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Abstract. In this paper we analyze some properties of the principal eigenvalue
λ1(Ω) of the nonlocal Dirichlet problem (J∗u)(x)−u(x) = −λu(x) in Ω with u(x) = 0
in RN \Ω. Here Ω is a smooth bounded domain of RN and the kernel J is assumed to
be a C1 compactly supported, even, nonnegative function with unit integral. Among
other properties, we show that λ1(Ω) is continuous (or even differentiable) with re-
spect to continuous (differentiable) perturbations of the domain Ω. We also provide
an explicit formula for the derivative. Finally, we analyze the asymptotic behavior of
the decreasing function Λ(γ) = λ1(γΩ) when the dilatation parameter γ > 0 tends
to zero or to infinity.

1. Introduction

In the present work we consider the “Dirichlet” eigenvalue problem for a nonlocal
operator in a smooth bounded domain Ω:

(1.1)

{
(J ∗ u)(x)− u(x) = −λu(x), x ∈ Ω,

u(x) = 0, x ∈ RN \ Ω.

Here J ∗ u stands for the usual convolution,

(J ∗ u)(x) =
∫

RN

J(x− y)u(y) dy,

with a the kernel J that is a C1, compactly supported, nonnegative function with unit
integral.

Nonlocal problems related to (1.1) have been recently widely used to model diffusion
processes. When u(x, t) is interpreted as the density of a single population at the point
x at time t and J(x− y) is the probability of “jumping” from location y to location x,
the convolution (J ∗ u)(x) is the rate at which individuals arrive to position x from all
other positions, while − ∫

RN J(y−x)u(x, t) dy = −u(x, t) is the rate at which they leave
position x to reach any other position. If in addition an external source f(x, u(x, t)) is
present, we obtain the evolution problem

(1.2)





ut(x, t) = (J ∗ u)(x, t)− u(x, t) + f(x, u(x, t)), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ RN \ Ω, t ≥ 0,

u(x, 0) = u0(x), x ∈ RN ,

where the “boundary” condition u = 0 in RN \Ω means that the habitat Ω is surrounded
by a hostile environment (see [23]). Problem (1.2) and its stationary version have been
considered recently for several kinds of nonlinearities f . We quote for instance [4], [6],
[7], [10], [18], [19], [21], [22], [32] and [33], devoted to travelling front type solutions to
the parabolic problem when Ω = R, and [5], [11], [12], [20], [31], which dealt with the
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study of problem (1.2) with a logistic type, bistable or power-like nonlinearity. The
particular instance of the parabolic problem in RN when f = 0 is considered in [9], [27],
while the “Neumann” boundary condition for the same problem is treated in [1], [16]
and [17]. See also [28] for the appearance of convective terms, [2] for a problem with
nonlinear nonlocal diffusion and [13], [14], [15] for interesting features in other related
nonlocal problems.

We observe that stationary solutions to (1.2) are critical points in L2(Ω) of the
functional

H(u) =
1
4

∫

RN

∫

RN

J(x− y)(u(x)− u(y))2 dx dy −
∫

Ω
F (x, u(x)) dx,

where all functions are assumed to vanish outside Ω and F (x, u) =
∫ u
0 f(x, s) ds. When

the first integral is expanded in a Taylor series and all the terms are dropped but for
the first one, we obtain the approximate energy

H̃(u) =
A(J)

2

∫

Ω
|∇u(x)|2dx−

∫

Ω
F (x, u(x))dx,

where A(J) = 1/(2N)
∫
RN J(y)|y|2 dy (see [5]). If we assume that A(J) = 1, for

simplicity, we have that critical points of H̃ are weak solutions to the problem

(1.3)
{ −∆u(x) = f(x, u(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Thus, it is expected that stationary solutions to (1.2) behave in some sense similarly
as those of (1.3). This is indeed the case at least for some nonlinearities, even for the
parabolic version, see [15], [16], [17], [20].

On the other hand, it is well known that eigenvalue problems are a fundamental tool
to deal with problem (1.3). Particularly, when positive solutions are considered, the
so-called principal eigenvalue of the problem

(1.4)
{ −∆v(x) = σv(x), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

plays an important role. The properties of the principal eigenvalue of (1.4) are well-
known, and they are frequently used to obtain qualitative information of positive solu-
tions to (1.3).

Our objective in the present work is to study properties of the principal eigenvalue
associated to nonlocal problems. Some preliminary properties are already known, as
existence, uniqueness and a variational characterization (we collect some of these results
with full proofs in Section 2 for the reader’s convenience). Here, we are particularly
interested in the analysis of the dependence of the principal eigenvalue with respect
to the domain. Among the obtained results, two of them seem to be worth stressing.
The first one is the continuity and the differentiability of the principal eigenvalue with
respect to continuous or differentiable perturbations of the domain. The second one is
the precise asymptotic behavior of the principal eigenvalue in scaled domains γΩ when
the parameter γ goes to zero or infinity. In the latter case we find that the eigenvalue
behaves essentially as a multiple (that depends on J) of the principal eigenvalue of the
local Laplacian.



THE PRINCIPAL EIGENVALUE OF SOME NONLOCAL DIFFUSION PROBLEMS 3

Next, let us state our main results. We are assuming without further mention that
Ω is a bounded C1 domain and J ∈ C1(RN ) verifies J > 0 in B1 (the unit ball), J = 0
in RN \B1, J(−z) = J(z), with

∫
B1

J(x)dx = 1.

It is shown in Section 2 that problem (1.1) admits a unique principal eigenvalue,
that is, an eigenvalue with an associated positive eigenfunction. This eigenvalue enjoys
the usual properties: it is simple and unique, and it can be variationally characterized
(see three different characterizations in Theorem 7). Let us denote it by λ1(Ω). We
also remark that the associated eigenfunction u0 verifies u0 ∈ C(Ω), u0 > 0 in Ω, and
hence it has a jump discontinuity across ∂Ω, see [8], [9].

As we have mentioned, we are interested in the dependence of the first eigenvalue
on the domain Ω. A first consequence of the variational characterization is the strict
monotonicity of λ1(Ω):

Theorem 1. The principal eigenvalue of problem (1.1) in Ω, λ1(Ω), is decreasing with
respect to the domain, that is, if Ω1 ( Ω2, then λ1(Ω1) > λ1(Ω2).

Next, we analyze perturbations Ωδ of a fixed domain Ω, where δ is a small parameter,
and consider the issues of continuity and differentiability of λ1(Ωδ) with respect to δ. We
assume that the perturbed domain verifies Ωδ = Ψ(δ,Ω), where Ψ : (−ε, ε)× Ω → RN

takes the form

(1.5) Ψ(δ, x) = x + Φ(δ, x),

with Φ(0, ·) = 0. The continuity of λ1(Ωδ) is a more or less simple consequence of the
continuity of Φ with respect to δ. We denote by DΦ the differential of Φ with respect
to x.

Theorem 2. Let λ1(Ωδ) be the principal eigenvalue of (1.1) in Ωδ, and assume Ωδ =
Ψ(δ,Ω), where Ψ has the form (1.5) with Φ, DΦ ∈ C((−ε, ε)× Ω) for some ε > 0 and
Φ(0, ·) = 0. Then, λ1(Ωδ) → λ1(Ω) as δ → 0.

We now consider the question of differentiability of λ1(Ωδ). We assume the function
Ψ in (1.5) is differentiable and prove that λ1(Ωδ) is differentiable at δ = 0, providing
in addition an explicit formula for the derivative (see [30] for the analogous formula for
the Laplacian and [25] for the p-Laplacian).

Theorem 3. Let λ(δ) = λ1(Ωδ) be the principal eigenvalue of problem (1.1) in Ωδ, and
assume Ωδ = Ψ(δ,Ω), where Ψ is of the form (1.5) with Φ ∈ C1((−ε, ε)× Ω) for some
ε > 0 and Φ(0, ·) = 0. Then λ(δ) is differentiable with respect to δ at δ = 0, and

(1.6) λ′(0) = −(1− λ1(Ω))
∫

∂Ω
u2

0(x)
〈

∂Φ
∂δ

(0, x), ν(x)
〉

dS(x),

where u0 is the positive eigenfunction associated to λ1(Ω) normalized as |u0|L2(Ω) = 1
and ν(x) is the outward unit normal to ∂Ω.

Note that the eigenfunction u0 is strictly positive on ∂Ω in spite of the boundary
condition in (1.1), see [8], [9]. Thus, the integral in (1.6) is not necessarily zero.

An important example of perturbation of a domain is provided when Ω is enlarged in
the direction of the unit normal an amount δ. To make this precise, assume ∂Ω splits
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into m connected components, and select k of these components Γ1, . . . , Γk. Set

(1.7) Ωδ = Ω
k⋃

i=1

{x ∈ RN : dist(x,Γi) < δ}.

According to Theorem 3.1 in [30], we have Ωδ = Ψ(δ, Ω), where Ψ(δ, x) = x + δΦ̃(x).
Moreover, the derivative with respect to δ, Φ̃ = ∂Φ

∂δ (0, ·). verifies Φ̃ = ν on the compo-
nents Γi while Φ̃ = 0 on the remaining components of the boundary. Hence, we obtain
that λ1(Ωδ) decreases linearly as δ goes to zero.

Corollary 4. Let Ω be a bounded C1 domain of RN , and assume Ωδ is the perturbation
of Ω given by (1.7). Then λ(δ) = λ1(Ωδ) is differentiable with respect to δ at δ = 0,
and

λ′(0) = −(1− λ1(Ω))
k∑

i=1

∫

Γi

u2
0(x) dS(x) < 0,

where u0 is the positive eigenfunction of λ1(Ω) normalized with |u0|L2(Ω) = 1.

Having established the smoothness and monotonicity properties of λ1(Ω), we come
to the analysis of its asymptotic behavior both for small and large domains Ω. In this
context Ωn → RN means that the sequence of sets Ωn contains balls BRn (centered at
a fixed point) with radii Rn → +∞. Our first result in this direction is the following:

Theorem 5. For the principal eigenvalue λ1(Ω) we have λ1(Ω) → 1 when |Ω| → 0 and
λ1(Ωn) → 0 when Ωn → RN .

To make more precise the information given by Theorem 5, we fix a C1 bounded
domain Ω and consider dilatations of it, Ωγ = γΩ, where γ > 0 is the dilatation
parameter. As a consequence of the previous theorems, we have that λ1(Ωγ) is a
decreasing function of γ and λ1(Ωγ) → 1 when γ → 0, λ1(Ωγ) → 0 as γ → +∞. Our
last theorem describes precisely the asymptotic behavior of λ1(Ωγ) both when γ → 0
and when γ →∞.

Theorem 6. Let Ω be a smooth bounded domain of RN , and for γ > 0 denote Ωγ = γΩ.
Then

(1.8) λ1(Ωγ) ∼ 1− J(0)|Ω|γN as γ → 0 + .

If in addition J is radially symmetric and radially decreasing, then

(1.9) λ1(Ωγ) ∼ A(J)σ1(Ω)γ−2 as γ → +∞,

where σ1(Ω) is the principal eigenvalue of the Laplacian in Ω with Dirichlet boundary
conditions,

(1.10)
{ −∆v(x) = σ1(Ω)v(x), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω

and the constant A(J) is given by

A(J) =
1

2N

∫

RN

J(z)|z|2 dz.
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Roughly speaking, when conveniently scaled to a large domain, our nonlocal prob-
lem resembles a local one. Indeed, for the first eigenvalue of the Laplacian it is well
known that σ1(Ωγ) = σ1(Ω)γ−2, therefore the asymptotic behavior as γ →∞ for both
problems coincide (up to a factor that depends on J , A(J)). This resemblance has been
already observed for related problems in previous works, for instance in [2], [15] and
[17]. Notice that the vanishing rate of 1− λ1(Ωγ) at γ = 0 and of λ1(Ωγ) at γ = +∞
is different, which is in contrast with the already mentioned scaling invariance of the
Laplacian. This phenomenon is caused by the lack of homogeneity of the convolution
term J ∗ u.

The rest of the paper is organized as follows: in Section 2 we consider the issues of
existence, simplicity and monotonicity of the principal eigenvalue. Section 3 is devoted
to prove the differentiability with respect to differentiable perturbations of the domain,
while in Section 4 the asymptotic behavior of the principal eigenvalue in big and small
domains is analyzed.

2. Preliminaries

In this section we consider some preliminary facts related with the principal eigen-
value of (1.1). First notice that, since the eigenfunctions u of (1.1) verify u = 0 in
RN \Ω, the integral in the convolution term can indeed be considered only in Ω. Thus
we define the operator

L0u(x) =
∫

Ω
J(x− y)u(y) dy.

Although the integral makes sense when u ∈ L1(Ω), we are considering L0 as an
operator defined in L2(Ω) with values in L2(Ω). This operator L0 : L2(Ω) → L2(Ω) is
self-adjoint and compact.

Now observe that λ is an eigenvalue of (1.1) if and only if µ = 1−λ is an eigenvalue
of L0 in L2(Ω). Since L0 is compact and selfadjoint, the classical theory of compact
operators in Hilbert spaces apply. However, we are interested only in the existence of a
principal eigenvalue, that is, an eigenvalue associated to a nonnegative eigenfunction.
Notice that an eigenfunction u ∈ L2(Ω) (or even in L1(Ω)) automatically verifies that
u ∈ C(Ω), and thus thanks to the strong maximum principle nonnegative eigenfunctions
are strictly positive in Ω (see Theorem 7 in [24]).

We summarize in the next result the essential properties of the principal eigenvalue
(see [20] and [26] for a proof of existence).

Theorem 7. Problem (1.1) admits an eigenvalue λ1(Ω) associated to a positive eigen-
function φ ∈ C(Ω). Moreover, it is simple and unique, and it verifies 0 < λ1(Ω) < 1.
Furthermore, λ1(Ω) can be variationally characterized as

(2.1) λ1(Ω) = 1−


 sup

u∈L2(Ω)
u 6=0

∫

Ω

(∫

Ω
J(x− y)u(y) dy

)2

dx
∫

Ω
u2(x) dx




1/2
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or

(2.2) λ1(Ω) = 1− sup
u∈L2(Ω)

u6=0

∫

Ω

∫

Ω
J(x− y)u(x)u(y) dy dx

∫

Ω
u2(x) dx

or

(2.3) λ1(Ω) =
1
2

inf
u∈L2(Ω)

u 6=0

∫

Ω

∫

Ω
J(x− y)(u(x)− u(y))2 dy dx

∫

Ω
u2(x) dx

.

Proof. Motivated by the fact that the positive cone of L2(Ω) has empty interior and
since eigenfunctions are continuous in Ω, we consider in this proof the operator L0

defined in C(Ω) instead of L2(Ω). Note that L0 is a positive operator: L0u ≥ 0 for
every u ≥ 0. Moreover, L0 is strongly positive in the sense that for every nonnegative
u ∈ C(Ω), there exists n such that Ln

0u > 0 in Ω. Indeed, if u(x0) > 0, then it follows
that L0u > 0 in B1(x0), and after finitely many steps we arrive at Ln

0u > 0 in Ω.
According to Theorem 6.3 in [29], this property is enough to obtain that the spectral
radius sprC(Ω)(L0) of L0 is an eigenvalue associated to a positive eigenfunction, and it
is the unique eigenvalue of L0 with this property.

To proceed further, we consider again L0 defined in L2(Ω). Since L0 is self-adjoint,
it follows that sprL2(Ω)(L0) = ‖L0‖ (where ‖L0‖ denotes the operator norm in L2(Ω)),
and there exists and eigenvalue λ ∈ R of L0 such that |λ| = ‖L0‖ (cf. for instance [3]).
We deduce then that sprC(Ω)(L0) = ‖L0‖, and thus ‖L0‖ is an eigenvalue associated to
a positive eigenfunction, and it is the unique eigenvalue of L0 with this property.

Hence, the principal eigenvalue of problem (1.1) is given by λ1(Ω) = 1− ‖L0‖. This
immediately implies λ1(Ω) < 1. To prove that λ1(Ω) > 0, we use the maximum princi-
ple. Indeed, assume that λ1(Ω) ≤ 0 and let φ be an associated positive eigenfunction.
Then,

J ∗ φ− φ = −λ1(Ω)φ ≥ 0.

The maximum principle implies φ ≤ 0, which is impossible. Thus λ1(Ω) > 0.

The variational characterizations (2.1) and (2.2) are can be obtained at once since

‖L0‖2 = sup
u∈L2(Ω)

u 6=0

|L0u|2L2(Ω)

|u|2
L2(Ω)

= sup
u∈L2(Ω)

u 6=0

∫

Ω

(∫

Ω
J(x− y)u(y) dy

)2

dx
∫

Ω
u2(x) dx

,

and

‖L0‖ = sup
u∈L2(Ω)

u 6=0

| 〈L0u, u〉 |
|u|2

L2(Ω)

= sup
u∈L2(Ω)

u 6=0

∫

Ω

∫

Ω
J(x− y)u(x)u(y) dy dx

∫

Ω
u2(x) dx

,
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since L0 is self-adjoint. Finally, by expanding the square in the numerator and applying
Fubini’s theorem, it is easily seen that

1
2

∫

Ω

∫

Ω
J(x− y)(u(x)− u(y))2 dy dx

∫

Ω
u2(x) dx

= 1−

∫

Ω

∫

Ω
J(x− y)u(x)u(y) dy dx

∫

Ω
u2(x) dx

,

since J is even and u0 = 0 in RN \ Ω. Thus (2.3) follows. ¤
As an immediate consequence of the variational characterizations (2.1) and (2.2),

we have an estimate for λ1(Ω), which will be useful when dealing with the asymptotic
behavior of λ1(Ω) in large and small domains in Section 4.

Corollary 8. For the principal eigenvalue λ1(Ω) we have the estimates:

(2.4)
(

1
|Ω|

∫

Ω
A2(x) dx

)1/2

≤ 1− λ1(Ω) ≤ sup
y∈Ω

(∫

Ω
A(x)J(x− y) dx

)
,

where A(x) =
∫

Ω
J(x− y) dy.

Proof. Taking u ≡ 1 as test function in (2.1), we obtain

(2.5) 1− λ1(Ω) ≥
(

1
|Ω|

∫

Ω
A2(x) dx

)1/2

.

On the other hand, thanks to Cauchy-Schwartz inequality, we have:
∫

Ω

(∫

Ω
J(x− y)u(y) dy

)2

dx ≤
∫

Ω
A(x)

(∫

Ω
J(x− y)u2(y) dy

)
dx.

Using Fubini’s theorem, we get
∫

Ω

(∫

Ω
J(x− y)u(y) dy

)2

dx ≤
∫

Ω
u2(y)

(∫

Ω
A(x)J(x− y)dx

)
dy

≤ sup
y∈Ω

(∫

Ω
A(x)J(x− y)dx

) ∫

Ω
u2(y) dy,

and this implies that

(2.6) 1− λ1(Ω0) ≤ sup
y∈Ω

(∫

Ω
A(x)J(x− y)dx

)
.

Finally, (2.4) follows from (2.5) and (2.6). This concludes the proof of the corollary. ¤

Remarks 1. (a) We observe that since λ1(Ω) = 1− ‖L0‖ > 0, it follows that the norm
of the operator ‖L0‖ (considered in L2(Ω)) verifies ‖L0‖ < 1.

(b) The estimates (2.4) obtained in Corollary 8 are not sharp: if the domain Ω
contains a ball of radius 2, say, then the right-hand side in (2.4) equals one, so the
estimate is useless. However, these estimates will be enough to deal with with small
domains.

We end this section analyzing the monotonicity of the principal eigenvalue λ1(Ω)
with respect to the domain.
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Proof of Theorem 1. We notice that L2(Ω1) ⊂ L2(Ω2), provided we extend all functions
of the first space by zero outside Ω1. Hence we have, thanks to the characterization
(2.1), that λ1(Ω1) ≥ λ1(Ω2). To show that the inequality is strict, we notice that if
λ1(Ω1) = λ1(Ω2), then we obtain an associated eigenfunction which is positive in Ω1,
but zero in Ω2 \ Ω1, which contradicts the strong maximum principle. ¤

3. Continuity and differentiability of the principal eigenvalue

In this section we prove that the principal eigenvalue of a domain varies smoothly
with respect to smooth perturbations. To his end, we always assume that Ωδ = Ψ(δ,Ω)
is a perturbation of Ω such that the function Ψ is of the form (1.5), where Φ(0, ·) = 0.
First, we show that λ1(Ωδ) varies continuously with δ.

Proof of Theorem 2. We first notice that for small δ we can always assume Ω1 ⊂ Ωδ ⊂
Ω2 for some smooth domains Ω1 and Ω2 not depending on δ. Thanks to Theorem 1
this implies

(3.1) 0 < λ1(Ω2) < λ1(Ωδ) < λ1(Ω1) < 1.

Now let uδ be a positive eigenfunction associated to λ1(Ωδ):∫

Ωδ

J(x− y)uδ(x) dx = (1− λ1(Ωδ))uδ(x), x ∈ Ωδ.

We make the change of variables x = z + Φ(δ, z), y = w + Φ(δ, w) with x,w ∈ Ω to
obtain

(3.2)
∫

Ω
J(z − w + Φ(δ, z)− Φ(δ, w))vδ(w)∆(δ, w) dw = (1− λ1(Ωδ))vδ(z), z ∈ Ω.

where vδ(w) = uδ(w +Φ(δ, w)) and ∆(δ, w) = det(I +DΦ(δ, w)). We select vδ with the
normalization |vδ|L2(Ω) = 1. Then, for every sequence δn → 0, we have a subsequence
– still denoted by δn – such that vδn ⇀ v weakly in L2(Ω). Since

J(z − w + Φ(δn, z)− Φ(δn, w)) ∆(δn, w) → J(z − w)

uniformly in z, w ∈ Ω, we obtain thanks to weak convergence

(3.3)
∫

Ω
J(z − w + Φ(δn, z)− Φ(δn, w))vδn(w) ∆(δ, w) dw →

∫

Ω
J(z − w)v(w) dw

for almost every w ∈ Ω. Using the dominated convergence theorem, we also have the
convergence in (3.3) in L2(Ω).

On the other hand, since λ1(Ωδn) is bounded, we may pass to a further subsequence
to have λ1(Ωδn) → µ, where 0 < µ < 1, thanks to (3.1). Then, setting δ = δn in (3.2)
and passing to the limit we have that the convergence of vδn to v0 is strong in L2(Ω).
Therefore, |v0|L2(Ω) = 1. By (3.2) we finally have

∫

Ω
J(x− y)v0(y) dy = (1− µ)v0(x), x ∈ Ω,

with v0 ≥ 0, v0 6≡ 0. According to Theorem 7, we obtain that µ = λ1(Ω), that is,
λ1(Ωδn) → λ1(Ω). Since δn was arbitrary, this shows that λ1(Ωδ) → λ1(Ω) as δ → 0,
as we wanted to prove. ¤
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Next, we prove differentiability of λ1(Ωδ) under the additional hypotheses that Φ is
C1 in both variables. Our proof is based on estimates of the incremental quotients for
λ1(Ωδ), inspired by [25].

Proof of Theorem 3. We use the variational characterization (2.2) to estimate the in-
cremental quotients of λ1(Ωδ). For simplicity, let us write µ(δ) = 1 − λ1(Ωδ). If we
denote

Hδ(u) =

∫

Ωδ

∫

Ωδ

J(x− y)u(x)u(y) dx dy

∫

Ωδ

u2(x) dx

,

we have, thanks to (2.2), that

(3.4)
µ(δ)− µ(0)

δ
≥ Hδ(u0)− µ(0)

δ

for δ > 0 (recall that u0 = 0 outside Ω). Now, we perform the change of variables
x = z + Φ(δ, z), y = w + Φ(δ, w) in the integrals in Hδ and we obtain
(3.5)

Hδ(u0) =

∫

Ωδ

∫

Ωδ

J(x− y)u0(x)u0(y) dx dy

∫

Ωδ

u2
0(x) dx

=

∫

Ω

∫

Ω
J(z − w + Φ(δ, z)− Φ(δ, w))u0(z + Φ(δ, z))u0(w + Φ(δ, w)) ∆(z)∆(w) dzdw

∫

Ω
u2

0(z + Φ(δ, z))∆(z) dz

where ∆(z) = det(I + DΦ(δ, z)) and D stands for differentiation with respect to the
second variable. By our regularity assumptions we have that

(3.6)
J(z − w + Φ(δ, z)− Φ(δ, w)) u0(z + Φ(δ, z)) u0(w + Φ(δ, w)) ∆(z)∆(w)

= J(z − w)u0(z)u0(w) + K(z, w)δ + o(δ),

where

K(z, w) = 〈∇J(z − w), Φ′(0, z)− Φ′(0, w)〉u0(z)u0(w)
+J(z − w)u0(w) 〈∇u0(z), Φ′(0, z)〉+ J(z − w)u0(z) 〈∇u0(w), Φ′(0, w)〉
+J(z − w)u0(z)u0(w) div(Φ′(0, z)) + J(z − w)u0(z)u0(w) div(Φ′(0, w)),

and ′ stands for differentiation with respect to δ. Integrating (3.6) with respect to z
and w in Ω, we get,
(3.7)∫

Ω

∫

Ω
J(z − w + Φ(δ, z)− Φ(δ, w))u0(z + Φ(δ, z))u0(w + Φ(δ, w)) ∆(z)∆(w) dz dw

=
∫

Ω

∫

Ω
J(z − w)u0(z)u0(w) dz dw + δ

∫

Ω

∫

Ω
K(z, w) dz dw + o(δ)

= µ(0) + δ

∫

Ω

∫

Ω
K(z, w) dz dw + o(δ).
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Taking into account that J is even – and hence ∇J is odd – and using Fubini’s
theorem we have that

∫

Ω

∫

Ω
K(z, w) dz dw = 2

∫

Ω

∫

Ω

〈∇J(z − w),Φ′(0, z)
〉
u0(z)u0(w) dz dw

+2
∫

Ω

∫

Ω
J(z − w)u0(w)

〈∇u0(z),Φ′(0, z)
〉

dz dw

+2
∫

Ω

∫

Ω
J(z − w)u0(z)u0(w) div(Φ′(0, z)) dz dw.

Integrating by parts in the last integral, we arrive at
∫

Ω

∫

Ω
K(z, w) dz dw = 2

∫

Ω

∫

∂Ω
J(z − w)u0(z)u0(w)

〈
Φ′(0, z), ν(z)

〉
dS(z) dw.

Noticing that u0 is an eigenfunction, this expression can be further transformed into:
∫

Ω

∫

Ω
K(z, w) dz dw = 2µ(0)

∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z) dw.

Hence, from (3.7) we obtain
(3.8)∫

Ω

∫

Ω
J(z − w + Φ(δ, z)− Φ(δ, w))u0(z + Φ(δ, z))u0(w + Φ(δ, w)) ∆(z)∆(w) dz dw

= µ(0) + 2µ(0)δ
∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z) + o(δ).

On the other hand, with a similar procedure, we obtain:

(3.9)
∫

Ω
u2

0(z + Φ(δ, z))∆(z) dz = 1 + δ

∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z) + o(δ).

Taking into account (3.8) and (3.9), we obtain from (3.5):

Hδ(u0) = µ(0) + µ(0)δ
∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z) + o(δ).

Hence (3.4) gives:

µ(δ)− µ(0)
δ

≥ µ(0)
∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z) + o(1),

and thus

lim inf
δ→0+

µ(δ)− µ(0)
δ

≥ µ(0)
∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z).

The remaining limits, lim supδ→0+, lim infδ→0− and lim supδ→0− of the incremental
quotients µ(δ)−µ(0)

δ can be proved with similar calculations (we only remark that for
the upper estimate the continuity of uδ is needed), and therefore we finally conclude
that

lim
δ→0

µ(δ)− µ(0)
δ

= µ(0)
∫

∂Ω
u2

0(z)
〈
Φ′(0, z), ν(z)

〉
dS(z).

This proves (1.6), and concludes the proof of the theorem. ¤
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4. Asymptotic behavior in large and small domains

In this last section we determine the behavior of the principal eigenvalue λ1(Ω) when
the domain Ω goes to zero or to infinity. We first prove the preliminary result in this
direction contained in Theorem 5.

Proof of Theorem 5. We make use of Corollary 8. First, notice that if |Ω| → 0, the
integral in the second inequality in (2.4) goes to zero, and thus λ1(Ω) → 1.

To prove that λ1(Ωn) → 0 when Ωn → RN , we first show that λ1(BR) → 0 when
R →∞, where BR is the ball centered at the origin with radius R. According to (2.4)
we have

λ1(BR) ≤ 1−
(

1
|BR|

∫

BR

(∫

BR

J(x− y) dy

)2

dx

)1/2

,

hence we need to prove

(4.1)
1

|BR|
∫

BR

(∫

BR

J(x− y) dy

)2

dx → 1

as R →∞. We set in the inner integral y = x− z, and then x = Rw, and arrive at

1
|BR|

∫

BR

(∫

BR

J(x− y) dy

)2

dx =
1
|B1|

∫

B1

(∫

|z−Rw|<R
J(z) dz

)2

dw.

Now observe that for fixed w with |w| < 1 it holds
∫

|z−Rw|<R
J(z) dz →

∫

RN

J(z) dz = 1,

as R →∞, and (4.1) follows thanks to the dominated convergence theorem.

Finally, let us show that λ1(Ωn) → 0 as Ωn → RN . We can assume 0 ∈ Ωn and that
there exists balls BRn such that BRn ⊂ Ωn with Rn →∞, and hence λ1(Ωn) < λ1(BRn).
It follows that

lim sup
n→∞

λ1(Ωn) ≤ lim
n→∞λ1(BRn) = 0,

which concludes the proof. ¤

We finally determine the asymptotic behavior of the principal eigenvalue λ1(Ωγ),
when we consider dilatations Ωγ = γΩ of a fixed domain Ω. Our next theorem makes
more precise the information given by Theorem 5.

Proof of Theorem 6. We first prove (1.8). Let uγ be an arbitrary positive eigenfunction
associated to λ1(Ωγ). Choose an arbitrary ε > 0. Now, for γ small enough we have

J(x− y) ≤ J(0) + ε

if x, y ∈ Ωγ . Then

(1− λ1(Ωγ))
∫

Ωγ

uγ(x) dx =
∫

Ωγ

∫

Ωγ

J(x− y)uγ(y) dy dx

≤ (J(0) + ε)
∫

Ωγ

∫

Ωγ

uγ(y) dy dx = (J(0) + ε)|Ω|γN

∫

Ωγ

uγ(y) dy.
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It follows that

lim sup
γ→0+

1− λ1(Ωγ)
γN

≤ J(0)|Ω|.
The reverse inequality for the liminf can be proved in an analogous way. This completes
the proof of (1.8).

Let us prove now (1.9), which is much more involved. The first step is to show that
λ1(Ωγ) ≤ Cγ−2 for a certain positive constant. Indeed, we will show the more precise
estimate,

(4.2) lim sup
γ→+∞

γ2λ1(Ωγ) ≤ σ1(Ω)A(J).

Let φ be the positive eigenfunction of the Laplacian in Ω, normalized by
∫
Ω φ2(x) dx = 1

and extended by zero outside Ω. Taking as a test function φγ(x) = φ(x/γ) in the
variational characterization (2.3), we obtain

λ1(Ωγ) ≤ 1
2

∫

RN

∫

RN

J(x− y)
(

φ

(
x

γ

)
− φ

(
y

γ

))2

dy dx

∫

Ωγ

φ

(
x

γ

)2

dx

.

Setting x = y + z and y = γw in the integrals of the numerator, and x = γθ in the
integral of the denominator, we obtain

λ1(Ωγ) ≤ 1
2

∫

RN

∫

RN

J(z)
(

φ

(
w +

z

γ

)
− φ(w)

)2

dw dz

=
1
2

∫

B1

∫

RN

J(z)
(

φ

(
w +

z

γ

)
− φ(w)

)2

dw dz.

Taking into account that the function φ belongs to W 1,∞(RN ), we have

φ

(
w +

z

γ

)
− φ(w) =

1
γ

∫ 1

0

〈
∇φ

(
w + s

z

γ

)
, z

〉
ds

for every w ∈ RN , z ∈ B1. Hence,

(4.3) γ2λ1(Ωγ) ≤ 1
2

∫

B1

∫

RN

J(z)
(∫ 1

0

〈
∇φ

(
w + s

z

γ

)
, z

〉
ds

)2

dw dz.

Thanks to dominated convergence theorem, we can pass to the limit in (4.3) as γ → +∞
to obtain,

(4.4) lim sup
γ→+∞

γ2λ1(Ωγ) ≤ 1
2

∫

B1

∫

RN

J(z) 〈∇φ(w), z〉2 dw dz.

In the last integral, we apply Fubini’s theorem to obtain∫

B1

∫

RN

J(z) 〈∇φ(w), z〉2 dw dz =
∫

RN

∫

B1

J(z) 〈∇φ(w), z〉2 dz dw

=
N∑

i,j=1

∫

RN

∂φ

∂xi
(w)

∂φ

∂xj
(w)

(∫

B1

J(z)zizj dz

)
dw.

We notice that the integrals
∫
B1

J(z)zizj dz vanish by symmetry when i 6= j, while they
are all equal to 2A(J) when i = j. Thus (4.4) implies (4.2).
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Now let ϕγ be a positive eigenfunction associated to λ1(Ωγ), and set ψγ(x) = ϕγ(γx),
x ∈ Ω. We normalize ψγ by

∫
Ω ψ2

γ(x) dx = 1. According to the variational characteri-
zation (2.3), we have

2λ1(Ωγ) =
∫
eΩ

∫
eΩ

Jγ(x− y)(ψγ(x)− ψγ(y))2dxdy,

where Jγ(x) = γNJ(γx), and Ω̃ is a smooth bounded domain such that Ω ⊂⊂ Ω̃.

Now let γn → +∞ be an arbitrary sequence. By passing to a subsequence, we may
assume ψn := ψγn converges weakly in L2(Ω̃) to a function ψ. Since J is radially
decreasing and λ1(Ωγn) ≤ Cγ−2

n , thanks to (4.2), we may apply Proposition 3.2 of [2],
which implies that ψn → ψ strongly in L2(Ω̃) with ψ ∈ H1(Ω̃). Since ψ = 0 in Ω̃ \ Ω,
we obtain

(4.5) ψ ∈ H1
0 (Ω) and

∫

Ω
ψ2(x) dx = 1.

We claim that ψ is the principal eigenfunction of a multiple of the Laplacian in Ω with
Dirichlet boundary conditions, and this will imply limn→∞ γ2

nλ1(Ωγn) = A(J)σ1(Ω).
Indeed, thanks to (4.2), we may assume that γ2

nλ1(Ωγn) → λ0 ≥ 0. We notice that ψn

satisfies

(4.6) Jγn ∗ ψn − ψn = −λ1(Ωγn)ψn.

Choose an arbitrary function v ∈ C∞
0 (Ω). Multiply (4.6) by v and integrate in Ω to

obtain

(4.7)
γN

∫

RN

∫

RN

J(γ(x− y))ψn(y)v(x) dy dx−
∫

RN

ψn(x)v(x) dx

= −λ1(Ωγn)
∫

RN

ψn(x)v(x) dx.

Note that all the integrals in what follows may be considered in RN , since v and ψn

vanish outside Ω. Thanks to Fubini’s theorem, the integrals in the left-hand side of
(4.7) can be rewritten to have

(4.8) γN
n

∫

RN

∫

RN

J(γn(x−y))(v(y)−v(x))ψn(x) dx dy = −λ1(Ωγn)
∫

RN

ψn(x)v(x) dx,

since J has unit integral. Letting z = −γn(x− y) in the first integral of (4.8), we get

(4.9)
∫

RN

∫

RN

J(z)
(

v

(
x +

z

γn

)
− v(x)

)
ψn(x) dx dz = −λ1(Ωγn)

∫

RN

ψn(x)v(x) dx.

We now use Taylor expansion up to the second order in v:

v

(
x +

z

γn

)
− v(x) =

1
γn

N∑

i=1

∂v

∂xi
(x)zi +

1
γ2

n

N∑

i,j=1

∫ 1

0
(1− s)

∂2v

∂xi∂xj

(
x +

sz

γn

)
zizjds,
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which, when plugged into (4.9), gives

∫

RN

∫

RN

J(z)

(
γn

N∑

i=1

∂v

∂xi
(x)zi

+
N∑

i,j=1

∫ 1

0
(1− s)

∂2v

∂xi∂xj

(
x +

sz

γn

)
zizjds


ψn(x) dxdz

= −γ2
nλ1(Ωγn)

∫
ψn(x)v(x)dx.

Next we analyze the integrals involving the first derivatives of v. Notice that
∫

RN

∫

RN

J(z)
∂v

∂xi
(x)ziψn(x) dx dz =

∫

RN

∂v

∂xi
(x)ψn(x)

(∫

RN

J(z)zidz

)
dx = 0

by the symmetry of J . Hence:

(4.10)

∫

RN

∫

RN

J(z)




N∑

i,j=1

∫ 1

0
(1− s)

∂2v

∂xi∂xj

(
x +

sz

γn

)
zizj ds


ψn(x) dx dz

= −γ2
nλ1(Ωγn)

∫

RN

ψn(x)v(x) dx.

Now we pass to the limit as n →∞ in (4.10). Notice that

∂2v

∂xi∂xj

(
x +

sz

γn

)
→ ∂2v

∂xi∂xj
(x)

uniformly for x ∈ Ω, z ∈ B1, and hence the first term in (4.10) converges to

1
2

∫

RN

N∑

i,j=1

∂2v

∂xi∂xj
(x)ψ(x)

(∫

RN

J(z)zizjdz

)
dx = A(J)∆v(x)ψ(x).

Thus

(4.11) A(J)
∫

RN

∆v(x)ψ(x) dx = −λ0

∫

RN

ψ(x)v(x) dx.

According to (4.5), we may integrate by parts in the integral of the left-hand side in
(4.11) to obtain

A(J)
∫

RN

∇v(x)∇ψ(x)dx = λ0

∫

RN

ψ(x)v(x) dx.

Since v ∈ C∞
0 (Ω) is arbitrary, and ψ ∈ H1

0 (Ω) with ψ 6≡ 0, we have that ψ is a positive
eigenfunction associated to −∆ in Ω. Thus λ0 = A(J)σ1(Ω), and since the sequence
γn was arbitrary, the theorem is proved. ¤
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