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Abstract. This paper is concerned with the best Lipschitz extension problem for a discrete
distance that counts the number of steps. We relate this absolutely minimizing Lipschitz extension
with a discrete ∞-Laplacian problem, which arise as the dynamic programming formula for the
value function of some ε-tug-of-war games. As in the classical case, we obtain the absolutely
minimizing Lipschitz extension of a datum f by taking the limit as p → ∞ in a nonlocal p–
Laplacian problem.

1. Introduction

Since the classical work of Arosson [6], in which he introduced the concept of absolutely min-
imizing Lipschitz extension and showed its relation with the infinity Laplace equation, a large
amount of literature has appeared in this direction. For a systematic treatment of the theory of
absolute minimizers see the recent survey [7] by Aronson, Cradall and Juutinen, and the refer-
ences therein. A new insight has come in with the work of Peres, Schramm, Sheffield and Wilson
[20] where it has been shown an interesting connection between absolutely minimizing Lipschitz
extension and Game Theory. More precisely, the authors of [20] proved that if uε is the value
function for a certain ε-tug-of-war game with final payoff function f , then the uniform limit u of
uε, as ε goes to zero, is the absolutely minimizing Lipschitz extension of f .

In this work our aim is twofold, first we characterize the value function uε as the absolutely
minimizing Lipschitz extension with respect to a discrete distance in a proper way, and next we
show that uε can be obtained by taking the limit as p → ∞ in a nonlocal p–Laplacian Dirichlet
problem with boundary data f .

Let (X, d) be an arbitrary metric space and let f : A ⊂ X → R. We denote by Ld(f,A) the
smallest Lipschitz constant of f in A, i.e.,

Ld(f, A) := sup
x,y∈A

|f(x)− f(y)|
d(x, y)

.

If we are given a Lipschitz function f : A ⊂ X → R, i.e., Ld(f, A) < +∞, then it is well-known
that there exists a minimal Lipschitz extension (MLE for short) of f to X, that is, a function
h : X → R such that h|A = f and Ld(h, X) = Ld(f,A). We will denote the space of such
extensions as MLE(f,X).

Extremal extensions were explicitly constructed by McShane [17] and Whitney [21],

Ψ(f)(x) := inf
y∈A

(f(y) + Ld(f, A)d(x, y)) , x ∈ X,
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and
Λ(f)(x) := sup

y∈A
(f(y)− Ld(f, A)d(x, y)) , x ∈ X,

belong to MLE(f,X), and if u ∈ MLE(f, X) then Λ(f) ≤ u ≤ Ψ(f).
The notion of minimal Lipschitz extension is not completely satisfactory since it involves only

the global Lipschitz constant of the extension and ignore what may happen locally. To solve this
problem, in the particular case of the euclidean space RN , Arosson [6] introduced the concept of
absolutely minimizing Lipschitz extension (AMLE for short) and proved the existence of AMLE
by means of a variant of the Perron’s method. An extension of this concept to the case of a
general metric space is due to Juutinen [11] (see also [18]). In [11], Juutinen gave the following
definition.

Definition 1.1. Let A be any nonempty subset of the metric spaces (X, d) and let f : A ⊂ X → R
be a Lipschitz function. A function h : X → R is an absolutely minimizing Lipschitz extension of
f to X if

(i) h ∈ MLE(f, X),
(ii) whenever B ⊂ X and g ∈ MLE(f, X) such that g = h in X \B, then Ld(h, B) ≤ Ld(g,B).

Also in [11] it is proved the existence of an AMLE under the assumption that the metric space
(X, d) is a separable length space.

Aronsson’s original definition in RN was formulated in a slightly different way. He assumed
that A is a compact set and required that Ld(h,D) = Ld(h, ∂D) for every bounded open set D
in RN . As remarked by Juutinen in [11], for a general metric space “this kind of definition would
be somewhat ambiguous because the boundary of an open subset of a metric space may very well
be empty”, and the issue of [11] was to find a right way to interpret the “boundary condition”.

Moreover, in [6], Aronsson proposed an approach to obtain the AMLE extension of a datum f
by taking the limit as p →∞ in the p–Laplacian problem

(1.1)

{
−∆pup = 0 in Ω,

up = f on ∂Ω.

This approach was made completely rigorous by Jensen in [10] (see also [9]). In [7] you can find
the following result: the limit as p →∞ of up, u∞, is the best Lipschitz extension (AMLE) of f
in Ω and moreover it is characterized as the unique viscosity solution to

(1.2)

{
−∆∞u∞ = 0, Ω,

u∞ = f, ∂Ω,

where ∆∞ is the infinity Laplace operator, that is, the degenerate elliptic operator given by

∆∞u :=
N∑

i,j=1

uxiuxjuxixj .

Recently, Peres, Schramm, Sheffield and Wilson [20] have shown that the infinity Laplace
equation (1.2) is solved by the continuous value function for a random turn tug-of-war game, in
which the players, at each step, flip a fair coin to determine which player plays.



THE BEST LIPSCHITZ EXTENSION PROBLEM 3

Given a bounded domain Ω in RN and a function defined outside Ω (this will be properly
stated afterward), our aim is to study the Lipschitz extension problem to Ω respect to the discrete
distance that counts the number of steps,

(1.3) dε(x, y) =

{
0 if x = y,

ε
([[ |x−y|

ε

]]
+ 1

)
if x 6= y,

where |.| is the Euclidean norm and [[r]] is defined for r > 0 by [[r]] := n, if n < r ≤ n + 1, n =
0, 1, 2, . . . , that is,

dε(x, y) =





0 if x = y,
ε if 0 < |x− y| ≤ ε,
2ε if ε < |x− y| ≤ 2ε,
...

The distance dε was used in [20] in relation with ε-tug-of-war games. It was also used in [2] to
give a mass transport interpretation of a nonlocal model of sandpiles.

1.1. Description of the main results. Since (RN , dε) is not a separable length space, the
general concept of AMLE due to Juutinen does not work on it. We give a concept of AMLE
respect to the distance dε, which we name as AMLEε(f, Ω), in an slight different way that finds the
right manner to interpret the “boundary condition” (observe that for the metric dε the boundary
of Ω is empty).

In addition, we relate this absolutely minimizing Lipschitz extension problem with a discrete
∞-Laplacian problem, which arise as the dynamic programming formula for the value function of
some ε-tug-of-war game. More precisely, we characterize the value function for the ε-tug-of-war
game with payoff function f as the AMLEε(f, Ω). Therefore, as consequence of the results in [20]
we have existence and uniqueness of AMLEε(f, Ω).

Finally, we also obtain the nonlocal version of the approximation by the p–Laplacian, that is,
we get the AMLEε(f, Ω) by taking the limit as p →∞ in a nonlocal p–Laplacian problem.

2. Definition and characterization of AMLEε

Given a set A ⊂ RN and ε > 0, we denote

Aε :=
{

x ∈ RN : dist(x,A) := inf
y∈A

|x− y| < ε

}
.

The euclidean open ball centred at x with radius r will be denoted by Br(x), and with Br(x) its
closure. Throughout the paper, we assume that Ω is a bounded domain of RN .

Given u : Ωε → R and D ⊂ Ω, we define

Lε(u,D) := sup
x ∈ D, y ∈ Dε

|x− y| ≤ ε

|u(x)− u(y)|
ε

.

Observe that

Lε(u,D) = sup
x ∈ D, y ∈ Dε

|x− y| ≤ ε

|u(x)− u(y)|
dε(x, y)

≤ sup
x∈D, y∈Dε

|u(x)− u(y)|
dε(x, y)

.
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And that, if D is convex, the above inequality is an equality. Indeed, for x0 = x ∈ D, xn = y ∈ Dε

and x1, x2, ..., xn−1 in the segment between x and y such that |xi − xi−1| = ε for i = 1, ..., n− 1,
and |xn − xn−1| ≤ ε, we have that

|u(x)− u(y)| ≤
n∑

i=1

|u(xi)− u(xi−1)| ≤ ε
n∑

i=1

Lε(u,D) = εnLε(u, D) = dε(x, y)Lε(u, D).

Also, for any convex D,

Ldε(u,D) = sup
x,y∈D,|x−y|≤ε

|u(x)− u(y)|
ε

.

Therefore, the constant Lε(u,D) is not genuinely the Lipschitz constant Ldε(u,D), even if D
is convex, but, as we will see, it is the right one to treat the absolutely minimizing Lipschitz
extensions when dε is considered.

Definition 2.1. Let f : Ωε \ Ω → R be bounded. We say that a function u : Ωε → R is an
Absolutely Minimizing Lipschitz Extension for Lε of f into Ω (u is AMLEε(f, Ω) for shortness) if

(i) u = f in Ωε \ Ω,
(ii) for every D ⊂ Ω and v : Ωε → R with v = u in Ωε \D, then Lε(u,D) ≤ Lε(v, D).

Lemma 2.2. When Ω is convex the above definition is equivalent to the following two conditions,
that match better the idea of Definition 1.1,

(i’) u ∈ MLE(f, Ωε),
(ii’) for every D ⊂ Ω and v ∈ MLE(f, Ωε) with v = u in Ωε \D, then Lε(u, D) ≤ Lε(v, D).

Proof. Let us first see that (i), (ii) implies (i’) ((ii’) is immediate): take v ∈ MLE(f,Ωε), then

Lε(u,Ω) ≤ Lε(v, Ω) ≤ Ldε(v, Ωε) = Ldε(f, Ωε \ Ω).

Therefore, since Ω is convex,

(2.1) sup
x∈Ω, y∈Ωε

|u(x)− u(y)|
dε(x, y)

= Lε(u,Ω) ≤ Ldε(f, Ωε \ Ω).

On the other hand, since u = f in Ωε \ Ω,

(2.2) Ldε(f, Ωε \ Ω) ≤ Ldε(u,Ωε) = sup
x∈Ωε, y∈Ωε

|u(x)− u(y)|
dε(x, y)

.

Consequently, from (2.1) and (2.2), Ldε(u,Ωε) = Ldε(f, Ωε \ Ω).
Let us now see that (i’), (ii’) implies (ii) ((i’) is immediate). Let us argue by contradiction and

suppose that there exist D and v such that v = u in Ωε \D and Lε(v, D) < Lε(u,D). Then, by
(ii’), v can not be in MLE(f, Ωε). But also, the above strict inequality implies that, on account
that Ωε is convex,

Ldε(f, Ωε \ Ω) ≤ Ldε(v, Ωε) = sup
x /∈ D, y /∈ D
|x− y| ≤ ε

|v(x)− v(y)|
ε

= sup
x /∈ D, y /∈ D
|x− y| ≤ ε

|u(x)− u(y)|
ε

≤ Ldε(u,Ωε) = Ldε(f, Ωε \ Ω)

and consequently v ∈ MLE(f, Ωε), which is a contradiction. ¤
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Remark that independently of the convexity of Ω, if u is AMLEε(f, Ω), it always holds that

Lε(u,Ω) ≤ Ldε(f, Ωε \ Ω).

In the next result we obtain the characterization of the AMLEε(f, Ω) by means of a discrete
∞-Laplacian problem.

Theorem 2.3. Let f : Ωε \Ω → R be bounded. Then, u : Ωε → R is AMLEε(f, Ω) if and only if
u is a solution of

(2.3)

{
−∆ε∞u = 0 in Ω,

u = f on Ωε \ Ω,

where

(2.4) ∆ε
∞u(x) := sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)− 2u(x)

is the discrete infinity Laplace operator.

Proof. Without loss of generality we will take ε = 1 along the proof. Let us first take u a solution
of (2.3) and suppose that u is not AMLE1(f, Ω). Then, there exists D ⊂ Ω and v : Ω1 → R,
v = u in Ω1 \D, such that L1(v,D) < L1(u,D). Set δ := L1(u, D)−L1(v, D) > 0, and let n ∈ N,
n > 3, such that

(2.5) sup
D

u− inf
D

u ≤ (n− 1)L1(u,D).

Take (x0, y0) ∈ D × Ω1, |x0 − y0| ≤ 1, such that

L1(u,D)− δ

n
≤ |u(x0)− u(y0)| ≤ L1(u, D).

We have that ∆1∞u(x0) = 0 and ∆1∞u(y0) = 0 if y0 ∈ Ω. Let us suppose that u(y0) ≥ u(x0) (the
other case being similar), which implies

(2.6) L1(u, D)− δ

n
≤ u(y0)− u(x0) ≤ L1(u,D).

If y0 /∈ D, set y1 = y0. If y0 ∈ D, since ∆1∞u(y0) = 0 and x0 ∈ B1(y0), we have

sup
y∈B1(y0)

u(y)− u(y0) = u(y0)− inf
y∈B1(y0)

u(y) ≥ u(y0)− u(x0) ≥ L1(u,D)− δ

n
.

Hence, there exists y1 ∈ B1(y0) such that

u(y1)− u(y0) ≥ L1(u,D)− 2δ

n
.

Also, since ∆1∞u(x0) = 0, we have

u(x0)− inf
x∈B1(x0)

u(x) = sup
x∈B1(x0)

u(x)− u(x0) ≥ u(y0)− u(x0) ≥ L1(u, D)− δ

n
,

and consequently, there exists x1 ∈ B1(x0) such that

u(x0)− u(x1) ≥ L1(u,D)− 2δ

n
.
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Following this construction, and with the rule that in the case xj /∈ D or yj /∈ D, then xi = xj

or yi = yj for all i ≥ j, we claim that there exists m ≤ n for which xm /∈ D and ym /∈ D. In
fact, if not, then either {xi}i=1,...,n ⊂ D, either {yi}i=1,...,n ⊂ D, with {xi}i=1,...,n and {yi}i=1,...,n

satisfying

(2.7) u(yi)− u(yi−1) ≥ L1(u,D)− 2δ

n
, yi ∈ B1(yi−1), i = 1, . . . , n,

and

(2.8) u(xi)− u(xi−1) ≥ L1(u,D)− 2δ

n
, xi ∈ B1(xi−1), i = 1, . . . , n.

Let us suppose the first of these two possibilities, that is, {xi}i=1,...,n ⊂ D. Then, having in mind
(2.5), (2.6) and (2.8), we get

(n− 1)L1(u,D) ≥ u(y0)− u(xn)

= u(y0)− u(x0) + u(x0)− u(x1) + · · ·+ u(xn−1)− u(xn)

≥ L1(u,D)− δ
n + (n + 1)(L1(u,D)− 2δ

n ),

from where it follows that
2n + 3

n
δ ≥ 3L1(u,D) ≥ 3δ,

which is a contradiction since n > 3. Now, for {xi, yi}i=1,...,m, we have

v(ym)− v(xm) = u(ym)− u(xm) ≥ 2m

(
L1(u,D)− 2δ

n

)
+ L1(u,D)− δ

n
,

v(ym)− v(xm) ≤ (2m + 1)L1(v,D),

and therefore,

(2m + 1)L1(u,D)− (4m + 1)
δ

n
≤ (2m + 1)L1(v, D),

that is

δ = L1(u,D)− L1(v, D) ≤ 4m + 1
2m + 1

δ

n
,

which implies n ≤ 4m+1
2m+1 ≤ 2, which is a contradiction since n > 3.

Let us now consider u an AMLE1(f, Ω) and suppose that u is not a solution of (2.3). Then,
{x ∈ Ω : ∆1∞u(x) 6= 0} 6= ∅. Let us suppose without loss of generality, that,

{
x ∈ Ω : sup

y∈B1(x)

u(y)− u(x) > u(x)− inf
y∈B1(x)

u(y)
}
6= ∅.

Then, there exists δ > 0 and a nonempty set D ⊂ Ω such that

(2.9) sup
y∈B1(x)

u(y)− u(x) > u(x)− inf
y∈B1(x)

u(y) + δ for all x ∈ D.

Consider the function v : Ω1 → R defined by

v(x) =

{
u(x) if x ∈ Ω1 \D,

u(x) + δ
2 if x ∈ D.
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Then, since u is an AMLE1(f, Ω), we have L1(u,D) ≤ L1(v,D). Now, there exists x0 ∈ D and
y0 ∈ B1(x0) such that

L1(v, D) ≤ δ

4
+ |v(x0)− v(y0)|.

Therefore, if v(x0) ≥ v(y0), by (2.9),

L1(v,D) ≤ δ

4
+ v(x0)− v(y0) ≤ 3δ

4
+ u(x0)− u(y0)

≤ 3δ

4
+ u(x0)− inf

x∈B1(x0)
u(x) < −δ

4
+ sup

x∈B1(x0)

u(x)− u(x0) < L1(u,D),

which is a contradiction, and, if v(x0) < v(y0),

L1(v,D) ≤ δ

4
+ v(y0)− v(x0) = −δ

4
+ v(y0)− u(x0),

so, if y0 /∈ D,

L1(v,D) ≤ −δ

4
+ u(y0)− u(x0) < L1(u,D),

also a contradiction, and if y0 ∈ D, since also x0 ∈ B1(y0), by (2.9),

L1(v,D) ≤ δ

4
+ u(y0)− u(x0) ≤ δ

4
+ u(y0)− inf

y∈B1(y0)
u(y)

< −3δ

4
+ sup

y∈B1(y0)

u(y)− u(y0) < L1(u,D),

again a contradiction. Then, in any case we arrive to a contradiction and consequently u is a
solution of (2.3). ¤

The first analysis of the interesting functional equation −∆ε∞u = 0 appeared in the article by
Le Gruyer and Archer [13], but also arise as the dynamic programming formula for the value
function of some tug-of-war games (see for instance [8, 15, 16, 20]). Let us briefly review the
ε-tug-of-war game introduced by Peres, Schramm, Sheffield and Wilson in [20]. Fix a number
ε > 0. The dynamic of the game is as follows. There are two players moving a token inside a set
EΩ containing Ω, a bounded domain in RN . The token is placed at an initial position x0 ∈ Ω.
At the kth stage of the game, player I and player II select points xI

k and xII
k , respectively, both

belonging to Bε(xk−1) ∩ EΩ. The token is then moved to xk, where xk is chosen randomly so
that xk = xI

k or xk = xII
k , depending who was the winner of a flip of a fair coin. After the kth

stage of the game, if xk ∈ Ω then the game continues to stage k + 1. Otherwise, if xk ∈ EΩ \ Ω,
the game ends and player II pays player I the amount f(xk), where f : EΩ \ Ω → R is a final
payoff function of the game. Of course, player I attempts to maximize the payoff, while player II
attempts to minimize it.

Given a strategy for player I, that is a mapping SI from the set of all possible partially played
games (x0, x1, . . . , xk−1) to possible positions xk ∈ Bε(xk−1), and a strategy SII for player II,
we denote by Ex0

I (SI , SII) and Ex0
II (SI , SII) the expected value of f(xk) (Ex0

SI ,SII
[f(xk)]), if the

game terminates a.s., −∞ and +∞, respectively, otherwise (there is a severe penalization for
both players if the game never ends). The value of the game for player I is the quantity

inf
SII

sup
SI

Ex0
I (SI , SII),
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where the supremum is taken over all possible strategies for player I and the infimum over all
strategies of player II. Similarly, the value of the game for player II is

sup
SI

inf
SII

Ex0
II (SI , SII).

We denote the value for player I as a function of the starting point x0 ∈ Ω by uε
I(x0), and similarly

the value for player II by uε
II(x0). The game is said to have a value if uε

I = uε
II =: uε. According

with the Dynamic Programming Principle, see [20], there is a value function for the ε-tug-of-war
game, uε, that satisfies the functional equation

uε(x) =
1
2

(
sup

y∈Bε(x)∩EΩ

uε(y) + inf
y∈Bε(x)∩EΩ

uε(y)

)
in Ω,

with uε = f in EΩ \ Ω. Observe that this is (2.3) when EΩ = Ωε (see [15, 16] for this problem).
In [20], using martingale methods, it is proved that problem (2.3) has a unique solution; then, by
Theorem 2.3, we get the following existence and uniqueness result.

Theorem 2.4. Let f : Ωε \ Ω → R be bounded. Then, there is a unique AMLEε(f, Ω).

Some of the difficulties in the analysis of the ε-tug-of-war game are due to the fact that the value
function uε can be discontinuous. When the limit u := limε→0 uε exists pointwise, the function u
is called the continuum value of the game. In [20], Peres, Schramm, Sheffield and Wilson proved
that if EΩ = Ω and the terminal payoff function of the game f is Lipschitz continuous on ∂Ω then
the continuum value u exists and uε → u uniformly in Ω as ε → 0. Moreover, u is the unique
AMLE extension of f to Ω and the unique viscosity solution of the boundary value problem

{
−∆∞u = 0 in Ω,

u = f on ∂Ω.

Our Theorem 2.3 gives this characterization in the case of the discrete distance. We will see in
the next section that we can also obtain the AMLEε extension by taking the limit as p → ∞ in
a nonlocal p–Laplacian problem, which represents the nonlocal version of the approximation of
the local problem with the p–Laplacian.

3. Existence of AMLEε by a nonlocal Lp-variational approach

First, let us introduce some notation. Given f : Ωε \ Ω → R and u : Ω → R, we will denote

uf (x) :=

{
u(x) if x ∈ Ω,

f(x) if x ∈ Ωε \ Ω.

Given a convex set K ⊂ L2(Ω), we denote by IK to the indicator function of K, that is, the
function defined as

IK(u) :=

{
0 if u ∈ K,

+∞ if u 6∈ K.

Let J : RN → R be a nonnegative, radial, continuous function, strictly positive in B1(0),
vanishing in RN \B1(0) and such that

∫
RN J(z) dz = 1. For 1 < p < +∞ and f : Ω1 \ Ω → R
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such that |f |p−1 ∈ L1(Ω1 \ Ω), we define in L1(Ω) the operator BJ
p,f by

BJ
p,f (u)(x) := −

∫

Ω
J(x− y)|u(y)− u(x)|p−2(u(y)− u(x)) dy

−
∫

Ω1\Ω
J(x− y)|f(y)− u(x)|p−2(f(y)− u(x)) dy, x ∈ Ω,

that is,

BJ
p,f (u)(x) = −

∫

Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy, x ∈ Ω.

In [1] (see also [3]) we have seen that the nonlocal version of the Dirichlet problem (1.1), with
boundary value f , can be written as

(3.1) BJ
p,f (u) = 0.

We have also established the following Poincaré’s type inequality for such kind of integral opera-
tors.

Proposition 3.1 ([1]). Given J : RN → R as above, p ≥ 1 and f ∈ Lp(Ω1 \ Ω), there exists
λ = λ(J,Ω, p) > 0 such that

(3.2) λ

∫

Ω
|u(x)|p dx ≤

∫

Ω

∫

Ω1

J(x− y)|uf (y)− u(x)|p dy dx +
∫

Ω1\Ω
|f(y)|p dy

for all u ∈ Lp(Ω).

We say that u is a supersolution (resp. subsolution) of the nonlocal Dirichlet problem (3.1)
with boundary value f if BJ

p,f (u) ≥ 0 (resp. BJ
p,f (u) ≤ 0). We have the following comparison

principle.

Lemma 3.2. Let J : RN → R as above, p > 1 and f, f ∈ Lp(Ω1 \ Ω), with f ≥ f . If u is a
supersolution of the Dirichlet problem (3.1) with boundary value f and u is a subsolution of the
Dirichlet problem (3.1) with boundary value f then u ≥ u.

Proof. By assumption we have

0 ≥ −
∫

Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy, ∀x ∈ Ω

and
0 ≤ −

∫

Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy, ∀x ∈ Ω.

Then, multiplying by (u− u)+(x), integrating and having in mind that

(uf (x)− uf (x))+ = (f(x)− f(x))+ = 0

if x ∈ Ω1 \ Ω, we get

0 ≥ −
∫

Ω1×Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x))(uf (x)− uf (x))+ dydx

=
1
2

∫

Ω1×Ω1

J(x−y)|uf (y)−uf (x)|p−2(uf (y)−uf (x))
[
(uf (y)− uf (y))+ − (uf (x)− uf (x))+

]
dydx
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and

0 ≥
∫

Ω1×Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x))(uf (x)− uf (x))+ dydx

= −
∫

Ω1×Ω1

J(x− y)
2

|uf (y)− uf (x)|p−2(uf (y)− uf (x))

×
[
(uf (y)− uf (y))+ − (uf (x)− uf (x))+

]
dydx.

Then, adding the last two inequalities we obtain that∫

Ω1×Ω1

J(x− y)
(
|uf (y)− uf (x)|p−2(uf (y)− uf (x))− |uf (y)− uf (x)|p−2(uf (y)− uf (x))

)

×
(
(uf (y)− uf (y))+ − (uf (x)− uf (x))+

)
dydx ≤ 0.

Therefore, since (|r|p−2r − |s|p−2s)(r+ − s+) ≥ 0, we get that

(3.3)
J(x− y)

(
|uf (y)− uf (x)|p−2(uf (y)− uf (x))− |uf (y)− uf (x)|p−2(uf (y)− uf (x))

)

×
(
(uf (y)− uf (y))+ − (uf (x)− uf (x))+

)
= 0

for a.e. (x, y) ∈ Ω1 × Ω1.

Let Ω̃ := {x ∈ Ω : u(x) > u(x)}. Since (|r|p−2r − |s|p−2s)(r − s) ≥ C|r − s|p, from (3.3) we
obtain that, for a.e. (x, y) ∈ Ω̃× Ω̃,

0 = J(x− y)
(|u(y)− u(x)|p−2(u(y)− u(x))− |u(y)− u(x)|p−2(u(y)− u(x))

)

× (u(y)− u(x)− (u(y)− u(x)))

≥ CJ(x− y)|u(y)− u(x)− (u(y)− u(x))|p
that is,

(3.4) J(x− y)|u(y)− u(y)− (u(x)− u(x))|p = 0 for a.e. (x, y) ∈ Ω̃× Ω̃.

Therefore, if

(3.5) |Ω̃| > 0,

from (3.4), we get
u(x)− u(x) = λ > 0 a.e. in Ω̃.

Then, taking the above conclusion in (3.3) we have that, for a.e. (x, y) ∈ (Ω1 \ Ω̃)× Ω̃,

0 = J(x− y)
(
|u(y)− uf (x)|p−2(u(y)− uf (x))− |u(y)− uf (x)|p−2(u(y)− uf (x))

)
(u(y)− u(y))

= J(x− y)
(
|u(y)− (uf (x)− λ)|p−2(u(y)− (uf (x)− λ))− |u(y)− uf (x)|p−2(u(y)− uf (x))

)
λ .

Now, since |r|p−2r − |s|p−2s = 0 if and only if r = s we conclude that

uf (x)− λ = uf (x) a.e. in Ω1 \ Ω̃,

which contradicts that Ω1 \ Ω̃ contains the non-null set Ω1 \ Ω (since f ≥ f). Therefore (3.5) is
false, and then u ≤ u a.e. in Ω. ¤



THE BEST LIPSCHITZ EXTENSION PROBLEM 11

For the energy functional

GJ
p,f (u) =

1
2p

∫

Ω

∫

Ω
J(x− y)|u(y)− u(x)|p dy dx +

1
p

∫

Ω

∫

Ω1\Ω
J(x− y)|f(y)− u(x)|p dy dx,

we have the following result:

Theorem 3.3. Assume that p ≥ 2. Then, there exists a unique up ∈ Lp(Ω) such that

(3.6) GJ
p,f (up) = min{GJ

p,f (u) : u ∈ Lp(Ω)}.
Moreover, up is the solution of the nonlocal Euler–Lagrange equation BJ

p,f (up) = 0, and it has a
continuous representative in Ω.

Proof. Let vn ∈ Lp(Ω) a minimizing sequence, that is,

m := inf{GJ
p,f (u) : u ∈ Lp(Ω)} = lim

n→+∞GJ
p,f (vn).

Then, by the Poincaré inequality (3.2), we have

‖vn‖p ≤
(

1
λ

(
m + 1 +

∫

Ω1\Ω
|f(y)|p dy

)) 1
p

.

Therefore, we can assume that vn ⇀ up weakly in L2(Ω). Hence, since the functional GJ
p,f is

weakly lower semi-continuous in L2(Ω), we get

GJ
p,f (up) ≤ lim inf

n→∞ GJ
p,f (vn) = m,

consequently, m = GJ
p,f (up) and (3.6) holds.

By results in [1], we know that the operator BJ
p,f is completely accretive and verifies the range

condition Lp(Ω) ⊂ Ran(I + BJ
p,f ). Let us see that

(3.7) ∂GJ
p,f = BJ

p,f

L2(Ω)
.

Since GJ
p,f is convex an lower semi-continuous in L2(Ω), to prove (3.7) it is enough to show that

(3.8) BJ
p,f ⊂ ∂GJ

p,f .

Let us see that (3.8) holds. Set v = BJ
p,f (u) and let w ∈ D(GJ

p,f ). Then
∫

Ω
v(x)(w(x)− u(x)) dx = −

∫

Ω

∫

Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy(w(x)− u(x)) dx

= −
∫

Ω1

∫

Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x)) dy(wf (x)− uf (x)) dx

=
1
2

∫

Ω1

∫

Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x)) (wf (y)− wf (x)− (uf (x)− uf (y))) dydx.

From here, using the numerical inequality
1
2
|r|p−2r(s− r) ≤ 1

2p
(|s|p − |r|p) ,
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we obtain that

GJ
p,f (w)−GJ

p,f (u) =
1
2p

∫

Ω1

∫

Ω1

J(x− y)|wf (y)− wf (x)|p dy dx

− 1
2p

∫

Ω1

∫

Ω1

J(x− y)|uf (y)− uf (x)|p dy dx ≥
∫

Ω
v(x)(w(x)− u(x)) dx,

from where it follows (3.8). The second part of the theorem is a consequence of (3.7).
Now, BJ

p,f (up) = 0 can be written as
∫

Ω1

J(x− y)ϕp((up)f (y)− up(x))dy = 0 ∀x ∈ Ω \N, meas(N) = 0,

for ϕp(r) := |r|p−2r. Then, the continuity of up in Ω follows by the above conclusion and the
Implicit Function Theorem ([12]): since J is continuous and ϕp is continuous and increasing,

F (x, α) :=
∫

Ω1

J(x− y)ϕp((up)f (y)− α)dy

is continuous in Ω× R and for fixed x ∈ Ω it is increasing in α. Therefore, by [12, Theorem 1.1]
F (x, α) = 0 has a unique solution α(x) continuous in Ω. In fact, this can be proved in a direct
way as follows. Since limα→−∞ F (x, α) = +∞, limα→+∞ F (x, α) = −∞ and F (x, ·) is continuous
and increasing, there exists a unique α(x) such that F (x, α(x)) = 0. Now α(x) is l.s.c. at x0 ∈ Ω;
indeed, take α < α(x0), therefore

∫

Ω1

J(x− y)ϕp((up)f (y)− α)dy > 0.

Since J is continuous, there exists r > 0 such that
∫

Ω1

J(x− y)ϕp((up)f (y)− α)dy > 0 ∀x ∈ Br(x0).

Therefore
α < α(x) ∀x ∈ Br(x0).

Similarly α(x) is u.s.c. Finally, since α(x) = up(x) in Ω\N we conclude that up has a continuous
representative. ¤

From now on, we will suppose that minimizers up of GJ
p,f are continuous and satisfy the Euler–

Lagrange equation BJ
p,f (up) = 0 everywhere.

At this step we also rescale de kernel J in order to deal with dε instead of with d1. So, let

Jε(z) =
1

εN
J

(z

ε

)
.

We want to study the limit as p → ∞ of the minimizers uε
p of GJε

p,f . From now on, we assume
that f ∈ L∞(Ωε \ Ω).

In [1], we have proved that

(3.9) lim
p→+∞GJε

p,f = Gε
∞,f in the sense of Mosco,
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where

Gε
∞,f (u) =





0 if |u(x)− u(y)| ≤ ε, for x, y ∈ Ω, |x− y| ≤ ε, and
|f(y)− u(x)| ≤ ε, for x ∈ Ω, y ∈ Ωε \ Ω, |x− y| ≤ ε,

+∞ in other case.

Now, by Hölder’s and Poincaré’s inequality (3.2), we have ‖uε
p‖2 ≤ C‖f‖∞ for every p ≥ 2.

Therefore, we can assume that

(3.10) uε
p ⇀ v∞ weakly in L2(Ω) as p → +∞.

Then, by (3.9), we have

(3.11) Gε
∞,f (v∞) ≤ lim inf

p→∞ GJε
p,f (uε

p).

Given v ∈ D(Gε
∞,f ), by the definition of Mosco convergence, there exists vp ∈ D(GJ

p,f ), such
that vp → v in L2(Ω), and such that

(3.12) Gε
∞,f (v) ≥ lim sup

p→∞
GJε

p,f (vp).

Now, by (3.6), GJε
p,f (uε

p) ≤ GJε
p,f (vp) for all p ≥ 2, and therefore, by (3.11) and (3.12), we obtain

that Gε
∞,f (v∞) ≤ Gε

∞,f (v), and consequently

Gε
∞,f (v∞) = min{Gε

∞,f (u) : u ∈ D(Gε
∞,f )}.

Therefore,

(3.13) 0 ∈ ∂Gε
∞,f (v∞).

If we define

Kε
∞,f :=

{
u ∈ L2(Ω) :

|u(x)− u(y)| ≤ ε for x, y ∈ Ω, |x− y| ≤ ε, and

|f(y)− u(x)| ≤ ε for x ∈ Ω, y ∈ Ωε \ Ω, |x− y| ≤ ε

}
,

we have that the functional Gε
∞,f is given by the indicator function of Kε

∞,f , that is, Gε
∞,f = IKε

∞,f
.

Therefore, the Euler-Lagrange equation (3.13) can be written as

(3.14) 0 ∈ ∂IKε
∞,f

(v∞).

Observe that Kε
∞,f is not empty if we assume that Ldε(f, Ωε \ Ω) ≤ 1. In this case it is not

difficult to see that

(3.15) Ψ(f), Λ(f) ∈ {
u ∈ L2(Ω) : |uf (x)− uf (y)| ≤ dε(x, y), x, y ∈ Ωε

} ⊂ Kε
∞,f ,

being Ψ(f) and Λ(f) the McShane-Whitney extensions.
Now, to study the Lipschitz extension problem we can always assume that f satisfies

(3.16) Ldε(f,Ωε \ Ω) = 1.

In fact: given f : Ωε\Ω → R Lipschitz continuous respect to the distance dε, consider f̃(x) := f(x)
k ,

k := Ldε(f, Ωε \ Ω). Now, if v : Ωε → R is AMLEε(f̃ , Ω), then, u(x) := kv(x) is AMLEε(f, Ω).
Consequently, if f satisfies (3.16), on account of (3.14) and (3.15), (v∞)f ∈ Kε

∞,f .
Remark that for Ω convex, if f satisfies (3.16) then MLE(f, Ωε) = Kε

∞,f , and we conclude,
directly, that (v∞)f ∈ MLE(f, Ωε).
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Our aim is to see that (v∞)f is AMLEε(f, Ω). To this aim we need the following result.

Lemma 3.4. Let δ > 0. There exists a unique solution u∞,δ of

(3.17)

{
−∆ε∞u = δ in Ω,

u = f + δ in Ωε \ Ω,

where

(3.18) ∆ε
∞u(x) := sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)− 2u(x),

and we have a bound of the form

u∞,δ(x)− C(Ω, ε)δ ≤ u∞(x) ≤ u∞,δ(x),

where u∞ is the solution of Problem (2.3).
Analogously, there is a unique solution u∞,−δ of

(3.19)

{
−∆ε∞u = −δ in Ω,

u = f − δ in Ωε \ Ω,

and we have a bound of the form

u∞,−δ(x) + C(Ω, ε)δ ≥ u∞(x) ≥ u∞,−δ(x).

Proof. We use probabilistic arguments. The existence and uniqueness of u∞,δ comes from the fact
that it can be obtained as the value of the tug-of-war game with running payoff δ and final payoff
f(x) + δ, see [20], [16]. In fact, the equation verified by u∞,δ is just the dynamic programming
principle that holds for the value function of this game, see [15].

Hence we are left with the proof of the bounds. The fact that u∞(x) ≤ u∞,δ(x) is almost
immediate since both functions can be seen as values of the same tug-of-war game in which the
running payoff and the final payoff for u∞ are strictly below than those for u∞,δ. See [16] for a
detailed proof of a comparison principle. To see the other bound,

u∞,δ(x)− C(Ω, ε)δ ≤ u∞(x),

we argue as follows. Fix η > 0. Player II follows any strategy and Player I follows a strategy S0
I

such that at xk−1 ∈ Ω he chooses to step to a point that almost maximizes u∞,δ, that is, to a
point xk ∈ Bε(xk−1) such that

u∞,δ(xk) ≥ sup
Bε(xk−1)

u∞,δ − η2−k.

We start from the point x0. The following inequality for the expectation holds:

Ex0

S0
I ,SII

[u∞,δ(xk) + kδ − η2−k |x0, . . . , xk−1]

≥ 1
2

{
inf

Bε(xk−1)
u∞,δ + kδ − η2−k + sup

Bε(xk−1)

u∞,δ − η2−k + kδ − η2−k

}

≥ u∞,δ(xk−1) + (k − 1)δ − η2−(k−1),
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where we have estimated the strategy of Player II by inf and used the fact that u∞,δ verifies
(3.17). Thus Mk = u∞,δ(xk)+kδ−η2−k is a submartingale and consequently, if τ is the stopping
time of the game, and S0

II is a quasioptimal strategy for Player II, that is a strategy such that

inf
SII

Ex0

S0
I ,SII

[f(xτ )] ≥ Ex0

S0
I ,S0

II
[f(xτ )]− η,

we deduce that

u∞(x0) = inf
SII

sup
SI

Ex0
SI ,SII

[f(xτ )]

≥ Ex0

S0
I ,S0

II
[f(xτ )]− η

≥ Ex0

S0
I ,S0

II
[f(xτ ) + δ + δτ − η2−τ − δ(τ + 1)]− η

= Ex0

S0
I ,S0

II
[Mτ − δ(τ + 1)]− η

≥ lim sup
k→∞

Ex0

S0
I ,S0

II
[Mτ∧k]− Ex0

S0
I ,S0

II
[δ(τ + 1)]− η

≥ Ex0

S0
I ,S0

II
[M0]− δEx0

S0
I ,S0

II
[τ + 1]− η

= u∞,δ(x0)− 2η − δEx0

S0
I ,S0

II
[τ + 1],

where we have used Fatou’s Lemma and the Optional Stopping Theorem for the submartingale
Mk. Now, we just observe that, under strategies S0

I , S0
II , the game finishes if, in some moment,

Player II obtains n = n(Ω, ε) consecutive victories. Now, the expected number of tosses to get n
consecutive victories of Player II is a finite number N = N(n). Therefore

Ex0

S0
I ,S0

II
[τ ] ≤ N = c(Ω, ε).

Consequently, we have

u∞(x0) ≥ u∞,δ(x0)− 2η − δC(Ω, ε),

and, since η was arbitrary, this implies the desired estimate. ¤

Remark 3.5. From [19, Proposition 7.1] and [14, Theorem 1.9] (see also [5]), the expected value
for the stopping time for a standard ε-tug-of-war game, is O(ε−2) (see also [16]). Since we are
looking at this problem with a fixed ε > 0 we don’t need this more precise estimate.

Lemma 3.6. Let u ∈ L∞(Ω). Then,

(3.20) lim
p→+∞

(
GJε

p,f (u)
) 1

p = Lε(uf ,Ω).
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Proof. We have
(
GJε

p,f (u)
) 1

p

=

(
1
2p

∫

Ω

∫

Ω
Jε(x− y)|u(y)− u(x)|p dy dx +

1
p

∫

Ω

∫

Ωε\Ω
Jε(x− y)|uf (y)− u(x)|p dy dx

) 1
p

≤
(

(Lε(uf ,Ω))p 1
2p

∫

Ω

∫

Ω
Jε(x− y) dy dx + (Lε(uf , Ω))p 1

p

∫

Ω

∫

Ωε\Ω
Jε(x− y) dy dx

) 1
p

= Lε(uf , Ω)

(
1
2p

∫

Ω

∫

Ω
Jε(x− y) dy dx +

1
p

∫

Ω

∫

Ωε\Ω
J(x− y) dy dx

) 1
p

.

Hence,

lim sup
p→+∞

(
GJε

p,f (u)
) 1

p ≤ Lε(uf , Ω).

On the other hand, suppose that

α := lim inf
p→+∞

(
GJε

p,f (u)
) 1

p
< Lε(uf ,Ω).

Let α̃ be such that α < α̃ < Lε(uf ,Ω). Then, there exists a set A ⊂ {(x, y) ∈ Ω×Ωε : |x−y| ≤ ε},
with positive measure, such that |uf (x)− uf (y)| > α̃ if (x, y) ∈ A. Consequently,

(
GJε

p,f (u)
) 1

p ≥
(

1
2p

∫

A
Jε(x− y)|uf (y)− uf (x)|p dy dx

) 1
p

> α̃

(
1
2p

∫

A
Jε(x− y) dy dx

) 1
p

,

from where it follows the contradiction

α = lim inf
p→+∞

(
GJε

p,f (u)
) 1

p ≥ α̃ > α.

Therefore,

Lε(uf , Ω) ≤ lim inf
p→+∞

(
GJε

p,f (u)
) 1

p
,

and we have concluded the proof. ¤

In the next result we denote M ε
p := GJε

p,f (uε
p) = min{GJε

p,f (u) : u ∈ Lp(Ω)}.

Theorem 3.7. Let f ∈ L∞(Ωε \ Ω), Ldε(f, Ωε \ Ω) = 1, and let uε
p a minimizer of GJε

p,f . Then,
there exists a sequence pi → +∞, as i → +∞, such that

(3.21) uε
pi

⇀ v∞ ∈ L∞(Ω) in Lq(Ω) as i → +∞,

(3.22) (M ε
p )1/p → inf

u∈L∞(Ω)
Lε(uf , Ω) as p → +∞,

(3.23) inf
u∈L∞(Ω)

Lε(uf ,Ω) = Lε((v∞)f , Ω),

and (v∞)f is AMLEε(f, Ω). Moreover, uε
p → v∞ pointwise and hence strongly in any Lq(Ω).
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Proof. Set M ε∞ := infu∈L∞(Ω) Lε(uf ,Ω). Let v ∈ L∞(Ω) such that Lε(vf , Ω) ≤ M ε∞ + δ. Then,
for p large enough,

(M ε
p )1/p ≤ GJε

p,f (v)1/p ≤ Lε(vf ,Ω)

(
1
2p

∫

Ω

∫

Ω
Jε(x− y) dy dx +

1
p

∫

Ω

∫

Ωε\Ω
Jε(x− y) dy dx

) 1
p

≤ (M ε
∞ + δ)

(
1
p

∫

Ωε×Ωε

J(x− y)dxdy

)1/p

≤ M ε
∞ + 2δ,

and consequently

lim sup
p

M1/p
p ≤ M∞.

Fix now q ≥ 2. For p > q, by Holder inequality,

q1/qGJε
q,f (uε

p)
1/q ≤ (2p)1/p(M ε

p )1/p

(∫

Ωε×Ωε

Jε(x− y)dxdy

)1/q−1/p

.

Therefore, by Poincare’s inequality (3.2), there exist a subsequence pi such that, for any q ≥ 2,

(3.24) uε
pi

⇀ v∞ in Lq(Ω) as i → +∞,

v∞ ∈ L∞(Ω). Moreover, by the lower semicontinuity of GJε
q,f ,

GJε
q,f (v∞)1/q ≤ lim sup

p
(M ε

p )1/p

(
1
q

∫

Ωε×Ωε

Jε(x− y)dxdy

)1/q

.

Letting now q to +∞, and having in mind Lemma 3.6, we get

Lε((v∞)f ,Ω) ≤ lim sup
p

(M ε
p )1/p ≤ M ε

∞,

and we have proved (3.21), (3.22) and (3.23).
Let us prove now that (v∞)f is AMLEε(f, Ω). By Theorem 2.3 we need to prove that v∞

coincide with the unique solution u∞ of Problem (2.3). To this end we want to use comparison
arguments. Take u∞,δ as in Lemma 3.4 and regularize it as follows:

uθ
∞,δ(x) = u∞,δ ∗ ρθ(x),

where ρθ is a usual mollifier. Here the convolution is taken in the whole Ωε. As u∞,δ is a solution
of (3.17), we get that uθ

∞,δ is a continuous function that, for θ small, verifies pointwise

(3.25)

{
−∆ε∞u ≥ δ

2 in Ω,

u ≥ f + δ
2 in Ωε \ Ω.

Now, we claim that there exists pδ,θ, pδ,θ → +∞ as δ, θ → 0, such that for every p ≥ pδ,θ the
following inequality holds:

∫

Ωε

Jε(x− y)ϕp((uθ
∞,δ)f (y)− uθ

∞,δ(x))dy ≤ 0 ∀x ∈ Ω,
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being ϕp(r) := |r|p−2r. To see this fact we argue by contradiction. Assume that there exists
pn →∞ and xn ∈ Ω such that

∫

Ωε

Jε(xn − y)ϕpn((uθ
∞,δ)f (y)− uθ

∞,δ(xn))dy > 0.

We rewrite this as∫

Ωε∩{(uθ
∞,δ)f (y)>(uθ

∞,δ)f (xn)}
Jε(xn − y)ϕpn((uθ

∞,δ)f (y)− uθ
∞,δ(xn))dy

>

∫

Ωε∩{(uθ
∞,δ)f (y)<(uθ

∞,δ)f (xn)}
Jε(xn − y)ϕpn((uθ

∞,δ)f (xn)− uθ
∞,δ(y))dy.

Thus,
(∫

Ωε∩{(uθ
∞,δ)f (y)>(uθ

∞,δ)f (xn)}
Jε(xn − y)ϕpn((uθ

∞,δ)f (y)− (uθ
∞,δ(xn))dy

) 1
pn−1

>

(∫

Ωε∩{(uθ
∞,δ)f (y)<(uθ

∞,δ)f (xn)}
Jε(xn − y)ϕpn(uθ

∞,δ(xn)− (uθ
∞,δ)f (y))dy

) 1
pn−1

.

Then, passing to the limit, using that Ω is compact (hence we can assume that xn → x0) and
that uθ

∞,δ is a uniformly continuous function that does not depend on n, we obtain

sup
y∈Bε(x0)

uθ
∞,δ(y) + inf

y∈Bε(x0)
uθ
∞,δ(y)− 2uθ

∞,δ(x0) ≥ 0,

a contradiction with the fact that uθ
∞,δ verifies (3.25).

Therefore uθ
∞,δ is a supersolution of the problem for every p ≥ pδ,θ and, using the comparison

principle given in Lemma 3.2, we have uε
p ≤ uθ

∞,δ for every p ≥ pδ,θ. Therefore, letting p → ∞,
we get v∞ ≤ uθ

∞,δ. Now, we let θ → 0 and use the bounds in Lemma 3.4 to obtain

v∞ ≤ u∞(x) + Cδ.

Finally, we take δ → 0 and conclude that

v∞ ≤ u∞.

A symmetric argument using a regularization of u∞,−δ as subsolution proves the reverse in-
equality. Hence we have that

v∞ = u∞.

In addition, since
uθ
∞,−δ ≤ uε

p ≤ uθ
∞,δ ∀p ≥ pδ,θ,

and uθ
∞,−δ, uθ

∞,δ → u∞ pointwise as θ, δ → 0, we have

uε
p → v∞ pointwise as p → +∞.

¤
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4. Viscosity solutions

The solutions of problem (1.2) are usually understood in the viscosity sense, nevertheless, in
Theorem 2.3, we have understood the solution of Problem (2.3) in the pointwise sense: u ∈
L∞(Ωε) is a solution of (2.3) if





sup
y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)− 2u(x) = 0 for all x ∈ Ω,

u(x) = f(x) for all x ∈ Ωε \ Ω.

In this section we will see that this concept implies also the viscosity one.
Since the solutions of Problem (2.3) are discontinuous in general (see the Appendix), to work

with viscosity solutions we need to use the generalized definition of discontinuous viscosity solu-
tions. Let us consider the upper and lower semi-continuous envelopes of u in Ωε defined as

u∗(x) := lim sup
y∈Ωε,y→x

u(y) and u∗(x) := lim inf
y∈Ωε,y→x

u(y),

respectively. Then, we say that u ∈ L∞(Ωε) is a viscosity subsolution of problem (2.3) if u(x) =
f(x) for almost all x ∈ Ωε \ Ω and −∆ε∞φ(x0) ≤ 0 when φ ∈ C(Ωε), φ(x0) = u∗(x0) and u∗ − φ
achieves a maximum at x0 ∈ Ω. Likewise, u ∈ L∞(Ωε) is a viscosity supersolution of problem (2.3)
if u(x) = f(x) for almost all x ∈ Ωε \ Ω and −∆ε∞φ(x0) ≥ 0 when φ ∈ C(Ωε), φ(x0) = u∗(x0)
and u∗ − φ achieves a minimum at x0 ∈ Ω. We say that u is a viscosity solution of problem (2.3)
if u is both a viscosity subsolution and a viscosity supersolution.

Proposition 4.1. Let u ∈ L∞(Ωε). We have
(i) If −∆ε∞u(x) ≤ 0 for all x ∈ Ω, then −∆ε∞u∗(x) ≤ 0 for all x ∈ Ω and consequently u is

a viscosity subsolution of Problem (2.3).
(ii) If −∆ε∞u(x) ≥ 0 for all x ∈ Ω, then −∆ε∞u∗(x) ≥ 0 for all x ∈ Ω and consequently u is

a viscosity supersolution of Problem (2.3).
(iii) If −∆ε∞u(x) = 0 for all x ∈ Ω, then u is a viscosity solution of Problem (2.3).

Proof. We are going to prove (i), the proof of (ii) is similar, and (iii) is a consequence of (i)
and (ii).

Fix x0 ∈ Ω, and let xk ∈ Ω such that xk → x0 and u∗(x0) = limk→∞ u(xk). Fix 0 < δ < ε
2 ,

and select for each k ∈ N, point yk, zk ∈ Bε(xk) such that

(4.1) sup
y∈Bε(xk)

u(y) ≤ u(yk) + δ, inf
z∈Bε(xk)

u(z) ≥ u(zk)− δ.

By taking subsequences, we may assume that yk → y ∈ Bε(x0) and zk → z ∈ Bε(x0). Then,

sup
x∈Bε(x0)

u∗(x)− u∗(x0) ≥ u∗(y)− u∗(x0) ≥ lim sup
k→+∞

(u(yk)− u(xk))

≥ lim sup
k→+∞

(
sup

y∈Bε(xk)

u(y)− δ − u(xk)

)
.

Sending δ → 0+, we get

(4.2) sup
x∈Bε(x0)

u∗(x)− u∗(x0) ≥ lim sup
k→+∞

(
sup

y∈Bε(xk)

u(y)− u(xk)

)
.
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On the other hand,

u∗(x0)− inf
x∈Bε(x0)

u∗(x) ≤ u∗(x0)− u∗(z) ≤ lim inf
k→+∞

(u(xk)− u(zk))

≤ lim inf
k→+∞

(
u(xk)− inf

z∈Bε(xk)
u(z) + δ

)
.

Sending δ → 0+, we get

(4.3) u∗(x0)− inf
x∈Bε(x0)

u∗(x) ≤ lim inf
k→+∞

(
u(xk)− inf

z∈Bε(xk)
u(z)

)
.

From (4.2) and (4.3), and having in ind that by hypothesis we have −∆ε∞u ≤ 0, we obtain that

−∆ε
∞u∗(x0) = −

(
sup

x∈Bε(x0)

u∗(x)− u∗(x0)

)
−

(
inf

x∈Bε(x0)
u∗(x)− u∗(x0)

)

≤ lim inf
k→+∞

(
u(xk)− sup

y∈Bε(xk)

u(y) + u(xk)− inf
z∈Bε(xk)

u(z)

)
= lim inf

k→+∞
(−∆ε

∞u(xk)) ≤ 0.

This ends the proof. ¤

Problem (2.3) has not continuous solutions even for continuous boundary data, however as-
suming the continuity of the data and the continuity of the solution at the boundary, adapting
an argument due to Le Gruyer and J. C. Archer [13] (see also [4]), we obtain the following result.

Proposition 4.2. Let f : Ωε \ Ω → R be a continuous function. If u : Ωε → R is a solution of
{
−∆ε∞u = 0 in Ω,

u = f on Ωε \ Ω,

and we assume that u∗(x) = u∗(x) = f(x) for all x ∈ Ωε \ Ω, then u is continuous in Ωε.

Proof. By Lemma 4.1, we have

(4.4) −∆ε
∞u∗(x) ≤ 0 ≤ −∆ε

∞u∗(x) for all x ∈ Ω.

Set α := sup{u∗(x) − u∗(x) : x ∈ Ω}. To prove the result it is enough to show that α = 0.
Arguing by contradiction, we suppose α > 0. By the upper semi-continuity of the function u∗−u∗
and having in mind that u∗(x) = u∗(x) = f(x) for all x ∈ Ωε \ Ω, we have the set

A := {x ∈ Ωε : (u∗ − u∗)(x) = α}
is nonempty, closed and contained in Ω. Define B := {x ∈ A : u∗(x) = maxA u∗}. By the upper
semi-continuity of the function u∗, B is nonempty. Then, take x0 ∈ ∂B. Since x0 ∈ A, we have

(4.5) (u∗ − u∗)(x0) ≥ sup
x∈Bε(x0)

(u∗ − u∗)(x) ≥ inf
x∈Bε(x0)

u∗(x)− inf
x∈Bε(x0)

u∗(x).

First suppose that
u∗(x0) = sup

x∈Bε(x0)

u∗(x).
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Then, since −∆ε∞u∗(x0) ≤ 0, we have

u∗(x0) = inf
x∈Bε(x0)

u∗(x),

and by (4.5) we deduce that
u∗(x0) = inf

x∈Bε(x0)
u∗(x).

Then, since −∆ε∞u∗(x0) ≥ 0, we obtain that

u∗(x0) = sup
x∈Bε(x0)

u∗(x).

Therefore, u∗ and u∗ are constant in Bε(x0), contradicting our assumption that x0 ∈ ∂B.
It remains to arrive to a contradiction in the case

u∗(x0) < sup
x∈Bε(x0)

u∗(x).

By the upper semi-continuity of the function u∗ there is y0 ∈ Bε(x0) such that

u∗(y0) = sup
x∈Bε(x0)

u∗(x).

Since u∗(y0) > u∗(x0) and x0 ∈ B, we see that y0 6∈ A. Then,

u∗(y0)− u∗(y0) < α = u∗(x0)− u∗(x0).

Hence,

(4.6) sup
x∈Bε(x0)

u∗(x)− u∗(x0) ≥ u∗(y0)− u∗(x0) > u∗(y0)− u∗(x0) = sup
x∈Bε(x0)

u∗(x)− u∗(x0).

Combining (4.5) and (4.6), we obtain −∆ε∞u∗(x0) < −∆ε∞u∗(x0), which contradicts (4.4), and
the proposition follows. ¤

5. Appendix: Examples

In this appendix we collect some concrete examples that are illustrative of the difficulties of
the problem. In the first example we see that there exists f for which the AMLE1 of f is not
AMLE of f in the sense of Definition 1.1 (in fact, there is no AMLE of f in that sense).

Example 5.1. For ε = 1, Ω = (0, 1
2) and f = 0χ

(−1,0] + 1χ
[ 1
2
, 3
2
), for any z defined in (0, 1

2)

such that z(x) ∈ [0, 1], f + zχ
(0, 1

2
) ∈ MLE(f, Ω1). Between all of them, u = f + 1

2
χ

(0, 1
2
) is

the unique AMLE1(f, Ω) (it is very easy to prove that it is solution of (2.3)). On the other
hand, there is not AMLE of f in the sense of Definition 1.1. In fact, if u is AMLE of f , then if
B = (−1

2 , 1
2), the function g = 0χ

(−1, 1
2
) + 1χ

( 1
2
, 3
2
) ∈ MLE(f, Ω1) and g = u in Ω1 \ B, therefore

Ld1(u,B) ≤ Ld1(g, B) = 0, and, hence, u is constant in B, that is, u = 0 in (0, 1
2). Similarly,

we can prove that u = 1 in (0, 1
2) by taking B = (0, 1) and g = 0χ

(−1,0) + 1χ
(0, 3

2
), which gives a

contradiction.
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Example 5.2. For ε = 1, Ω = (0, 2) and f = xχ
(−1,0] + 2χ

[2,3), the unique solution u of (2.3)
can be explicitly found as follows. First, we observe that u is increasing in x. Indeed, Since
Ld1(f, Ω1 \ Ω) = 1, it is easy to see that the McShane-Whitney extensions are given in Ω by

Ψ(f)(x) = x, Λ(f)(x) = 0χ
(0,1)(x) + 1χ[1,2)(x).

Then, if u is the solution of (2.3), since Ω is convex, by Theorem 2.3, u ∈ MLE(f,Ω1) and
therefore

(5.1) 0χ(0,1)(x) + 1χ[1,2)(x) ≤ u(x) ≤ x ∀x ∈ (0, 2).

By (5.1), for any x ∈ (0, 1) we have

u(x) =
1
2
x +

1
2

sup
y∈[1,x+1]

u(y),

so it is nondecreasing in this interval. For any x ∈ (1, 2) we have

u(x) =
1
2

inf
y∈[x−1,1]

u(y) + 1,

so it also is nondecreasing in this interval. So, taking into account again (5.1), u is nondecreasing
in all Ω = (0, 2). Therefore, for any x ∈ (0, 1) we have

u(x + 1) = 2u(x) + 1− x

and for any z ∈ (1, 2) we have

2 = u(z + 1) = 2u(z)− u(z − 1)

but taking z − 1 = x we get,

2 = 2u(x + 1)− u(x) = 3u(x) + 2− 2x

and we conclude that
u(x) =

2
3
x, x ∈ (0, 1).

This implies

u(x) = 1 +
1
3
(x− 1), x ∈ (1, 2).

Finally, u(1) = 1.
Note that u∗(2) = 4

3 < 2 = u∗(2) = f(2) and u is discontinuous at x = 1, therefore, the
assumption u∗(x) = u∗(x) = f(x) for all x ∈ Ωε \ Ω in Proposition 4.2 is necessary for the
continuity of u on Ω.

Example 5.3. For ε = 3/2, Ω = (0, 2) and f = xχ
(− 3

2
,0] + 2χ

[2, 7
2
), the unique solution u of

(2.3) can also be explicitly found as follows. Since Ld 3
2

(f, Ω 3
2
\ Ω) = 1, it is easy to see that the

McShane-Whitney extensions are given in Ω by

Ψ(f)(x) = x, Λ(f)(x) = −1χ
(0, 1

2
)(x) +

1
2
χ

[ 1
2
,2)(x).

Then, if u is the solution of (2.3), since Ω is convex, by Theorem 2.3, u ∈ MLE(f, Ω 3
2
) and

therefore

(5.2) −1χ
(0, 1

2
)(x) +

1
2
χ

( 1
2
,2)(x) ≤ u(x) ≤ x ∀x ∈ (0, 2).
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By (5.2), for any x ∈ (0, 1/2) we have

u(x) =
1
2

(
x− 3

2

)
+

1
2

sup
y∈[ 1

2
,x+ 3

2
]

u(y),

so it is nondecreasing in this interval. For any x ∈ (1/2, 2) we have

u(x) =
1
2

inf
y∈[x− 3

2
, 1
2
]
u(y) + 1,

so it also is nondecreasing in this interval. So, taking into account again (5.2), u is nondecreasing
in all Ω = (0, 2). Consequently, we have

(5.3) u(x) =
1
2

(
x− 3

2

)
+

1
2
u

(
x +

3
2

)
if x ∈ (0, 1/2)

and

(5.4) u(x) =
1
2
u

(
x− 3

2

)
+ 1 if x ∈ (1/2, 2).

Now, if x ∈ (3/2, 2), since x− 3
2 ∈ (0, 1/2), by (5.3) and (5.4), we have

u(x) =
1
2

(
1
2

(x− 3) +
1
2
u(x)

)
+ 1,

from where it follows that
u(x) =

1
3

+
1
3
x, x ∈ (3/2, 2).

Similarly, if x ∈ (0, 1/2), since x + 3
2 ∈ (3/2, 2), by (5.3) and (5.4), we have

u(x) =
1
2

(
x− 3

2

)
+

1
2

(
1
2
u(x) + 1

)
,

from where it follows that
u(x) =

2
3
x− 1

3
, x ∈ (0, 1/2).

Let us see now how u is in [12 , 3
2). If x ∈ [12 , 7

6), since infB 3
2
(x) u(y) is taken in x− 3

2 , we have

u(x) =
1
2

(
x− 3

2

)
+

1
2
2 =

1
2
x +

1
4
.

And, if x ∈ [76 , 3
2) since infB 3

2
(x) u(y) = −1

3 , we have

u(x) =
5
6
, x ∈ [7/6, 3/2).

Finally u(1/2) = 1/2. And we have arrived at

u(x) =





2
3x− 1

3 , x ∈ (0, 1/2),
1
2x + 1

4 , x ∈ [1/2, 7/6),
5
6 , x ∈ [7/6, 3/2),
1
3 + 1

3x, x ∈ [3/2, 2).
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Observe that u(x) < 0 for 0 < x < 1
2 ; u is increasing in Ω but not in the whole Ωε.
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