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Abstract. In this work we consider the maxiumum and antimaximum
principles for the nonlocal Dirichlet problem

J ∗ u− u + λu + h =

∫

RN

J(x− y)u(y) dy − u(x) + λu(x) + h(x) = 0

in a bounded domain Ω, with u(x) = 0 in RN \ Ω. The kernel J in
the convolution is assumed to be a continuous, compactly supported
nonnegative function with unit integral. We prove that for λ < λ1(Ω),

the solution verifies u > 0 in Ω if h ∈ L2(Ω), h ≥ 0, while for λ >

λ1(Ω), and λ close to λ1(Ω), the solution verifies u < 0 in Ω, provided∫
Ω

h(x)φ(x) dx > 0, h ∈ L∞(Ω). This last assumption is also shown to
be optimal. The “Neumann” version of the problem is also analyzed.

1. Introduction

This note is mainly concerned with the validity of the maximum and
antimaximum principles for the nonlocal inhomogeneous linear problem

(1.1)





∫

RN

J(x− y)u(y) dy − u(x) + λu(x) + h(x) = 0 x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω.

Here Ω is a bounded domain of RN , h is a given function and λ is a real
parameter. The operator J ∗u−u =

∫
RN J(x−y)u(y) dy−u(x) is a nonlocal

diffusion operator that has been recently used to model several physical
situations (see for example [23] in the context of biological models). Without
further mention, we are always assuming that the kernel J is continuous,
nonnegative, supported in the unit ball B of RN and with unit integral.
We also suppose that J > 0 in B and that J(−x) = J(x) for every x.
The condition u(x) = 0 in RN \ Ω is the nonlocal analogue to the usual
Dirichlet boundary condition u|∂Ω = 0 imposed when one considers the
usual Laplacian as the diffusion operator, see [9].

The general problem

(1.2)

{
(J ∗ u)(x)− u(x) = f(x, u(x)) x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω,

and its parabolic version have been widely treated in the recent literature.
In most of the references, Ω = RN and that the Dirichlet condition is not
present. We quote for instance [5], [7], [8], [10], [18], [19], [21], [22] and [32],
devoted to travelling front type solutions to the parabolic problem when
Ω = R, and [6], [11], [12], [20], [31], that study problem (1.2) with a logistic
type, bistable or power-like nonlinearity. The particular instance of the
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parabolic problem in RN when f = 0 is considered in [9], [27], while the
“Neumann” boundary condition for the same problem is treated in [1], [16]
and [17]. See also [28] for the appearance of convective terms and [14], [15]
for interesting features in other related nonlocal problems. We also mention
the paper [26], where some logistic equations and systems of Lotka-Volterra
type are studied, and interesting biological conclusions are obtained.

Problem (1.1) is the nonlocal analogous to

(1.3)
{

∆u(x) + λu(x) + h(x) = 0 x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.

One can see this analogy considering the functional whose critical points are
solutions to (1.1) and performing a first order Taylor expansion; we refer to
[6] for details.

Since the maximum and antimaximum principles have shown to be pow-
erful tools when analyzing nonlinear elliptic problems related to (1.3), we
want to analyze them in the context of the nonlocal problem (1.1).

Recall that the maximum principle is well known for problem (1.3) in
the following form: if h ≥ 0 and λ < σ1(Ω), where σ1(Ω) denotes the first
eigenvalue of the Dirichlet Laplacian in Ω, then u > 0 in Ω and ∂u

∂ν < 0
on ∂Ω, where ν stands for the outward unit normal to ∂Ω. Moreover, the
condition λ < λ1(Ω) is known to be also necessary (see [30], [33], [35] and
also [25] for a version involving the p-Laplacian).

With respect to the antimaximum principle, it has been proved that for
h ∈ Lp(Ω), p > N , such that

∫
Ω h(x)ψ(x) dx > 0, with ψ > 0 an eigenfunc-

tion associated to σ1(Ω), there exists δ > 0 such that u < 0 in Ω and ∂u
∂ν > 0

on ∂Ω for σ1(Ω) < λ < σ1(Ω) + δ. See [2], [13], and also [3] for a quasilinear
version. It was later proved in [34] that the condition h ∈ Lp(Ω), p > N is
necessary.

Our main objective in this work is to show that a version of the maximum
and antimaximum principles remains valid for problem (1.1).

A word on the notion of solution to (1.1): by a solution we mean a function
u ∈ L1(Ω) which verifies (1.1) almost everywhere. Although in most places
we are dealing with h ∈ L2(Ω), which forces u ∈ L2(Ω). However, we remark
that with h ∈ L∞(Ω) it always follows that u ∈ L∞(Ω), and we are requiring
this extra regularity for the validity of the antimaximum principle. It will
be also shown that this condition is not superfluous.

An important role in what follows will be played by the principal eigen-
value λ1(Ω) of the problem

(1.4)

{
(J ∗ u)(x)− u(x) + λu(x) = 0 x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω,

whose existence and properties will be briefly considered in Section 2. Now,
we only quote that λ1(Ω) is positive and less than one, and it has an asso-
ciated eigenfunction φ ∈ C(Ω) which verifies φ > 0 in Ω (let us mention in
passing that φ has a jump discontinuity across ∂Ω, see [4]).

We now come to the statement of the maximum principle. Let us mention
that problem (1.1) has a unique solution for every h ∈ L2(Ω) provided
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λ < λ1(Ω) or λ ∈ (λ1(Ω), λ1(Ω) + ε), if ε is small enough (see Remark 1 in
Section 2).

Theorem 1. Let h ∈ L2(Ω) be such that h ≥ 0, h 6≡ 0, and let u ∈ L2(Ω)
be the solution to (1.1) with λ < λ1(Ω). Then u > 0 in Ω.

We remark that the condition u > 0 in Ω means in this context that
ess inf u > 0, since for h ∈ L2(Ω) we only have u ∈ L2(Ω).

Next, we consider the antimaximum principle.

Theorem 2. Let h ∈ L∞(Ω) verify
∫

Ω
h(x)φ(x) dx > 0.

Then there exists ε = ε(h) > 0 such that for λ ∈ (λ1(Ω), λ1(Ω) + ε) the
unique solution to (1.1) verifies u < 0 in Ω.

We also consider the question of optimality of the hypothesis h ∈ L∞(Ω).
We stress that if h /∈ L∞(Ω) then u /∈ L∞(Ω), and this provokes the failure
of the antimaximum principle.

Theorem 3. For every small ε > 0 and λ ∈ (λ1(Ω), λ1(Ω)+ ε), there exists
h ∈ L2(Ω), h /∈ L∞(Ω) with

∫

Ω
h(x)φ(x) dx > 0

such that the unique solution to (1.1) is positive somewhere in Ω.

We can also consider the “Neumann” boundary condition, that is, the
problem

(1.5)
∫

Ω
J(x−y)u(y) dy−u(x)+λu(x)+h(x)+

∫

RN\Ω
J(x−y)g(y) dy = 0,

for x ∈ Ω. Here h, g ∈ L2(Ω), and the term

(1.6)
∫

RN\Ω
J(x− y)g(y) dy

is the nonlocal counterpart of the nonhomogeneous Neumann boundary con-
dition ∂u/∂η = g (see [9], [16] and [17]).

The only significant difference of the results we obtain for problem (1.5)
with respect to the previous ones is that the principal eigenvalue is now
λ̃1(Ω) = 0, with a constant eigenfunction.

Theorem 4. Let h, g ∈ L2(Ω) be such that h, g ≥ 0, (h, g) 6≡ (0, 0), and let
u ∈ L2(Ω) be the solution to (1.5) with λ < λ1(Ω). Then u > 0 in Ω.

Theorem 5. Let h ∈ L∞(Ω), g ∈ L2(Ω) verify
∫

Ω
h(x) dx +

∫

Ω

(∫

RN\Ω
J(x− y)g(y) dy

)
dx > 0.

Then there exists ε = ε(h, g) > 0 such that for λ ∈ (0, ε) the unique solution
to (1.5) verifies u < 0 in Ω.
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Like for the Dirichlet problem, the condition h ∈ L∞(Ω) is essential for
the validity of the antimaximum principle. For simplicity, we state its failure
only for g = 0.

Theorem 6. For every small ε > 0 and λ ∈ (0, ε), there exists h ∈ L2(Ω),
h /∈ L∞(Ω) such that ∫

Ω
h(x) dx > 0

and the unique solution to (1.5) is positive somewhere in Ω.

The paper is organized as follows: in Section 2 we state and prove some
auxiliary results which deal with a different version of the maximum principle
and the principal eigenvalue for the nonlocal operator. In Section 3 we prove
the theorems: only Theorems 1, 2 and 3 will be proved, since the arguments
used to show Theorems 4, 5 and 6 are completely analogous.

2. Preliminaries

In this section we gather some results which are important to understand
the maximum and antimaximum principles: the validity of the maximum
principle in a slightly different form than the one considered in the intro-
duction and the existence of a principal eigenvalue of problem (1.4).

We begin with a form of the maximum principle which will be used in the
sequel. We introduce the operator:

LMu(x) = (J ∗ u)(x)− (1 + M)u(x),

with M ≥ 0. The validity of the maximum principle for LM is well-known,
but we include a proof for completeness (see [18], [19]; and also [26] for a
parabolic version).

Theorem 7. Let u ∈ L2(RN ) verify LM u ≤ 0 in Ω with u ≥ 0 in RN \ Ω.
Then either u > 0 or u ≡ 0 in Ω.

Proof. Let u− = min{u, 0}. Note that u− ≤ 0. We have u−(x) = 0 in
RN \ Ω, and

∫

Ω

∫

Ω
J(x− y)u(y)u−(x) dy dx ≥

∫

Ω

(∫

RN

J(x− y)u(y) dy

)
u−(x) dx

≥ (1 + M)
∫

Ω
u(x)u−(x) dx.

This implies

(2.1)
∫

Ω

∫

Ω
J(x− y)u−(y)u−(x) dy dx−

∫

Ω
u−(x)2 dx ≥ M

∫

Ω
u−(x)2 dx.

However, thanks to the symmetry of J and Fubini’s theorem, it is easy to
see that the left-hand side of (2.1) equals

−1
2

∫

Ω

∫

Ω
J(x− y)(u−(x)− u−(y))2 dy dx,

and thus (2.1) implies u− = 0 in Ω, that is, u ≥ 0 in Ω.
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To end the proof we argue by contradiction. Assume that ess inf u = 0.
This implies that for every ε > 0, there exists a set U of positive measure
such that u(x) ≤ ε for almost every x ∈ U . Choose xε such that

(J ∗ u)(xε)− (1 + M)u(xε) ≤ 0

and
u(xε) ≤ ε.

Then ∫

RN

J(xε − y)u(y) dy ≤ (1 + M)ε.

Now notice that J(z) ≥ c−1 > 0 for |z| < 1/2, and hence

(2.2)
∫

B1/2(xε)
u(y) dy ≤ c(1 + M)ε.

If we now let ε → 0, the points xε will accumulate at a point x0 ∈ Ω, and it
will follow thanks to (2.2) that

∫

B1/2(x0)
u(y) dy = 0.

Hence, u = 0 a.e. in B1/2(x0). We can continue with this argument to prove
that u ≡ 0 in Ω. ¤

Next, we consider the issue of existence of a principal eigenvalue for the
problem considered in the introduction:

(2.3)

{
(J ∗ u)(x)− u(x) + λu(x) = 0 x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω.

Since it is not the most important point here, we only sketch the proof. See
[24] for a detailed proof (we refer also to [26] or [20] for existence of the
principal eigenvalue in similar situations).

Theorem 8. Problem (2.3) admits an eigenvalue λ1(Ω) associated to an
eigenfunction φ ∈ C(Ω) which is positive in Ω. Furthermore, λ1(Ω) is simple
and unique and verifies 0 < λ1(Ω) < 1. It can be variationally characterized
as

(2.4) λ1(Ω) = 1− sup
u∈L2(Ω)

u 6=0

∫

Ω

∫

Ω
J(x− y)u(x)u(y) dy dx

∫

Ω
u(x)2 dx

.

Sketch of the proof. It is easily seen that λ is an eigenvalue of (2.3) if
and only if µ = 1 − λ is an eigenvalue of Lu = J ∗ u in L2(Ω). Since L
is self-adjoint, it follows by standard spectral theory that µ1 = ‖L‖ is an
eigenvalue of L (moreover notice that L is positive). On the other hand, the
eigenvalue problem can also be considered in C(Ω), and since L is compact
there, an application of the Krein-Rutman theorem (Theorem 6.2 in [29])
gives that µ1 possesses the stated properties. We remark that the operator
L is not strongly positive in the sense that, for a nonnegative and nontrivial
u ∈ C(Ω), there exists a positive integer n such that Lnu > 0 in Ω. ¤
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Remark 1. An important corollary to Theorem 7 is that if u ∈ L2(RN )
verifies LMu = 0 in Ω with u = 0 in RN \Ω then u ≡ 0. Thus it is standard
to conclude that the problem

{
(J ∗ u)(x)− (1 + M)u(x) = h(x) x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω,

admits a unique solution u ∈ L2(RN ) for every h ∈ L2(Ω). Therefore, it
follows that the problem

{
(J ∗ u)(x)− u(x) + λu(x) = h(x) x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω,

admits a unique solution u ∈ L2(Ω) for every h ∈ L2(Ω) provided that λ is
not an eigenvalue of (2.3).

3. Maximum and antimaximum principles

In this section we prove Theorems 1, 2 and 3. Although it has already
been pointed out, we remark that the operator Lu = J ∗ u is compact in
L∞(Ω), even with values in C(Ω), since J is uniformly continuous. This will
be an essential ingredient in most of the proofs.

Note that in all the cases considered, problem (1.1) has a unique solution
thanks to Remark 1.

Proof of Theorem 1. Multiply the equation in (1.1) by u− = min{u, 0} and
integrate in Ω to obtain

∫

Ω

∫

Ω
J(x− y)u(y)u−(x) dy dx + (λ− 1)

∫

Ω
u−(x)2 dx ≥ 0,

which immediately implies
∫

Ω

∫

Ω
J(x− y)u−(y)u−(x) dy dx + (λ− 1)

∫

Ω
u−(x)2 dx ≥ 0.

Thanks to the variational characterization (2.4), we arrive at

(λ− λ1(Ω))
∫

Ω
u−(x)2 dx ≥ 0,

and since λ < λ1(Ω), we obtain u− ≡ 0 in Ω, that is, u ≥ 0.
Finally, we choose M > 0 large so that λ + M > 0, and observe that

LMu = −(λ + M)u − h ≤ 0. By Theorem 7, u > 0 in Ω (the possibility
u ≡ 0 is ruled out since h 6≡ 0). This completes the proof. ¤

Remark 2. The condition h ≥ 0 can be slightly relaxed if h ∈ L∞(Ω). A
careful inspection of the proofs below shows that we can assume instead

∫

Ω
h(x)φ(x) dx > 0,

where φ is a positive eigenfunction associated to λ1(Ω), if λ < λ1(Ω) is close
to λ1(Ω) (depending on h). In this case we still get u > 0 in Ω.
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Proof of Theorem 2. We argue by contradiction. Assume that there exists
a sequence λn → λ1(Ω), λn > λ1(Ω), with corresponding solutions un not
verifying un < 0 in Ω. We claim that |un|∞ → +∞. Assume this claim does
not hold. Taking a subsequence if necessary, we may assume |un|∞ ≤ C for
a positive constant C. Since Lu = J ∗ u is compact, it follows that J ∗ un

converges uniformly in Ω, and then (λn− 1)un = −J ∗un−h also converges
uniformly. Since λn − 1 → λ1(Ω) − 1 < 0 (Theorem 8), this shows that un

converges uniformly in Ω to a function u. Passing to the limit in (1.1), we
have {

(J ∗ u)(x)− u(x) + λ1(Ω)u(x) = h(x) x ∈ Ω,

u(x) = 0 x ∈ RN \ Ω.

Let φ be the positive eigenfunction associated to λ1(Ω) normalized according
to |φ|∞ = 1. Multiplying by φ and integrating we get

∫

Ω
h(x)φ(x) dx =

∫

Ω

∫

Ω
J(x− y)u(y)φ(x) dy dx

+(λ1(Ω)− 1)
∫

Ω
u(x)φ(x) dx

=
∫

Ω

∫

Ω
J(x− y)φ(x)u(y) dx dy

+(λ1(Ω)− 1)
∫

Ω
u(x)φ(x) dx

= 0,

thanks to Fubini’s theorem. This contradiction proves the claim, that is,
|un|∞ →∞. Now let vn = un/|un|∞. Notice that vn satisfies





(J ∗ vn)(x)− vn(x) + λnvn(x) +
1

|un|∞h(x) = 0 x ∈ Ω,

vn(x) = 0 x ∈ RN \ Ω.

By the compactness of L it follows that J ∗ vn converges uniformly in Ω,
and it is shown as before that this implies the uniform convergence of vn to
a function v0. This function verifies |v0|∞ = 1 and

{
(J ∗ v0)(x)− v0(x) + λ1(Ω)v0(x) = 0 x ∈ Ω,

v0(x) = 0 x ∈ RN \ Ω.

Thus v0 = ±φ (by Theorem 8 again), and hence un has a constant sign in
Ω for large n. Since we are assuming that un is not negative, it follows that
v0 = φ, and hence un is strictly positive in Ω for large n.

Now we multiply the equation verified by un by φ and integrate in Ω, to
arrive at

(3.1) (λn − λ1(Ω))
∫

Ω
un(x)φ(x) dx = −

∫

Ω
h(x)φ(x) dx.

Since λn > λ1(Ω) and un is positive for large n, the left-hand side of (3.1)
is positive, while the right-hand side is negative by assumption. This con-
tradiction proves the theorem. ¤
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Proof of Theorem 3. Note that u ∈ L∞(Ω) implies h = J ∗ u − u + λu ∈
L∞(Ω). Then, if h /∈ L∞(Ω) we have u /∈ L∞(Ω).

Fix λ ∈ (λ1(Ω), λ1(Ω)+ ε), for some arbitrary ε > 0. Choose h1 ∈ L∞(Ω)
with ∫

Ω
h1(x)φ(x) dx > 0

and let u1 be the corresponding unique solution to (1.1), which verifies
u1 ∈ L∞(Ω).

Let h2 ∈ L2(Ω) such that h2 /∈ L∞(Ω) and let u2 ∈ L2(Ω) be the solution
to (1.1) with h = h2. Since u2 /∈ L∞(Ω), it follows that ess sup u2 = +∞
or ess inf u2 = −∞. Choose δ > 0 and let h = h1 ± δh2, where we take the
plus sign if ess sup u2 = +∞ and the minus sign if ess inf u2 = −∞. We
can take δ small enough so that

∫

Ω
h(x)φ(x) dx =

∫

Ω
h1(x)φ(x) dx± δ

∫

Ω
h2(x)φ(x) dx > 0.

Notice that the solution to (1.1) with h = h1 ± δh2 is u = u1 ± δu2, and
since ess sup u = +∞ (thanks to the appropriate choice of the sign), we
have that u is positive somewhere in Ω. ¤
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