγ) for γ > 1 we need to estimate the size of un at time tv(n), a result that
is interesting on its own.

In the sequel we use the notation

α =
p21

(p22 − 1)
, β =

1
2(p22 − 1)

for a couple of exponents that will appear frequently.

3.1 Estimates for 0 < γ ≤ 1

Proof of Theorem 1.2. We first obtain an estimate for tu(nγ), which will then be used
to estimate tv(nγ).
Estimates for tu(nγ). Since tu(nγ) ≤ tu(n) < T for γ ≤ 1, from the blow-up rate of u,
which is known to be, see [8],

max
x

u(x, t) = u(0, t) ∼ (T − t)−
1

2(p11−1) , (3.1)

we can obtain the estimate for tu(nγ). Indeed, from (3.1) we get

nγ ∼ (T − tu(nγ))−
1

2(p11−1) ,

which is equivalent to (1.6).
Estimates for tv(nγ). We look at the problem satisfied by vn for times larger than
tu(n). For these times the nonlinearity that involves the u variable is truncated. Hence,
vn is a solution to





(vn)t = (vn)xx, (x, t) ∈ R+ × (tu(n),∞),

−(vn)x(0, t) = np21f22
n (vn(0, t)), t ∈ (tu(n),∞),

vn(x, tu(n)) = v(x, tu(n)), x ∈ R+.

(3.2)

Since blow-up is non-simultaneous, v is bounded up to time T . Hence the initial datum
in (3.2) is also bounded, v(x, tu(n)) < v(x, T ). The idea is comparing vn with a self-
similar solution z which has an explicit formula, so that tz(nγ), the first time when z
reaches level nγ , can be computed.
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p22 > 1 The function z(x, t) = n−α(T̂ − t)−βφ(x(T̂ − t)−1/2), is a self-similar solution
to (3.2) for times at which f22

n (z) = zp22 , i.e., for t ≤ tz(n). See [8] for the existence of
the profile φ, which has an explicit formula.

If we take n−αT̂−β ≤ C, then z(x, 0) = n−αT̂−βφ(xT̂−1/2) ≤ vn(x, tu(n)). Using a
comparison argument it follows that

z(x, t) ≤ vn(x, t + tu(n)), 0 < t < tz(n).

Since γ ≤ 1, tz(nγ) ≤ tz(n), and hence

tv(nγ) ≤ tu(n) + tz(nγ). (3.3)

But we have an explicit estimate for tz(nγ):

z(0, tz(nγ)) = nγ = n−α(T̂ − tz(nγ))−βφ(0).

Hence
T̂ − tz(nγ) ∼ n−2(γ(p22−1)+p21), (3.4)

and therefore, using that T̂ ≤ Cn−2p21 = Cn−2p21 , we get

tz(nγ) ≤ −Cn−2(γ(p22−1)+p21) + Cn−2p21 ≤ Cn−2p21 . (3.5)

From (3.3) using the non-simultaneous blow-up condition on the exponents, p21 < p11−1,
we obtain,

tv(nγ)− T ≤ tu(n)− T + tz(nγ) ≤ −Cn−2(p11−1) + Cn−2p21 ≤ Cn−2p21 .

On the other hand, if we now choose C, independent of n, so that n−αT̂−β ≥ C, we
get z(x, 0) ≥ vn(x, tu(n)) and hence

z(x, t) ≥ vn(x, t + tu(n)), t > tz(n).

Using the same idea we get tv(nγ)−T ≥ cn−2p21 , and conclude that tv(nγ)− T ∼ n−2p21 .

p22 < 1 The same argument can be carried over considering the self-similar solution

z(x, t) = n−α(T̂+t)−βφ(x(T̂+t)−1/2). The main difference between this and the previous
case is that now, since p22 < 1, the estimate (3.5) becomes

tz(nγ) ≤ −Cn−2(γ(p22−1)+p21) + Cn−2p21 ≤ Cn−2(γ(p22−1)+p21),

respectively ≥. In this case, we conclude that

tv(nγ)− T ∼ −n2(p11−1) + n2(1−p22)γ−2p21 ∼ n2(1−p22)γ−2p21 .

p22 = 1 In this critical case, if we look for a self-similar solution as before, α and β are
not well defined and hence we take as self-similar solution of (3.2), z(x, t) = Keat−bx,
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with a = b2 = n2p21 and K a constant. Arguing as before, taking K small or big, so
that z(x, 0) ∼ vn(x, tu(n)), we obtain tv(nγ)− T ∼ n−2p21 log n. 2

Remark. As a byproduct of this proof we have obtained that

v(x, t + tu(n)) ∼ z(x, t), (3.6)

for times 0 < t < tz(n) ∼ tv(n) − tu(n), with z the self-similar solution defined before
according to the sign of p22 − 1. We also obtain that

tz(n) ∼ tv(n)− tu(n) ∼
{

n−2p21 , p22 > 1,

n−2p21+2(1−p22), p22 < 1,
(3.7)

and for p22 = 1 a better estimate

en2p21 tz(n) ∼ en2p21 (tv(n)−tu(n)) ∼ n. (3.8)

Remark. Using (3.3) and (3.4) we get T̂ − (tv(n)− tu(n)) ≥ c(T̂ − tz(n)). An analogous
computation proves the reverse inequality. We conclude that

T̂ − (tv(n)− tu(n)) ∼ T̂ − tz(n) ∼ n−2(p22−1)−2p21 . (3.9)

Proof of Theorem 1.3. We use the same technique used in the proof of Theorem 1.2,
but taking as initial time tv(nγ). Let us sketch it briefly for p22 > 1: vn is a solution of





(vn)t = (vn)xx, (x, t) ∈ R+ × (tv(n),∞),

−(vn)x(0, t) = np21f22
n (vn(0, t)), t ∈ (tv(nγ),∞),

vn(x, tv(nγ)) = nγ , x ∈ R+.

(3.10)

If we take n−αT̂−β ∼ nγ , then z(x, 0) = n−αT̂−βφ(xT̂−1/2) ∼ vn(x, tv(nγ)), and
hence, by comparison

tv(n) ∼ tv(nγ) + tz(n). (3.11)

Since T̂ − tz(n) ∼ n
− 1+α

β , we conclude, using that γ < 1, that tz(n) ∼ n
− γ+α

β and

therefore from (3.11), tv(n)− tv(nγ) ∼ n
− γ+α

β . 2

3.2 Sizes

Next theorem gives an estimate of the size of un at time tv(n).

Theorem 3.1 The size of un at time tv(n) is

un(0, tv(n)) ∼




np11−p21+p12+1−p22 , p22 < 1 + p12,
np11−p21 log n, p22 = 1 + p12,
np11−p21 , p22 > 1 + p12.
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Proof. Let tu(n) < t < tv(n) and d(n) = tv(n)− tu(n). For those times we have that un

is a solution of the heat equation with boundary and initial data given by
{ −(un)x(0, t) ∼ np11vp12

n (0, t),
un(x, tu(n)) ∼ n.

Consider û a solution to the heat equation in R+ × (0,∞) with
{ −ûx(0, t) = np11vp12

n (0, t + tu(n)),
û(x, 0) = n.

A comparison argument gives that un(x, t + tu(n)) ∼ û(x, t).
Using formula (2.2) we can estimate û(0, t) at d(n). Indeed,

û(0, d(n)) =
∫

R+

û(y, d(n))Γ(y, d(n)) dy +
∫ d(n)

0
np11vp12

n (0, τ + tu(n))Γ(0, d(n)− τ) dτ

∼ n + np11

∫ d(n)

0
vp12
n (0, τ)(d(n)− τ)−1/2 dτ = n + np11I.

Hence, our aim is estimating I according to the estimates we have for vn, see (3.6), in
order to get the size of un at tv(n).

p22 < 1 Using (3.6) for 0 < t < tv(n)−tu(n), we have vn(0, t+tu(n)) ∼ n−α(T̂ +t)−β.
Hence,

I ∼
∫ d(n)

0
n−αp12(T̂ + τ)−βp12(d(n)− τ)−1/2 dτ

= n−αp12

∫ d(n)

0
(T̂ + τ)−βp12(d(n)− τ)−1/2 dτ

≤ Cn−αp12

(
d(n)−1/2

∫ d(n)/2

0
(T̂ + τ)−βp12 dτ

+ (T̂ + d(n))−βp12

∫ d(n)

d(n)/2
(d(n)− τ)−1/2 dτ

)

≤ Cn−αp12

(
d(n)−1/2(d(n) + T̂ )−βp12+1 + (T̂ + d(n))−βp12d(n)1/2

)

≤ Cn−αp12d(n)−βp12+1/2,

where we have used that d(n) ∼ n−2p21+2(1−p22) > T̂ ∼ n−2p21 , see (3.7). On the other
hand,

I ∼
∫ d(n)

0
n−αp12(T̂ + τ)−βp12(d(n)− τ)−1/2 dτ

≥ n−αp12(T̂ + d(n))−βp12

∫ d(n)

0
(d(n)− τ)−1/2 ≥ Cn−αp12d(n)−βp12+1/2.
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We conclude, using again (3.7), that

û(0, tv(n)− tu(n)) ∼ n + np11n−αp12n−2(p21+p22−1)(−βp12+1/2),

and hence un(0, tv(n)) ∼ n + np11−p21+p12+1−p22 ∼ np11−p21+p12+1−p22 .

p22 = 1 According to (3.6) we set vn(x, t + tu(n)) ∼ Keat−bx, so that

I ∼
∫ d(n)

0
eap12τ (d(n)− τ)−1/2 dτ

≥eap12(d(n)−d(n)/ log n)

∫ d(n)

d(n)−d(n)/ log n
(d(n)− τ)−1/2 dτ ≥ Cnp12np21 ,

where we use that d(n) ∼ n2p21 log(n) and estimate (3.8).
Following the idea of the case p22 < 1, we split I into two integrals that are treated

in a different way, in order to obtain a bound from above,

I ∼
∫ d(n)

0
eap12τ (d(n)− τ)−1/2 dτ

=
∫ d(n)−d(n)/ log n

0
eap12τ (d(n)− τ)−1/2 dτ

+
∫ d(n)

d(n)−d(n)/ log n
eap12τ (d(n)− τ)−1/2dτ

≤ np21

∫ d(n)−d(n)/ log n

0
eap12τ dτ

+ np12

∫ d(n)

d(n)−d(n)/ log n
(d(n)− τ)−1/2dτ ≤ Cnp12−p21 .

We conclude that u(0, tv(n)) ∼ np11+p12−p21 .

1 < p22 < 1 + p12 As p22 > 1, using again (3.6) we get vn(0, t+tu(n)) ∼ n−α(T̂−t)−β.
In order to find a bound from above for û we observe that similar computations as

the ones done in the case p22 < 1 do not yield a “reasonable” bound, since we obtain
û ≤ ∞. Hence, instead of using the representation formula, we compare û with

U(x, t) = n−λ(T̂ − t)−µG(x(T̂ − t)−1/2), (3.12)

which is a solution to




Ut = Uxx,

−Ux(0, t) = np11−αp12(T̂ − t)−βp12G′(0),
U(x, 0) = np11−p21G(xT̂−1/2),

if µ = βp12 − 1/2 and λ = αp12 − p11. Due to the assumption of non-simultaneous
blow-up we have that p11 − p21 > 1, hence U(x, 0) > n = û(x, 0) and a comparison
argument yields U(0, d(n)) ≥ û(0, d(n)). Hence, using (3.9), we conclude that

û(0, d(n)) ≤ Cnp11−αp12(T̂ − d(n))−µ ≤ Cnp12−p22+1−p21+p11 .
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In order to obtain the lower bound we observe that −βp12 + 1/2 < 0 and hence,
since T̂ > d(n),

I ∼ n−αp12

∫ d(n)

0
(T̂ − τ)−βp12(d(n)− τ)−1/2 dτ

= n−αp12

∫ d(n)

0
(T̂ − τ)−βp12−1/2 (T̂ − τ)1/2

(d(n)− τ)1/2
dτ

≥ Cn−αp12((T̂ − d(n))−βp12+1/2 − T̂−βp12+1/2)

≥ Cn−αp12((T̂ − d(n))−βp12+1/2
(
1− T̂−βp12+1/2

(T̂ − d(n))−βp12+1/2

)

≥ Cn−αp12(T̂ − d(n))−βp12+1/2 ≥ Cnp12−p22+1−p21 .

Summing up, un(0, tv(n)) ∼ n + np11−p21+p12−p22+1 ∼ np11−p21+p12−p22+1.

p22 = 1 + p12 In this critical case, we compute I explicitly and obtain

I ∼ n−αp12

∫ d(n)

0
(T̂ − τ)−1/2(d(n)− τ)−1/2 dτ = n−αp12 log

∣∣∣∣∣∣
d(n)− T̂

2
√

T̂ d(n)− T̂ − d(n)

∣∣∣∣∣∣
.

But, ∣∣∣∣∣∣
d(n)− T̂

2
√

T̂ d(n)− T̂ − d(n)

∣∣∣∣∣∣
=

T̂ − d(n)

T̂

(
1−

√
d(n)

T̂

)2 .

Since d(n) < T̂ and T̂−d(n) ∼ n−2(p12−p21), see (3.9), we conclude that I ∼ n−αp12 log n,
which yields un(0, tv(n)) ∼ np11−αp12 log n.

p22 > 1 + p12 Although p22 > 1, and hence vn(0, t+ tu(n)) ∼ n−α(T̂ − t)−β, the main
difference between this case and the case 1 < p22 < 1+p12 is that now −βp12 +1/2 > 0.
Thus, the estimates for I are done in a different way:

I ∼ n−αp12

∫ d(n)

0
(T̂ − τ)−βp12(d(n)− τ)−1/2 dτ ≤ n−αp12

∫ d(n)

0
(d(n)− τ)−βp12−1/2

≤ Cn−αp12d(n)−βp12+1/2.

On the other hand,

I ∼ n−αp12

∫ d(n)

0
(T̂ − τ)−βp12(d(n)− τ)−1/2 dτ

= n−αp12

∫ d(n)

0
(T̂ − τ)−βp12−1/2 (T̂ − τ)1/2

(d(n)− τ)1/2
dτ

≥ Cn−αp12(T̂−βp12+1/2 − (T̂ − d(n))−βp12+1/2) ≥ Cn−αp12 T̂−βp12+1/2.

Hence, since T̂ ∼ d(n), we get I ∼ n−αp12d(n)−βp12+1/2, and we conclude using (3.7)
that un(0, tv(n)) ∼ n + np11−p21 ∼ np11−p21 . 2
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3.3 Estimates for γ > 1

Estimates for tv(nγ). Since tv(nγ)− T = tv(nγ)− tv(n) + tv(n)− T , we can use (1.7)
with γ = 1, so that it only remains to compute tv(nγ)− tv(n).

Theorem 3.2 Let n be large enough and γ > 1. It holds,

tv(nγ)− T ∼
{

n−2p21 , 1 < γ ≤ p22,

n2(γ−(p21+p22)), γ > p22.
(3.13)

Proof. For times t > tv(n) the truncations have taken place; hence vn is a solution
of the heat equation with boundary data −(vn)x(0, t) = np21+p22 , and initial data
vn(x, tv(n)) ∼ n.

Using the representation formula for the heat equation, (2.2), we get that

vn(0, tv(nγ)) =
∫

R+

vn(y, tv(n))Γ(y, tv(nγ)− tv(n)) dy

+
∫ tv(nγ)−tv(n)

0
np21+p22Γ(0, tv(nγ)− tv(n))− τ) dτ

−
∫ tv(nγ)−tv(n)

0
vn(0, τ)

∂Γ
∂x

(0, tv(nγ)− tv(n)− τ) dτ

∼ n + np21+p22

∫ tv(nγ)−tv(n)

0
Γ(0, tv(nγ)− tv(n)− τ) dτ

= n + Cnp21+p22(tv(nγ)− tv(n))1/2.

Since vn(0, tv(nγ)) = nγ and γ > 1 we get

tv(nγ)− tv(n) ∼ n2(γ−(p21+p22)).

This expression together with (1.7) yields (3.13). 2

Estimates for tu(nγ). The idea is to use the estimates of the size of un(0, t) at t = tv(n),
that we have just obtained, to see if it has reached or not the level nγ . If the size of
un at tv(n) is smaller than nγ , then tu(nγ) > tv(n), and we estimate the difference
tu(nγ) − T taking into account the size of un(x, tv(n)) and that for t > tv(n) both
truncations have taken place. If the size of un at tv(n) is bigger than nγ , we use that
un is a solution of the heat equation, with boundary flux −(un)x(0, t) ∼ np11vp12(0, t),
and initial data u(x, tu(n)) ∼ n. If un(0, tv(n)) = nγ , then tu(nγ) = tv(n) and the result
follows from (1.7). In the critical cases γ = p11 − p21, p11 − p21 + p12 − p22 + 1, the size
estimates do not imply an ordering between tu(nγ) and tv(n); we will have to take into
account the two possibilities separately.
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If γ < max{p11 − p21, p11 − p21 + p12 − p22 + 1}, which implies tu(nγ) < tv(n), we
have

nγ = un(0, tu(nγ)) ∼ û(0, tu(nγ)− tu(n))

∼ n + np11

∫ tu(nγ)−tu(n)

0
vp12(0, τ + tu(n))(tu(nγ)− tu(n)− τ)−

1
2 dτ

= n + np11I,

and since γ > 1 we get
I ∼ nγ−p11 . (3.14)

Let us sketch briefly how to bound I. As before, tu(nγ)−T = tu(nγ)−tu(n)+tu(n)−T ,
so that we only have to estimate tu(nγ)− tu(n), (remember that T − tu(n) ∼ n−2(p11−1),
see (1.6)). We follow the proof of Theorem 3.1, replacing d(n) by tu(nγ)− tu(n). Note
that, since tv(n) > tu(nγ), we have that d(n) > tu(nγ)− tu(n).

Theorem 3.3 Let n be large enough and let 1 < γ < p11 − p21. It holds,

tu(nγ)− T ∼ n−2(p11−γ). (3.15)

Proof. The main difference between this proof and that of Theorem 3.1 is that we do
not know the relation between tu(nγ)− tu(n) and T̂ .

p22 < 1 Assume first that tu(nγ)− tu(n) > T̂ , then

I ∼ n−αp12

∫ tu(nγ)−tu(n)

0
(T̂ + τ)−βp12(tu(nγ)− tu(n)− τ)−1/2 dτ

∼ n−αp12(tu(nγ)− tu(n))−βp12+1/2.

Hence, using (3.14), tu(nγ)− tu(n) ∼ n
γ−p11+αp12
−βp12+1/2 . Thus, if γ < p11 − p21 then

γ − p11 + αp12

−βp12 + 1/2
< −2p21.

Since T̂ ∼ n−2p21 this means that tu(nγ) − tu(n) < T̂ and therefore, in this range of
values for γ, we can not have tu(nγ) − tu(n) > T̂ . In other words, the region where
tu(nγ)− tu(n) > T̂ is at most p11−p21 +p12−p22 +1 > γ > p11−p21, and in this region
we get

tu(nγ)−T ∼ n
γ−p11−αp12
−βp12+1/2 − (T − tu(n)) ∼ n

γ−p11+αp12
−βp12+1/2 −n−2(p11−1) ∼ n

γ−p11+αp12
−βp12+1/2 . (3.16)

On the other hand, if tu(nγ)− tu(n) < T̂ , then

I ∼ n−αp12

∫ tu(nγ)−tu(n)

0
(T̂ + τ)−βp12(tu(nγ)− tu(n)− τ)−1/2 dτ

≤ Cn−αp12 T̂−βp12

∫ tu(nγ)−tu(n)

0
(tu(nγ)− tu(n)− τ)−1/2 dτ

≤ Cn−αp12 T̂−βp12(tu(nγ)− tu(n))1/2.
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For the upper bound we have

I ∼ n−αp12

∫ tu(nγ)−tu(n)

0
(T̂ + τ)−βp12(tu(nγ)− tu(n)− τ)−1/2 dτ

≥ n−αp12(T̂ + d(n))−βp12

∫ d(n)

0
(tu(nγ)− tu(n)− τ)−1/2

≥ Cn−αp12(T̂ + d(n))−βp12(tu(nγ)− tu(n))1/2 ≥ Cn−αp12 T̂−βp12(tu(nγ)− tu(n))1/2.

Hence, tu(nγ)− tu(n) ∼ n2(γ−p11). As before, we conclude that the values of γ for which
tu(nγ)− tu(n) < T̂ is a subset of 1 < γ < p11 − p21, where we have

tu(nγ)− T ∼ n2(γ−p11) − (T − tu(n)) ∼ n2(γ−p11) − n−2(p11−1) ∼ n2(γ−p11).

Summing up

tu(nγ)− T ∼
{

n
γ−p11+αp12
−βp12+1/2 , γ > p11 − p21,

n2(γ−p11), γ < p11 − p21.
(3.17)

p22 = 1 We bound I from above in the following way:

I ∼
∫ tu(nγ)−tu(n)

0
eap12τ (tu(nγ)− tu(n)− τ)−1/2 dτ

≥
∫ tu(nγ)−tu(n)

0
(tu(nγ)− tu(n)− τ)−1/2 dτ ≥ C(tu(nγ)− tu(n))1/2.

Hence
tu(nγ)− tu(n) ≤ Cn2(γ−p11) (3.18)

On the other hand,

I ∼
∫ tu(nγ)−tu(n)

0
eap12τ (tu(nγ)− tu(n)− τ)−1/2 dτ

≤ep12a(tu(nγ)−tu(n))

∫ tu(nγ)−tu(n)

0
(tu(nγ)− tu(n)− τ)−1/2dτ.

Inequality (3.18) and the fact that γ < p11 − p21 imply that a(tu(nγ)− tu(n)) ≤ C.
Hence, tu(nγ) − tu(n) ≥ n2(γ−p11). It follows that tu(nγ) − tu(n) ∼ n2(γ−p11), which
yields (3.15).

p22 > 1 The idea is the same as in the case p22 = 1, we first bound tu(nγ) − tu(n)
from above and then use this estimate to obtain the lower bound,

I ∼ n−αp12

∫ tu(nγ)−tu(n)

0
(T̂ − τ)−βp12(tu(nγ)− tu(n)− τ)−1/2 dτ

≥ Cn−αp12 T̂−βp12

∫ tu(nγ)−tu(n)

0
(tu(nγ)− tu(n)− τ)−1/2 dτ

≥ Cn−αp12 T̂−βp12(tu(nγ)− tu(n))1/2.
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Hence
tu(nγ)− tu(n) ≤ Cn2(γ−p11). (3.19)

On the other hand,

I ∼ n−αp12

∫ tu(nγ)−tu(n)

0
(T̂ − τ)−βp12(tu(nγ)− tu(n)− τ)−1/2 dτ

≤ n−αp12(T̂ − (tu(nγ)− tu(n)))−βp12

∫ tu(nγ)−tu(n)

0
(tu(nγ)− tu(n)− τ)−1/2 dτ

≤ Cn−αp12(T̂ − (tu(nγ)− tu(n)))−βp12(tu(nγ)− tu(n))1/2.

By (3.19), we have that T̂ ∼ n−2p21 > tu(nγ)− tu(n). Therefore,

I ≤ Cn−αp12 T̂−βp12(tu(nγ)− tu(n))1/2.

We conclude again that tu(nγ)− tu(n) ∼ n2(γ−p11). 2

Theorem 3.4 Let n be large enough and let p11 − p21 < γ < p11 − p21 + p12 − p22 + 1.
It holds,

tu(nγ)− T ∼





n
γ−p11+αp12
−βp12+1/2 , p22 < 1,

n−2p21 log n, p22 = 1,
n−2p21 , 1 < p22 < 1 + p12.

Remark. In the range p11− p21 < γ < p11− p21 + p12− p22 + 1, we have p22 < 1 + p12.

Proof. p22 < 1 See the proof of Theorem 3.3, formulas (3.16) and (3.17).

p22 = 1 In this case, since γ > p11 − p21, inequality (3.18) does not imply that
tu(nγ)− tu(n) < n−2p21 , and we have to find a bound for I in a different way:

I ≥ eap12(tu(nγ)−tu(n))

∫ tu(nγ)−tu(n)

tu(nγ)−tu(n)−d(n)/ log n
((tu(nγ)− tu(n))− τ)−1/2 dτ

≥ Cn−p21ep12n2p21 (tu(nγ)−tu(n)).

Following the proof of Theorem 3.1, we split I into two integrals,

I ∼
∫ tu(nγ)−tu(n)−d(n)/ log n

0
eap12τ (tu(nγ)− tu(n)− τ)−1/2 dτ

+
∫ tu(nγ)−tu(n)

tu(nγ)−tu(n)−d(n)/ log n
eap12τ (tu(nγ)− tu(n)− τ)−1/2dτ

≤ np21

∫ tu(nγ)−tu(n)−d(n)/ log n

0
eap12τ dτ

+ eap12(tu(nγ)−tu(n))

∫ tu(nγ)−tu(n)

tu(nγ)−tu(n)−d(n)/ log n
(tu(nγ)− tu(n)− τ)−1/2dτ

≤ Cn−p21ep12n2p21 (tu(nγ)−tu(n)).
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We conclude that

Cep12n2p21 (tu(nγ)−tu(n)) ≤ nγ−p11+p21 ≤ Cep12n2p21 (tu(nγ)−tu(n)),

and hence, since γ > p11 − p21,

C(γ − p11 + p21)n−2p21 log n ≤ tu(nγ)− tu(n) ≤ (γ − p11 + p21)n−2p21 log n.

Therefore, using (1.6), tu(nγ)− T ∼ (γ − p11 + p21)n−2p21 log n.

1 < p22 < 1 + p12 Comparison with the self-similar solution (3.12) yields

nγ = û(0, tu(nγ)− tu(n)) ≤ np11−αp12(T̂ − (tu(nγ)− tu(n)))−βp12+1/2.

On the other hand,

I ≥ n−αp12

∫ tu(nγ)−tu(n)

0
(T̂ − τ)−βp12−1/2 (T̂ − τ)1/2

(tu(nγ)− tu(n)− τ)1/2
dτ

≥ n−αp12(T̂ − (tu(nγ)− tu(n)))−βp12+1/2.

Therefore,

T̂ − n
γ−p11+αp12
−βp12+1/2 ≤ tu(nγ)− tu(n) ≤ T̂ − n

γ−p11+αp12
−βp12+1/2 .

The fact that γ > p11 − p21 implies that tu(nγ) − tu(n) ∼ T̂ ∼ n−2p21 , from where the
Theorem follows. 2

We consider now γ > max{p11 − p21, p11 − p21 + p12 − p22 + 1}. We have that
tu(nγ) > tv(n) and hence un satisfies the heat equation in (tv(n),∞) with boundary flux
−(un)x(0, t) ∼ np11+p12 . The initial data is the size of un at tv(n); i.e, un(x, tv(n)) ∼ nη,
with η = max{p11 − p21, p11 − p21 + p12 − p22 + 1}, see Theorem 3.1.

Theorem 3.5 Let n be large enough and let γ > max{p11−p21, p11−p21+p12−p22+1}.
It holds,

tu(nγ)− T ∼
{

n−2p21 , γ ≤ p11 + p12 − p21,

n2(γ−p11−p12), γ > p11 + p12 − p21.
(3.20)

Proof. Using the representation formula,

nγ = û(0, tu(nγ)− tv(n)) ∼ nη + np11+p12

∫ tu(nγ)−tv(n)

0
(tu(nγ)− tv(n)− τ)−1/2 dτ

∼ nη + np11+p12(tu(nγ)− tv(n))1/2.

Since γ > η we get tu(nγ)−tv(n) ∼ n2(γ−p11−p12); hence, using see (1.7), (3.20) follows. 2

Finally, we consider the critical cases.

Theorem 3.6 Let n be large enough.
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(i) If γ = p11 − p21, then tu(nγ)− T ∼ n−2p21.

(ii) If γ = p11 − p21 + p12 − p22 + 1, then

tu(nγ)− T ∼




n2(−p21+1−p22), p22 < 1,
n−2p21 log n, p22 = 1,
n−2p21 , p22 > 1.

Proof. Assume first that tu(nγ) < tv(n). If γ = p11−p21, then the proof of Theorem 3.3
yields tu(nγ)−tu(n) ∼ n−2p21 . In the case p22 > 1 we have to use that T̂ > tu(nγ)−tu(n),
which follows from T̂ > tv(n) − tu(n). If γ = p11 − p21 + p12 − p22 + 1 the proof of
Theorem 3.4 can extended to include this case.

If tu(nγ) > tv(n) the proof of Theorem 3.5 still applies. Notice that when γ = η,
though un(0, tv(n)) ∼ nγ , we still have (3.20), since un(0, tv(n)) < nγ . 2

We summarize the results of this subsection in Figure 1. It is worth noticing that
the order of magnitude of tu(nγ)−T depends in a continuous manner on the parameters
except across the segment p22 = 1, p11 − p21 < γ ≤ p11 − p21 + p12, where it appears a
logarithmic correction.

REGIONES.eps

Figure 1: tu(nγ)− T

4 Onset of the avalanche

The aim of this section is to prove theorems 1.4 and 1.5. In order to study the onset
of the avalanche for the component u we first need to know its behaviour at time t = T−.
It turns out that it is given by a self-similar profile.
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Lemma 4.1 Let p > 1 and let u be a solution to




ut = uxx, (x, t) ∈ R+ × (0, T ),
−ux(0, t) = g(t) up(0, t), t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ R+,

where g is monotone increasing and bounded and u blows up at time T . Then

lim
t↗T

(T − t)
1

2(p−1) u(y(T − t)1/2, t) = g(T )
1

p−1 ζ(y), (4.1)

uniformly on compact intervals 0 ≤ y ≤ C, where

ζ(y) =
1√

π Γ
(

1
2(p−1)

)
(

Γ
( p

2(p−1)

)

2(p− 1)Γ
( 2p−1

2(p−1)

)
) 1

p−1 ∫ ∞

0
e−

y2

4t t
3−2p

2(p−1) (1 + t)−
p

2(p−1) dt.

Proof. The blow-up rate is given by

c(T − t)
−1

2(p−1) ≤ ‖u(·, t)‖∞ ≤ C(T − t)
−1

2(p−1) ,

see [2], [16]. If we write the function u in self-similar variables we get that the rescaled
function

w(y, τ) = (T − t)
1

2(p−1) u(y(T − t)1/2, t), τ = − log(T − t),

is a bounded solution of




wτ = wyy − 1
2
ywy − 1

2(p− 1)
w, (y, τ) ∈ R+ × (− log T,∞),

−wy(0, τ) = g(T − e−τ )wp(0, τ), t ∈ (− log T,∞),

w(y,− log T ) = T
1

2(p−1) u0(yT 1/2), y ∈ R+.

If g is a constant, g = k, then w converges uniformly on sets of the form 0 ≤ y ≤ C to
a steady state, which is a multiple of the profile ζ,

lim
τ→∞w(y, τ) = k

1
p−1 ζ(y),

see [8]. For a general monotone g a comparison argument yields that for every η > 0

(g(T − η))
1

p−1 ζ(y) ≤ lim inf
τ→∞ w(y, τ) ≤ lim sup

τ→∞
w(y, τ) ≤ (g(T ))

1
p−1 ζ(y),

from where (4.1) follows. 2

Proof of Theorem 1.4. Since un(0, tu(n)) = n and vn(0, tu(n)) ≤ K, the change of
variables,

wn(y, τ) = n−1un(n−(p11−1)y, tu(n) + n−2(p11−1)τ),

zn(y, τ) = vn(n−(p11−1)y, tu(n) + n−2(p11−1)τ),
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scales both components to order one for τ = 0. We obtain the system
{

(wn)τ = (wn)yy,
(zn)τ = (zn)yy,

(y, τ) ∈ R+ × (−n2(p11−1)tu(n),∞),

coupled with the boundary conditions,
{ −(wn)y(0, τ) = f11

1 (wn(0, τ))f12
n (zn(0, τ)),

−(zn)y(0, τ) = n−p11+p21f21
1 (wn(0, τ))f22

n (zn(0, τ)),
τ ∈ (−n2(p11−1)tu(n),∞),

and initial data
{

wn(y, 0) = n−1un(n−(p11−1)y, tu(n)),
zn(y, 0) = vn(n−(p11−1)y, tu(n)),

y ∈ R+.

The same super and subsolutions used in the the proof of Theorem 1.2 guarantee
that wn and zn are uniformly bounded (independently of n) in compact subsets of (y, τ).
Therefore, by standard regularity theory, we get uniform bounds in C2+ε,1+ε/2. Hence,
we can pass to the limit as n →∞. Let

z(y, τ) = lim
n→∞ zn(y, τ).

For any τ ≤ 0, we get that z(y, τ) = vT . If τ ≥ 0, passing to the limit in the equation
for zn, we obtain that the limit (uniform on compact subsets), z, satisfies





zτ = zyy, (y, τ) ∈ R+ × R+,
−zy(0, τ) = 0, τ ∈ R+,
z(y, 0) = vT , y ∈ R+.

Here we have used that, since p21 < p11 − 1, then p11 − p21 > 0, and that

lim
n→∞−n2(p11−1)tu(n) = −∞.

We conclude that z ≡ vT for all y and τ .
Let

Φ(y, τ) = lim
n→∞wn(y, τ).

Passing to the limit in the equation we get
{

Φτ = Φyy, (y, τ) ∈ R+ × R,
−Φy(0, τ) = f11

1 (Φ(0, τ))vp12

T , τ ∈ R.
(4.2)

This problem does not have uniqueness because it is invariant under time transla-
tions. In order to characterize the limit completely we need some extra information.
This information comes from the behaviour of the component u as t ↗ T . Actually,
from Lemma 4.1 we know that the blow-up profile is self-similar,

lim
t↗T

(T − t)
1

2(p11−1) u(y(T − t)1/2, t) = v
p12

p11−1

T ζ(y),
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uniformly on compact intervals 0 ≤ y ≤ C. The unique solution of (4.2) giving the
asymptotic behaviour is the only one that coincides for τ negative and large enough
with the self-similar function

w(y, τ) = v
p12

p11−1

T (−τ)−
1

2(p11−1) ζ(y(−τ)−1/2),

see [17] for the details. 2

Proof of Theorem 1.5. Let zn(y, τ) = vn(n−p21y, T + n−2p21τ). The function zn satisfies




(zn)τ = (zn)yy, (y, τ) ∈ R+ × R+,
−(zn)y(0, τ) = f22

n (zn(0, τ)), τ ∈ R+,
zn(y, 0) = vn(n−p21y, T ), y ∈ R+.

Since zn is uniformly bounded for τ in compact subsets of [0, τ̃) for some τ̃ > 0 and
vn(n−p21y, T ) goes to vT as n →∞,

lim
n→∞ zn(y, τ) = lim

n→∞ vn(n−p21y, T + n−2p21τ) = Ψ(y, τ),

where Ψ is the solution of the heat equation with initial datum Ψ(y, 0) = vT and
boundary flux −Ψy(0, τ) = Ψp22(0, τ). This limit Ψ blows up in a finite time τ0 when
p22 > 1. With this fact in mind one can extend the convergence to compact subsets of
R+ × [0, τ0). 2

5 Avalanche

Proof of Theorem 1.6. Let zn(x, t) = n−γ2vn(x, t). For times τ > tu(n), the truncation
for un has already taken place. Hence zn is a solution to the heat equation in R+×(τ,∞)
with initial data zn(x, τ) = n−γ2vn(x, τ), and boundary flux

−(zn)x(0, t) = np21−γ2f22
n (vn(0, t)), t ∈ (τ,∞). (5.1)

The idea is to choose γ2 so that in the limit we get a nontrivial boundary flux
condition. This choice depends on the value of f22

n (vn(0, t)); i.e. on the behaviour of
tv(n) as n tends to infinity.

p21 + p22 < 1 In this range of parameters tv(n) → ∞, see Theorem 1.2. Hence,
for any fixed time t̄ > T and n large, tv(n) > t̄. Thus, vn never reaches level n and
equation (5.1) becomes, taking τ = tu(n) and γ2 = p21

1−p22
,

−(zn)x(0, t) = np21−γ2+γ2p22zp22
n (0, t) = zp22

n (0, t), t ∈ (tu(n), t̄).

Using a comparison argument we have, for t ∈ [tu(n), t̄] and x ∈ R+,

ψn(x, t) ≤ zn(x, t) ≤ ε + ψn(x, t),
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where ψn is the unique positive solution of the heat equation in R+ × (tu(n),∞) with
boundary flux −(ψn)x(0, t) = ψp22

n (0, t) and initial datum ψn(x, tu(n)) = 0. Letting first
n → ∞ and then ε → 0, zn converges uniformly on compact subsets of [0, L] × (T,∞)
(notice that t̄ is arbitrary) to ψ, the unique positive solution to

{
ψt = ψxx, (x, t) ∈ R+ × (T,∞),

ψ(x, T ) = 0, x ∈ R+,
(5.2)

with boundary flux
−ψx(0, t) = ψp22(0, t), t ∈ (T,∞).

This function has a self similar form ψ(x, t) = (t− T )1/(2(p22−1))φ(x(t− T )−1/2), see [5].

p21 + p22 = 1 In this case tv(n) ∼ T , see Theorem 1.2, and we cannot determine if
the truncation takes place or not before t̄. In any case, we take γ2 = 1, so that (5.1) is
independent of n. Hence the limit function ψ(x, t) is now a positive solution to (5.2),
but with boundary flux given by

−ψx(0, t) = f22
1 (ψ(0, t)), t ∈ (T,∞).

Since p22 < 1 this problem has a positive solution (that can be obtained as in [5]). As
before ψ has a self-similar form until the time t̃ where it reaches level one, ψ(0, t̃) = 1.
From that time it behaves like the solution of the heat equation with boundary flux
equal to one and initial datum ψ(x, t̃).

p21 + p22 > 1 Let t̄ > T be a fixed time. Since tv(n) → T , for large values of n, we
haver that tv(n) < t̄, the truncation for vn takes place, and (5.1) becomes

−(zn)x(0, t) = np21−γ2+p22 = 1, t ∈ (tv(n), t̄),

if τ = tv(n) and γ2 = p21 +p22. This choice of γ2 implies that z(x, tv(n)) ≤ n1−γ2 → 0 as
n → ∞. Using a comparison argument as before, we have that zn converges uniformly
on compact subsets of [0,∞) × (T,∞) to ψ, the unique positive solution of (5.2) with
boundary data

−ψx(0, t) = 1, t ∈ (T,∞).

Again in this case ψ has a self-similar structure, ψ(x, t) = (t − T )1/2 φ
(
x(t− T )−1/2

)
.

The profile φ can be computed explicitly.
To conclude the proof we have to deal with the limit of un(x, t). To this aim we

define wn(x, t) = n−γ1un(x, t), which is a solution to




(wn)t = (wn)xx, (x, t) ∈ R+ × (tu(n),∞),
−(wn)x(0, t) = np11−γ1f12

n (nγ2zn(0, t)), t ∈ (tu(n),∞),
wn(x, tu(n)) = n−γ1un(x, tu(n)) ≤ n1−γ1 , x ∈ R+,

with γ1 a constant. As we already know that zn(0, t) → ψ(0, t) uniformly on t ∈ (T,∞),
we pass to the limit and obtain that there exists a nontrivial profile ϕ such that
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wn(x, t) → ϕ(x, t), as n → ∞. This limit profile is a solution to the heat equation
in R+× (T,∞) and if γ1 > 1 (which will be shown to be true) the initial datum becomes
ϕ(x, T ) = 0. The constant γ1 is chosen so that the limit boundary condition

−ϕx(0, t) = np11−γ1f12
n (nγ2ψ(0, t)) = np11−γ1+γ2p12f12

n1−γ2 (ψ(0, t)) (5.3)

is independent of n.

p21 + p22 < 1 Since ψ is bounded, we have that f12
n1−γ2

(ψ(0, t)) = ψp12(0, t), for n

large enough. Hence, taking γ1 = p11 + γ2p12 we get −ϕx(0, t) = ψp12(0, t).

p21 + p22 = 1 We have γ2 = 1, therefore the boundary condition (5.3) becomes
−ϕx(0, t) = f12

1 (ψ(0, t)) if γ1 = p11 + p12.

p21 + p22 > 1 Since γ2 > 1, we take γ1 = p11 + p12 and (5.3) turns out to be
−ϕx(0, t) = 1. 2
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