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Abstract. We consider the unique positive solution to the equation ∆u = ur in Ω,
where r > 1 and Ω is a smooth bounded domain of RN , under one of the boundary
conditions u = λ, ∂u

∂ν
= λ, ∂u

∂ν
= λu or ∂u

∂ν
= λu− uq on ∂Ω, q > 1. The main interest is

determining the exact layer behavior of this solution near ∂Ω in terms of the parameter
λ as λ → ∞. Our analysis is completed with the study of the same type of problems
involving the p-Laplacian operator.

1. Introduction

In this paper we are interested in determining the exact asymptotic behavior near the
boundary of the unique positive solution to some reaction diffusion equations posed in
smooth bounded domains Ω of RN , whose prototype is ∆u = ur for r > 1, and subject
to a broad class of boundary conditions whose characteristic feature is the presence of a
control parameter λ. Our analysis covers Dirichlet, Neumann and Robin conditions. In
addition, a nonlinear flux condition with a logistic type growth is also studied.

To illustrate the issues we are interested in, consider first the Dirichlet problem

(1.1)
{

∆u = ur in Ω,

u = λ on ∂Ω.

It is well known that problem (1.1) has a unique positive solution for every λ > 0, which
will be denoted by uλ. It follows by uniqueness that uλ is increasing in λ. On one hand,
it is clear that uλ|∂Ω → ∞ as λ → ∞, while on the other hand uλ stays bounded in the
interior of Ω by the unique positive solution U to the boundary blow-up problem

(1.2)
{

∆u = ur in Ω,

u = ∞ on ∂Ω,

(cf. [10], [1], [2]). We have indeed that uλ → U uniformly on compact sets of Ω together
with its derivatives up to the second order. It is further known that the solution U behaves
like Ad(x)−α near ∂Ω, where d(x) := dist(x, ∂Ω), and

α =
2

r − 1
, A = (α(α + 1))

1
r−1 .

So the following question arises: how does this singularity develop near ∂Ω as λ → ∞?
More precisely: which is the boundary layer behavior of uλ on ∂Ω as λ becomes larger
and larger?

It can be seen by comparison of uλ with suitable sub and supersolutions of the form
K(φ + C/λ

1
α )−α, K, C positive constants and φ the unique solution to −∆φ = 1 in Ω

1
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subject to φ = 0 on ∂Ω, that there exist positive constants K1, K2 such that

K1

(
d(x) +

1

λ
1
α

)−α

≤ uλ(x) ≤ K2

(
d(x) +

1

λ
1
α

)−α

in Ω for all λ ≥ 1 (say). In fact and due to Hopf’s principle, φ has been replaced by
the distance function d(x). This suggests that the behavior of the solution at a (moving)
point x should depend on whether d(x) is of the order of λ−

1
α or not. Thus, this could be

considered as a “critical scale”, and it could be expected that if we approach the boundary
at a larger scale, only the information furnished by the equation is relevant, while if we
move with λ at a smaller scale then only the boundary condition matters.

This is actually the situation, as our first result shows. Moreover, if the boundary is
approached at the exact “boundary layer” scale ρ0λ

− 1
α , then the asymptotic profile is

affected by the coefficient ρ0.
As customary, we will use the following notations: for f(λ) and g(λ) defined and positive

in (a,∞) for large a, f À g is a shorthand for limλ→∞ f(λ)/g(λ) = ∞. Similarly, f ∼ g
means that limλ→∞ f(λ)/g(λ) = l for a certain positive and finite l.

Theorem 1. [Dirichlet Conditions] Let α = 2
r−1 and A = (α(α + 1))

1
r−1 . Let uλ be the

unique solution to (1.1) for λ > 0. Then for every ε > 0 there exist λ0 > 0, δ > 0, M > 0
such that

(1.3) (A − ε)
(
d(x) + A

1
α λ−

1
α

)−α
− M ≤ uλ(x) ≤ (A + ε)

(
d(x) + A

1
α λ−

1
α

)−α
+ M

if d(x) ≤ δ and λ ≥ λ0. In particular:
• If ρ(λ) > 0 and ρ(λ) →∞ as λ →∞, then d(x)αuλ(x) → A as d(x) → 0, λ →∞,

uniformly in d(x) ≥ ρ(λ)λ−
1
α .

• If ρ(λ) > 0 and ρ(λ) → 0 as λ → ∞, then uλ(x)
λ → 1 as λ → ∞, uniformly in

d(x) ≤ ρ(λ)λ−
1
α .

• If ρ0 > 0 and d(x)λ
1
α → ρ0, then d(x)αuλ(x) → A(1 + A

1
α ρ−1

0 )−α as λ →∞.

Similar considerations can be made for the same equation under Neumann boundary
conditions, that is, for the problem

(1.4)

{
∆z = zr in Ω,
∂z
∂ν = λ on ∂Ω.

We have the following result:

Theorem 2. [Neumann Conditions] Let α = 2
r−1 and A = (α(α + 1))

1
r−1 . Consider the

unique positive solution zλ to (1.4) which exists for every λ > 0. Then, for every ε > 0
there are positive values λ0, δ and M such that for λ ≥ λ0, the solution zλ is estimated in
the region 0 < d(x) < δ as follows

(1.5) (A− ε)
(
d(x) + (αA)

1
α+1 λ−

1
α+1

)−α
−M ≤ zλ(x) ≤

(A + ε)
(
d(x) + (αA)

1
α+1 λ−

1
α+1

)−α
+ M.

Therefore,

• limλ→∞ d(x)αzλ = A provided that δ À d(x) À λ−
1

α+1 uniformly as λ →∞,
• limλ→∞ λ−

α
α+1 zλ =

(
A
αα

) α
α+1 provided d(x) ¿ λ−

1
α+1 as λ →∞,



PARAMETER-DEPENDENT BOUNDARY CONDITIONS 3

• and finally, limλ→∞ d(x)αzλ(x) → A(1 + (αA)
1

α+1 ρ−1
0 )−α as λ → ∞ if d(x) ∼

ρ0λ
− 1

α+1 as λ →∞.

The results in Theorems 1 and 2 concerning problems (1.1) and (1.4) are proved by
comparing uλ and zλ with suitable sub and supersolutions in terms of d(x) near the
boundary, a technique which is usual when dealing with boundary blow-up problems like
(1.2) (see for example [2] or [5]). With similar computations, we are also able to analyze
the Robin type problem

(1.6)





∆v = vr in Ω
∂v

∂ν
= λv on ∂Ω

which was considered in [6] for r > 1 (also in [7] for 0 < r < 1). It was shown there that
the positive solution vλ is unique and later proved in Theorem 7 of [9] that there exist
positive constants K1, K2 such that

(1.7) K1

(
d(x) +

1
λ

)−α

≤ vλ(x) ≤ K2

(
d(x) +

1
λ

)−α

.

in Ω if λ ≥ 1. Thus similar results as for problems (1.1) and (1.4) may be expected, with
a different “critical scale” of order λ−1.

Theorem 3. [Robin Conditions] Let vλ be the unique solution to (1.6) for λ > 0. Then
for every ε > 0 there exist λ0 > 0, δ > 0, M > 0 such that

(1.8) (A− ε)
(

d(x) +
α + ε

λ

)−α

−M ≤ vλ(x) ≤ (A + ε)
(

d(x) +
α− ε

λ

)−α

+ M

if d(x) ≤ δ, λ ≥ λ0. In particular:
• If ρ(λ) > 0 and ρ(λ) →∞ as λ →∞, then d(x)αvλ(x) → A as d(x) → 0, λ →∞,

uniformly in d(x) ≥ ρ(λ)λ−1.
• If ρ(λ) > 0 and ρ(λ) → 0 as λ →∞, then vλ(x)

λα → Aα−α as λ →∞, uniformly in
d(x) ≤ ρ(λ)λ−1.

• If ρ0 > 0 and d(x)λ → ρ0, then d(x)αvλ(x) → A(1 + αρ−1
0 )−α as λ →∞.

Finally, we further consider the following perturbation of problem (1.6),

(1.9)





∆w = wr in Ω,

∂w

∂ν
= λw − wq on ∂Ω,

where q > 1. Such problem can be regarded as the competition between two reactions of
orders r and q respectively. The former is volumetric and takes place in the whole of Ω
while the latter, which is represented by the term −wq, is a surface reaction on ∂Ω. Such
processes are coupled with diffusion in Ω while in addition the reaction on ∂Ω is coupled
to a source linear term with flux intensity λ. In other words, a logistic type flux regulates
w on ∂Ω.

The question now is whether the presence of the surface sink term wq may change
the behavior of solutions as λ → ∞ with respect to that given by Theorem 3. Indeed,
observe that this problem has a unique positive solution for all λ > 0, as a consequence
of Theorem 1 in [8]. It will be denoted by wλ. A self-contained proof of this fact and
additional features of wλ are delayed to Section 2 (see the proof of Theorem 4 and Section
3 for the study of the same questions in a more general context).
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We find that two regimes are possible, depending on which of the two reaction mech-
anisms dominates the consumption of u. Such a dominance is expressed in terms of the
orders r, q of the reactions. When q is no too big with respect to r, that is, q ≤ r+1

2 , the
asymptotic behavior essentially coincides with that of problem (1.6). Indeed, the criti-
cal scale is the same, although the constants in the profile change in the borderline case
q = r+1

2 . Under q ≤ r+1
2 , the volumetric reaction −wr prevails over the surface reaction

−wq.
On the contrary, when q > r+1

2 , solutions undergo a qualitative change in their behavior
and are affected by the presence of the q power. This is just the case where surface reaction
is the leading degradation process. As a first approximation, it can be shown that

(1.10) K1

(
d(x) +

1
λ

)− 1
q−1

≤ wλ(x) ≤ λ
1

q−1

in Ω for a positive constant K1 and λ ≥ 1. The leftmost inequality in (1.10) follows
by constructing a subsolution while the rightmost is a consequence of Hopf’s boundary
lemma. These inequalities say in particular that wλ is comparable on ∂Ω with λ

1
q−1 , and

therefore wλ is comparable in Ω, via the maximum principle, with u
λ

1
q−1

(the solution to

(1.1) with λ replaced by λ
1

q−1 ). Hence from (1.7) we arrive at

K1

(
d(x) +

1
λτ

)−α

≤ vλ(x) ≤ K2

(
d(x) +

1
λτ

)−α

in Ω for λ ≥ 1, where τ = r−1
2(q−1) . This shows that the critical scale is modified and

becomes of the order of λ−τ as λ → ∞. Hence, we obtain a similar result to those in
Theorems 1, 2 and 3.

Theorem 4. Let wλ be the unique solution to (1.9) for λ > 0.
A) Assume q ≤ r+1

2 . Then for every ε > 0 there exist λ0 > 0, δ > 0, M > 0 such that

(1.11) (A − ε)
(
d(x) + γ−ε λ−

1
α

)−α
− M ≤ wλ(x) ≤ (A + ε)

(
d(x) + γ+

ε λ−
1
α

)−α
+ M

if d(x) ≤ δ, λ ≥ λ0, where γ±ε = α ∓ ε if q < r+1
2 and γ±ε = α + Aq−1 when q = r+1

2 .
Setting γ = γ±ε |ε=0, the following properties hold:

• If ρ(λ) > 0 and ρ(λ) →∞ as λ →∞, then d(x)αwλ(x) → A as d(x) → 0, λ →∞,
uniformly in d(x) ≥ ρ(λ)λ−1.

• If ρ(λ) > 0 and ρ(λ) → 0 as λ →∞, then wλ(x)
λα → Aγ−α as λ →∞, uniformly in

d(x) ≤ ρ(λ)λ−1.
• If ρ0 > 0 and d(x)λ → ρ0, then d(x)αwλ(x) → A(1 + γρ−1

0 )−α as λ →∞.
B) Suppose, on the contrary, q > r+1

2 . Then the solution wλ verifies

(1.12) (A − ε)
(
d(x) + A

1
α λ−τ

)−α
− M ≤ wλ(x) ≤ (A + ε)

(
d(x) + A

1
α λ−τ

)−α
+ M

if d(x) ≤ δ, λ ≥ λ0. Hence:
• If ρ(λ) > 0 and ρ(λ) →∞ as λ →∞, then d(x)αwλ(x) → A as d(x) → 0, λ →∞,

uniformly in d(x) ≥ ρ(λ)λ−τ .
• If ρ(λ) > 0 and ρ(λ) → 0 as λ → ∞, then wλ(x)

λ
1

q−1
→ 1 as λ → ∞, uniformly in

d(x) ≤ ρ(λ)λ−τ .
• If ρ0 > 0 and d(x)λτ → ρ0, then d(x)αwλ(x) → A(1 + A

1
α ρ−1

0 )−α as λ →∞.
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Finally, we also consider briefly the nonlinear diffusion version of the problems which
have been studied before, namely

(1.13)

{
∆pu = ur x ∈ Ω
Bp(u, λ) = 0 x ∈ ∂Ω,

where ∆p stands for the p-Laplacian, which is weakly defined in W 1,p(Ω) as ∆pu =
div (|∇u|p−2∇u), p > 1, r > p − 1 and Bp(u, λ) stands for the natural generalization
of each of the previous boundary conditions. See Section 3 for the statement of the corre-
sponding results.

The rest of the paper is organized as follows: in Section 2 we prove Theorems 1, 2, 3
and 4, while the analysis of the nonlinear diffusion problem (1.13) is developed in Section
3.

2. Linear diffusion

In this section we prove Theorems 1, 2, 3 and 4. In all cases we look at the unique
solution u to the problem under consideration, i.e. (1.1), (1.4), (1.6) and (1.9), respectively,
as the unique solution ψ to an auxiliary problem near the boundary. Namely,

(2.14)





∆ψ = ψr 0 < d(x) < δ,

ψ = u d(x) = δ,

B(ψ, λ) = 0 x ∈ ∂Ω,

for δ > 0 small, where B = B(ψ, λ) stands for the corresponding boundary operator in each
case, i. e. B(ψ, λ) = ψ−λ, B(ψ, λ) = ∂ψ

∂ν−λ, B(ψ, λ) = ∂ψ
∂ν−λψ and B(ψ, λ) = ∂ψ

∂ν−λψ+ψq,
respectively. Then, we are looking for appropriate sub and supersolutions to (2.14) to
obtain the desired estimates.

Proof of Theorem 1. We begin with the Dirichlet problem (1.1) which, as already men-
tioned, has a unique solution uλ for every λ > 0 which is increasing in λ and stays finite
in Ω as λ → ∞ ([1], [5]). Recall in addition that since Ω is C2, there exists δ0 > 0 such
that d is C2 in d(x) < δ0, with |∇d| = 1 there. To find a suitable supersolution choose
ε > 0 and let

ū(x) = (A + ε)
(
d(x) + A

1
α λ−

1
α

)−α
+ M

for M > 0. We claim that ū is a supersolution to (1.1) if d < δ and λ ≥ λ0, where δ < δ0

is small and λ0 is large (both depending on ε). This will hold provided

α(α + 1)(A + ε)
(
d(x) + A

1
α λ−

1
α

)−α−2
− α(A + ε)

(
d(x) + A

1
α λ−

1
α

)−α−1
∆d

≤
(
(A + ε)(d(x) + A

1
α λ−

1
α )−α + M

)r

in d(x) < δ. In particular, it is enough to have

α(α + 1)− α
(
d(x) + A

1
α λ−

1
α

)
∆d ≤ (A + ε)r−1

in d(x) < δ, which is always possible if λ is large enough and δ small enough, since
α(α + 1) = Ar−1. On the other hand, notice that u = λ on ∂Ω. Since M can be selected
so that M ≥ uλ on d(x) = δ for large λ (recall that uλ stays finite on d = δ as λ → ∞),
we obtain by comparison that uλ ≤ ū in d(x) < δ.
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It is analogously shown that u = (A − ε)
(
d(x) + A

1
α λ−

1
α

)−α
−M is a subsolution in

d(x) < δ with u = λ on ∂Ω and u ≤ uλ on d(x) = δ if M is chosen appropriately. Thus
u ≤ uλ in d(x) < δ and (1.3) is proved.

To conclude the proof, notice that if x ∈ Ω (depending on λ) is such that d(x) → 0 and
d(x)λ

1
α →∞ as λ →∞ then according to (1.3) we have for every ε > 0

d(x)αuλ(x) ≤ (A + ε)(1 + A
1
α (d(x)λ

1
α )−1)−α + Md(x)α

and thus lim sup d(x)αuλ(x) ≤ A. The lower inequality follows similarly, as well as the
remaining assertions of the theorem. ¤

Proof of Theorem 2. Let us consider now problem (1.4). Its main features are next de-
scribed for the sake of completeness (see also Section 3). First, (1.4) can only admit a
unique positive solution for λ > 0. To get existence, a supersolution (whose structure is
suitable for our purposes here) is provided by

z̄ = B(φ + µ)−α,

with α = 2/(r − 1), µ = (−α{min∂Ω
∂φ
∂ν }B/λ)

1
α+1 and φ(x) the function introduced in

Section 1, and where

B+ = (φmax + αµ)
1

r−1 ,

φmax = maxΩ{α(α + 1)|∇φ|2 + αφ}. A subsolution is similarly found in the form

z = B(φ + µ)−α,

where now µ = (−α{max∂Ω
∂φ
∂ν }B/λ)

1
α+1 and

B− = (φmin + αµ)
1

r−1 ,

with φmin = minΩ{α(α + 1)|∇φ|2 + αφ}.
Since θz is, for small 0 < θ < 1, a subsolution smaller than z̄ we find a unique solution

zλ satisfying θz ≤ zλ ≤ z̄. The same reasoning allows us to show that the solution zλ

satisfies z ≤ zλ ≤ z̄ for all λ > 0 (notice that both z, z̄ depend on λ).
On the other hand observe that B± → ∞ as λ → 0 while B± → B±(∞) as λ → ∞,

where B±(∞) are the values obtained by solving the equations for B± when setting µ = 0.
Two conclusions can be obtained from this fact. The first one is that zλ bifurcates from
zero as λ → 0 while the second one is that zλ, which is increasing in λ, keeps finite in Ω
as λ →∞, with limit z∞ = limλ→∞ zλ satisfying

B−(∞)
φα

≤ z∞ ≤ B+(∞)
φα

,

in Ω. Furthermore, by standard Lp estimates and bootstrapping it follows that z∞ coin-
cides with U , the solution to the blow-up problem (1.2).

We can now proceed to prove estimate (1.5). By arguing as before one finds that for
every ε > 0 there exist positive M and δ such that

z̄λ := (A + ε)
(
d + (αA)

1
α+1 λ−

1
α+1

)−α
+ M,

defines a subsolution to problem (2.14) while

zλ := (A− ε)
(
d + (αA)

1
α+1 λ−

1
α+1

)−α
−M,
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constitutes a comparable subsolution. Therefore, the solution to (1.4) satisfies

(A − ε)
(
d + (αA)

1
α+1 λ−

1
α+1

)−α
− M ≤ zλ ≤ (A + ε)

(
d + (αA)

1
α+1 λ−

1
α+1

)−α
+ M

in 0 < d(x) < δ. From this inequality, which is just (1.5), the remaining assertions
follow. ¤

Proof of Theorem 3. First recall that the features on existence, uniqueness and increasing
character of a positive solution vλ to (1.6), together with its finiteness as λ → ∞ are
contained in [6]. Next, for small ε > 0 we look for a supersolution to (2.14) of the form:

v̄ = (A + ε)(d + µ)α + M,

with a small δ > 0 and having in mind that µ → 0 as λ →∞. Setting η = (A+ε)r−1−Ar−1,
δ is chosen so that

sup
0<d<δ

α|∆d| < η

2
.

This gives a supersolution to the equation provided that

(2.15) sup
0<d<δ

µ|∆d| < η

2
.

Regarding the boundary condition one needs,

(2.16) αµ−1 ≥ λ

(
1 +

M

A + ε
µα

)

for a small µ, where M is considered a parameter. Then we set µ = α−ε
λ and (2.16) holds

for large λ (depending on ε and M). Now, M is chosen such that

vλ ≤ (A + ε)
(

d +
α− ε

λ

)
+ M

on d(x) = δ for λ greater than a certain amount. Finally, its size is also chosen so that
(2.15) is satisfied. In this way the construction of the supersolution v̄ is accomplished and
we have vλ ≤ v̄.

The subsolution is given by v = (A − ε)(d(x) + α+ε
λ )−α −M , and a similar argument

gives (1.8). The remaining assertions of the theorem easily follow. ¤

Proof of Theorem 4. We are postponing the detailed discussion of the features of problem
(1.9) to the end of the proof. So, let us begin with the case q < r+1

2 whose analysis follows
the general lines of Theorem 3. We seek a supersolution to (2.14) in the form,

w̄ = (A + ε) (d(x) + µ)−α + M,

for δ > 0 small. Then the computations run as in Theorem 3 but, in order to adjust the
boundary condition, equation (2.16) reads now

(2.17) αµ−α−1 + (A + ε)q−1µ−αq ≥ λµ−α

(
1 +

M

A + ε
µα

)
,

where µ is going to vanish as λ → ∞. Now α + 1 > αq if q < r+1
2 thus (2.17) is better

expressed as

(2.18)
(
α + (A + ε)q−1µα+1−αq

)
µ−1 ≥ λ

(
1 +

M

A + ε
µα

)
,
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and choosing µ = α−ε
λ then (2.18) holds if λ is large (depending on ε and M). The re-

maining details leading to estimate (1.11) –particularly the production of a corresponding
subsolution to (2.14)– coincide with those in Theorem 3.

In the case q = r+1
2 , both the supersolution and the subsolution need to be slightly

modified. In fact, (2.18) becomes

(
α + (A + ε)q−1

)
µ−1 ≥ λ

(
1 +

M

A + ε
µα

)
,

and the suitable supersolution is given by

w̄ = (A + ε)
(

d(x) +
α + Aq−1

λ

)−α

+ M,

being the corresponding subsolution accordingly corrected. We leave the details to the
reader.

Hence it only remains to consider the case q > r+1
2 . In this range αq > α+1 and (2.17)

should be better written as

(2.19)
(
(A + ε)q−1 + αµαq−α−1

)
µ−αq ≥ λµ−α

(
1 +

M

A + ε
µα

)
.

Thus (2.19) is satisfied for λ large provided that

µ =
(

Aq−1

λ

) 1
α(q−1)

=
A

1
α

λτ
,

with τ = r−1
2(q−1) . By repeating the steps in Theorem 3 we conclude that

w̄ = (A + ε)

(
d(x) +

A
1
α

λτ

)−α

+ M

defines a supersolution to (2.14) for a suitable choice of M (which depends on that of ε).
Similarly, a comparable subsolution is provided by

w = (A− ε)

(
d(x) +

A
1
α

λτ

)−α

+ M

and the proof of estimate (1.12) in part B) is completed.
To finish the proof, let us include a self contained account on problem (1.9) (see also

Section 3). We are only borrowing from [8] the uniqueness of a positive solution. To
get existence observe that the solution vλ to (1.6) provide us with a supersolution. A
subsolution is produced by using once again the ansatz

w = B(φ + µ)−α.

To get ∆w ≥ wr in Ω it suffices with

(2.20) Br−1 − αµ ≤ φmin,

where φmin = minΩ{α(α+1)|∇φ|2+αφ}. The corresponding inequality with the boundary
condition is achieved if

(2.21) λ ≥ α(−∂φ/∂ν)max + Bq−1µ1−α(q−1)

µ
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when q ≤ r+1
2 or

(2.22) λ ≥ Bq−1 + α(−∂φ/∂ν)maxµ
α(q−1)−1

µα(q−1)

for q > r+1
2 . The subsolution w is obtained in the case q ≤ r+1

2 by taking equalities in
both (2.20) and (2.21), setting µ = Bq−1−φmin

α and substituting in (2.21) to get a decreasing
smooth function B = B(λ) such that B → ∞ as λ → 0 while B → B(∞) := φr−1

min as
λ →∞. Thus, such subsolution w satisfies

lim
λ→0

w = 0,

uniformly in Ω while w → B(∞)φ−α uniformly on compacts of Ω as λ →∞. A subsolution
w with entirely the same properties is also constructed in this way when q > r+1

2 . Finally
and using the uniqueness together with the fact that θw and Mvλ define a sub and a
supersolution provided 0 < θ ≤ 1 and M ≥ 1, respectively, we find a solution wλ to (1.9)
satisfying

w ≤ wλ ≤ vλ.

This gives both the bifurcation of wλ from zero at λ = 0 and its finiteness as λ → ∞.
The increasing, and indeed, continuous character of wλ with respect λ is a consequence
of the fact that wλ1 defines a supersolution to (1.9) if λ1 ≥ λ. Finally, and just as in the
previous problems limλ→∞wλ = U in C2(Ω) where U is the solution to (1.2). ¤

3. Nonlinear diffusion

In the present section we are extending the previous results to the framework of non-
linear diffusion. Specifically, we are dealing with the class of problems (1.13){

∆pu = ur x ∈ Ω
Bp(u, λ) = 0 x ∈ ∂Ω,

where ∆p, p > 1, stands for the p-Laplacian operator. It will be assumed that r > p − 1
while the boundary conditions cover the natural extensions of all of those considered in
the previous sections. Namely,

Bp(u, λ) = u− λ (Dirichlet),

Bp(u, λ) = |∇u|p−2 ∂u

∂ν
− λ (Neumann),

Bp(u, λ) = |∇u|p−2 ∂u

∂ν
− λup−1 (Robin-type)

and the nonlinear flux condition under logistic growth

Bp(u, λ) = |∇u|p−2 ∂u

∂ν
− λup−1 + uq

with q > p− 1. In all cases, λ will be considered as a positive parameter. We are labeling
the problem (1.13) under those boundary conditions as (D), (N), (R) and (L) respectively.

That problem (1.13) admits, when subject to Dirichlet conditions, a unique weak posi-
tive solution uλ ∈ W 1,p(Ω)∩L∞(Ω) which increases with λ ∈ (0,∞), bifurcates from zero
at λ = 0 and keeps finite in Ω as λ → ∞, are all essentially well-known facts. Moreover,
limλ→∞ uλ = Up where u = Up is the unique solution to the problem

(3.23)
{

∆pu = ur in Ω
u = ∞ on ∂Ω.



10 J. GARCÍA-MELIÁN, J. D. ROSSI AND J. C. SABINA DE LIS

See [4] and [13] where the existence and uniqueness of a solution to (3.23) is studied.
However, the properties of existence, uniqueness, behavior in λ –specially the limit

values at λ = 0,∞– for the remaining cases of the boundary value problem (1.13), i.e.
(N), (R) and (L), need to be properly stated. Being our final goal the study of the boundary
layer formation for all those problems, we are next giving a self contained account on the
former properties, leaving the layer analysis for a final subsection. Thus we proceed to
deal with all these questions in turn.

3.1. Uniqueness. The uniqueness of a positive weak solution to (N) is standard. How-
ever, this is not the case for problems (N) and (L). In both cases, the proof in Lemma
13 of [8] can be adapted to the the p-Laplacian framework by employing the approach in
Lemma 3.1 of [12].

3.2. Existence. A first useful remark is that provided u, u ∈ W 1,p(Ω) ∩ L∞(Ω) is a sub
and supersolution pair to (1.13) with either of the boundary conditions listed above, then
θu, Mu is a new such pair whenever 0 < θ ≤ 1 ≤ M . This allows us to produce comparable
sub and supersolutions by starting on any arbitrary pair u, u. On the other hand, for its
immediate use in the constructions that follow it is convenient to introduce the function
φp ∈ W 1,p(Ω) ∩ L∞(Ω) which is the unique weak solution to

{
−∆pu = 1 x ∈ Ω,

u = 0 x ∈ ∂Ω.

It can be shown that φp ∈ C1,γ(Ω) for a certain 0 < γ < 1 ([3], [11], [14]). Moreover, due
to the strong maximum principle ([15]) it follows that φp > 0 together with ∇φp 6= 0 for
all x ∈ Ω such that d(x) = dist(x, ∂Ω) ≤ δ (for a small δ > 0).

Thus, it is possible to construct weak positive sub and supersolutions w, w̄ ∈ W 1,p(Ω)∩
L∞(Ω) to (1.13) (under all boundary conditions) in the form

(3.24) w = B−(φp + µ−)−β w̄ = B+(φp + µ+)−β,

with
β =

p

r − p + 1
,

where µ±, B± are decreasing functions of λ ∈ (0,∞) which depend on the boundary
conditions. They satisfy

(3.25) lim
λ→0

µ± = ∞ lim
λ→∞

µ± = 0,

and

(3.26) lim
λ→0

B± = ∞ lim
λ→∞

B± = Bp,±(∞),

being

Bp,−(∞) = {φp,min}
1

r−p+1 Bp,+(∞) = {φp,max}
1

r−p+1

and where
φp,min = min

Ω
{(p− 1)βp−1(β + 1)|∇φp|p + βp−1φp}

while
φp,max = max

Ω
{(p− 1)βp−1(β + 1)|∇φp|p + βp−1φp}.
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Furthermore, the functions B and µ are related through the expressions

(3.27)
Br−p+1
− − βp−1µ = φp,min

Br−p+1
+ − βp−1µ = φp,max.

A detailed proof of previous assertions is omitted for brevity. On the other hand, it is
important to point out that when checking that w and w̄ are a sub and a supersolution,
computations must be necessarily performed in a weak sense since, in general, φp does not
have two classical derivatives.

Therefore, and by employing the previous remark, it is possible to find a unique positive
weak solution uλ ∈ W 1,p(Ω) ∩ L∞(Ω) to problem (1.13) with either of the boundary
conditions (D), (N), (R) and (L), and this solution satisfies the inequalities

(3.28) w ≤ uλ ≤ w̄.

Moreover, in view of the results in [11], we have uλ ∈ C1,γ(Ω) for a certain 0 < γ < 1.

3.3. Limit behavior as λ → 0, λ →∞. That the solution uλ to (1.13) obtained in the
preceding paragraph increases in λ ∈ (0,∞), follows from uniqueness and the fact that
uλ constitutes a subsolution to problem (1.13)λ′ whenever λ′ ≥ λ. On the other hand,
relations (3.27) together with (3.25) and (3.26) imply that both w → 0, w̄ → 0 uniformly
in Ω as λ → 0. In virtue of (3.28) the same happens to uλ and it bifurcates from zero at
λ = 0.

As for the finiteness of uλ as λ → ∞ we can conclude from (3.28) and the expression
for w, w̄ and (3.26) that the limit

u∞ = lim
λ→∞

uλ,

holds uniformly on compacts of Ω. Furthermore, in view of the C1,γ estimates in [11] it
also holds in C1,γ(Ω) for a certain γ ∈ (0, 1). Moreover,

Bp,−(∞)

φβ
p

≤ u∞ ≤ Bp,+(∞)

φβ
p

.

Since this implies that limd(x)→0 u∞ = ∞ then u∞ defines a positive weak solution to
(3.23) and thus it coincides with Up.

3.4. Boundary layer behavior as λ → ∞. Once the existence and uniqueness of a
positive solution uλ to (1.13) together with its finiteness as λ → ∞ have been settled
down for all boundary conditions (D), (N), (R), and (L), the boundary layer behavior of
uλ near ∂Ω can be analyzed.

We are next stating the extensions of the results in Sections 1, 2 to the case of the p-
Laplacian. As in Section 2, such results are obtained by introducing the natural extension
of the auxiliary boundary value problem (2.14). Namely,

(3.29)





∆pu = ur 0 < d(x) < δ,

u = uλ d(x) = δ,

Bp(u, λ) = 0 x ∈ ∂Ω,

which exhibits u = uλ as its unique positive solution. Thus one proceeds to produce a
suitable pair of sub and supersolution u, u for each one of the boundary conditions. Such
sub and supersolutions have the form

u = (Ap − ε)(d + µ−)−β u = (Ap + ε)(d + µ+)−β,
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where A = Ap satisfies Aq−p+1 = (p − 1)βp−1(β + 1) and µ± = µ±(λ) are appropriate
functions of λ which depend on the boundary conditions and which are explicitly given
below. Computations, which are entirely similar to the ones in Section 2, are going to be
omitted for brevity. The boundary layer features corresponding to each problem are now
listed in turn. Recall that β = p

r−p+1 , and Ap is given by Aq−p+1
p = (p− 1)βp−1(β + 1).

Dirichlet problem. For every ε > 0, there exist positive δ = δ(ε), λ(ε) and M = M(ε)
such that the solution uλ to (D) satisfies

Ap − ε

(d(x) + A
1
β
p λ

− 1
β )β

−M ≤ uλ ≤ Ap + ε

(d(x) + A
1
β
p λ

− 1
β )β

+ M,

for d(x) < δ and λ ≥ λ(ε). Then, the critical scale is λ
− 1

β and

(3.30) uλ ∼ Ap

d(x)β
,

for 1 À d(x) À λ
− 1

β as λ →∞. In addition,

uλ ∼ λ

provided d(x) ¿ λ
− 1

β as λ →∞.

Neumann problem. The positive solution uλ to (N) satisfies the estimates

Ap − ε

(d(x) + (βAp)
1

β+1 λ
− 1

(p−1)(β+1) )β
− M ≤ uλ ≤ Ap + ε

(d(x) + (βAp)
1

β+1 λ
− 1

(p−1)(β+1) )β
+ M,

for every prefixed ε > 0, provided that d(x) < δ ≤ δ(ε), λ ≥ λ(ε) and M = M(ε). That

is why the critical scale becomes λ
− 1

(p−1)(β+1) and the inner approximation (3.30) holds
provided 1 À d(x) À λ

− 1
(p−1)(β+1) as λ →∞. While,

uλ ∼
(

Ap

ββ

) 1
β+1

λ
β

(p−1)(β+1)

whenever d(x) ¿ λ
− 1

(p−1)(β+1) as λ →∞.

Robin-type problem. For each ε > 0, the positive solution uλ to (R) satisfies the estimates

(3.31)
Ap − ε

(d(x) + (β + ε)λ−
1

p−1 )β
−M ≤ uλ ≤ Ap + ε

(d(x) + (β − ε)λ−
1

p−1 )β
+ M,

if x lies in the strip 0 < d(x) < δ, M = M(ε) and λ becomes arbitrarily large. The critical
scale becomes λ

− 1
p−1 and the inner estimate (3.30) holds if 1 À d(x) À λ

− 1
p−1 as λ →∞.

In addition,

uλ ∼ Ap

ββ
λ

β
p−1

provided that d(x) ¿ λ
− 1

p−1 as λ →∞.

Nonlinear flux problem: logistic growth. Just as in the linear diffusion case (1.9), problem
(L) exhibits two regimes: A) q ≤ r+1

p′ , p′ = p
p−1 , corresponding to volumetric reaction

dominance and B) q > r+1
p′ , which means the prevalence of the surface reaction.
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In case A) the boundary estimates and layer behavior of the solution uλ to (L) becomes
exactly the same as in the case of the Robin-type problem if q < r+1

p′ (compare with
Theorem 4, A)). When q = r+1

p′ , estimate (3.31) becomes

Ap − ε

(d(x) + (βp−1 + Aq−p+1
p )

1
p−1 λ

− 1
p−1 )β

−M ≤ uλ ≤

Ap + ε

(d(x) + (βp−1 + Aq−p+1
p )

1
p−1 λ

− 1
p−1 )β

+ M,

for every ε > 0 when 0 < d(x) < δ(ε), M = M(ε) and λ is large. The critical scale and
inner behavior (3.30) remain the same as in the Robin-type problem (R) while the outer
estimate becomes

uλ ∼ Ap

(βp−1 + Aq−p+1
p )

β
p−1

λ
β

p−1

if d(x) ¿ λ
− 1

p−1 as λ →∞.
As for the case B) corresponding to q > r+1

p′ , the critical scale becomes now (compare
with Theorem 3, B)) λ−θ with

θ =
1
p

r − p + 1
r − q + 1

,

and in fact the relevant estimate is,
Ap − ε

(d(x) + A
1
β
p λ−θ)β

−M ≤ uλ ≤ Ap + ε

(d(x) + A
1
β
p λ−θ)β

+ M,

where ε > 0 is prefixed and d(x) < δ, M = M(ε) and λ ≥ λ(ε). While the inner behavior
(3.30) holds once again if 1 À d(x) À λ−θ as λ →∞, we find that

uλ ∼ λ
1

q−p+1 ,

if λ →∞ and x moves with λ according to the scale d(x) ¿ λ−θ.

Remark 1. As in the linear diffusion problem, an intermediate layer behavior of the solution
uλ to problem (1.13) is found when observing such solution in a multiple of the critical
scale. For instance, in the case of problem (D),

(3.32) uλ ∼ Ap

(1 + ρ−1
0 A

1
β
p )β

d(x)−β ∼ Ap

(ρ0 + A
1
β
p )β

λ,

when d(x) ¿ 1 according to d(x) ∼ ρ0λ
− 1

β . Of course, similar estimates are obtained for
the other boundary conditions by employing their own critical scales.
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[8] J. Garćıa-Melián, J. Rossi, J. Sabina de Lis, Existence and uniqueness of positive solutions to
elliptic problems with sublinear mixed boundary conditions. To appear in Comm. Contemp. Math.
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