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Abstract. We deal with an optimal matching problem with constraints, that is, we
want to transport two measures with the same total mass in RN to a given place (the
target set), where they will match and in which we have constraints on the amount of
matter we can take to points in the target set. This transport has to be done optimally,
minimizing the total transport cost, that in our case is given by the sum of the Euclidean
distances that each measure is transported. Here we show that such a problem has a
solution. First, we solve the problem using mass transport arguments and next we
perform a method to approximate the solution of the problem taking limit as p→∞ in
a p–Laplacian type variational problem.

In the particular case in which the target set is contained in a hypersurface, we deal
with an optimal transport problem through a membrane, that is, we want to transport
two measures which are located in different locations separated by a membrane (the
hypersurface) which only let through a predetermined amount of matter.

1. Introduction

The classical optimal matching problem (see [7], [8]) consists in transporting two com-
modities (say nuts and screws, we assume that we have the same total number of nuts
and screws) to a prescribed location, the target set (say factories where we ensemble the
nuts and the screws) in such a way that they match there (each factory receive the same
number of nuts and of screws) and the total cost of the operation is minimized.

Optimal matching problems for uniformly convex costs where analyzed in [4], [5], [7],
[8] and have implications in economic theory (hedonic markets and equilibria), see [8],
[9], [10], [11], [7] and references therein. We studied the case in which one considers the
Euclidean distance as cost in [19], and in [20] we consider the case of a general Finsler
distace as cost. For numerical approximations of this kind of problems we refer to [2].

Here we are interested in the more realistic case in which we have some constraints on
the amount of matter we can transport to points in the target set. For example, suppose
that the target set consist in some factories where we ensemble the nuts and the screws
and the restriction represents the limit of production of each factory. Another example
can be the optimal transport problem through a membrane in which case the restriction
represents the permeability of the membrane.
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Clearly, the optimal transport problem under consideration is related to the classical
Monge-Kantorovich’s mass transport problem. Using tools from this theory, we first prove
the existence of a solution of the optimal transport problem through a membrane. We
remark that, in fact, the existence of solution holds changing the Euclidean norm by any
norm in RN . Next, as one of our main contributions in this paper, we perform a method to
solve the problem by taking limit as p→∞ in a p–Laplacian type variational problem. In
this approach we are lead to consider a system of PDE’s of p–Laplacian type, nontrivially
coupled through a measure supported inside the target set. Passing to the limit in this
system (and also in the coupling measure) allows us to give more information about our
original optimal mass transport problem. In particular, we can obtain the measure that
describes the mass that goes to any point in the target set and the Kantorovich potentials
for the involved transport. This procedure to solve mass transport problems (taking limit
as p→∞ in a p−Laplacian type equation) was introduced by Evans and Gangbo in [14]
and reveals to be quite fruitful, see [1], [16], [18], [19]. We have to remark that the limit as
p→∞ in the problem requires some care since we must handle two variables nontrivially
coupled and therefore the estimates for one component are related to the ones for the
other. The analysis of this limit is interesting by its own.

1.1. The optimal matching problem with constraints. To write the optimal match-
ing problem with constraints in mathematical terms, we fix two non-negative compactly
supported functions f+, f− ∈ L∞(RN), with supports X+, X−, respectively, satisfying
the mass balance condition

M0 :=

∫
X+

f+ =

∫
X−

f− > 0.

We take a bounded C1,1 domain Ω ⊂ RN such that it contains all the relevant sets, the
supports of f+ and f−, and the target set Γ. We assume that

X+ ∩ X− = ∅,
(
X+ ∪X−

)
∩ Γ = ∅

and that Γ is compact.

The matching problem we are interested in is to send the measures f+ dx and f− dx
to the target set Γ is such a way that they match and the total cost of the transport
operation (measured in terms of the distance that we have to transport f+ dx and f− dx
to the target set) is minimized. We refer to [18] for such kind of transport problems
without constraints.

Ou aim here is to add a restriction on the amount of matter that can be send to a
point in Γ. Let Θ be a nonnegative Radon measure in Ω with support included in Γ,
representing the maximal amount of matter that we can transport to Γ punctually. That
is, we assume that the transport is made in such a way that the amount of mass that any
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set E ⊂ Γ receives does not exceeds
∫
E
dΘ. Of course, we assume that∫
Γ

dΘ > M0,

since in the case
∫

Γ
dΘ < M0 the transport problem is impossible and when

∫
Γ
dΘ = M0,

the problem trivializes since the only possibility is to send f+ dx and f− dx to Θ.

Now we need to introduce some notations. Let B ⊂ RN . We denote by M(B) the
set of all Radon measures on B and by M+(B) the non-negative elements of M(B).
Whenever T is a map from a measure space (X,µ) to an arbitrary space Y , we denote by
T#µ the pushforward measure of µ by T . Explicitly, (T#µ)[K] = µ[T−1(B)]. When we
write T#f = g, where f and g are nonnegative functions, this means that the measure
having density f is pushed-forward to the measure having density g. Given µ, ν ∈M+(B)
satisfying the mass balance condition

(1.1) µ(B) = ν(B)

we denote by AB(µ, ν) the set of transport maps pushing µ to ν, that is, the set of Borel
maps T : B → B such that T#µ = ν. In the case µ = fLN B and ν = gLN B, we
write AB(f, g).

For Borel functions T± : Ω→ Ω such that T+#f+ = T−#f−, we consider the functional

F(T+, T−) :=

∫
Ω

|x− T+(x)|f+(x)dx+

∫
Ω

|y − T−(y)|f−(y)dy.

The optimal matching problem with constraints in which we are interestd can be stated
as the minimization problem

(1.2) min
(T+,T−)∈AΓ,Θ(f+,f−)

F(T+, T−),

where

AΓ,Θ(f+, f−) :=
{

(T+, T−) : T± : Ω→ Ω are Borel functions,

0 ≤ T+#f+ = T−#f− ≤ Θ
}
.

By

0 ≤ T+#f+ = T−#f− ≤ Θ

we mean that, for every Borel set E ⊂ Γ, we have

0 ≤
∫
T−1

+ (E)

f+(x) dx =

∫
T−1
− (E)

f−(y) dy ≤
∫
E

dΘ.

Oberve that T±(X±) ⊂ Γ.
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If (T ∗+, T
∗
−) ∈ AΓ,Θ(f+, f−) is a minimizer of the optimal problem (1.2), we shall call the

measure µ∗ := T ∗+#f+ = T ∗−#f− a Θ-optimal matching measure. Note that this measure
µ∗ encodes the amount of material that has to be transported to any subset of Γ and that
the constraint reads as 0 ≤ µ∗ ≤ Θ.

Let us denote by

M(Γ,Θ,M0) := {µ ∈M+(Ω) : µ(Ω) = M0, 0 ≤ µ ≤ Θ}
the set of all possible Θ-optimal matching measures. Observe that supp(µ) ⊂ Γ since
0 ≤ µ ≤ Θ and Θ is supported in Γ.

Given µ ∈M(Γ,Θ,M0), we can consider the following minimization problem

inf
µ∈M(Γ,Θ,M0)

inf
(T+,T−)∈A(f+,f−,µ)

F(T+, T−),

where
A(f+, f−, µ) := {(T+, T−) : T+ ∈ AΩ(f+, µ), T− ∈ AΩ(f−, µ)}.

We have that this is one possible way to rewrite our original problem, in fact,

(1.3) inf
µ∈M(Γ,Θ,M0)

inf
(T+,T−)∈A(f+,f−,µ)

F(T+, T−) = inf
(T+,T−)∈AΓ,Θ(f+,f−)

F(T+, T−).

Indeed, observe that given (T+, T−) ∈ AΓ,Θ(f+, f−), if we define

µ(E) :=

∫
T−1

+ (E)

f+,

we have that µ ∈M(Γ,Θ,M0) and (T+, T−) ∈ A(f+, f−, µ).

We will call
W Γ,Θ
f± := inf

(T+,T−)∈AΓ,Θ(f+,f−)
F(T+, T−).

We provide two different proofs of the existence of minimizer to problem (1.2). The first
one is more direct but does not provide a constructive way of getting the optimal matching
measure on Γ, which is one of the relevant unknowns in this problem; consequently, the
construction of optimal transport maps (that are proved to exist) remains a difficult
task. The main tool in this first proof is the use of ingredients from the classical Monge-
Kantorovich theory. The second proof is by approximation of the associated Kantorovich
potentials by a system of p−Laplacian type problems when p goes to infinity. This
approach provides an approximation of the potentials but also allows us to obtain the
Θ-optimal matching measure in the limit.

Let us now introduce some notations, concepts and results from the Monge-Kantorovich
Mass Transport Theory (see [1], [13], [22] and [23]) that will be used in the rest of the
paper.
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1.2. Monge-Kantorovich’s Mass Transport Theory.

The Monge problem. Given µ, ν ∈M+(B) satisfying the mass balance condition (1.1).
The Monge problem, associated with the measures µ and ν, is to find a map T ∗ ∈ AB(µ, ν)
which minimizes the cost functional

FB(T ) :=

∫
B

|x− T (x)| dµ(x)

in the set AB(µ, ν). A map T ∗ ∈ AB(µ, ν) satisfying FB(T ∗) = min{FB(T ) : T ∈
AB(µ, ν)}, is called an optimal transport map of µ to ν.

In general, the Monge problem is ill-posed. To overcome the difficulties of the Monge
problem, in 1942, L. V. Kantorovich in [17] proposed to study a relaxed version of the
Monge problem and, what is more relevant here, introduced a dual variational principle.
Let us define πt(x, y) := (1− t)x+ ty. Given a Radon measure γ in B ×B, its marginals
are defined by projx(γ) := π0#γ, projy(γ) := π1#γ.

The Monge-Kantorovich problem. Fix µ, ν ∈ M+(B) satisfying the mass balance
condition (1.1). The Monge-Kantorovich problem is the minimization problem∫

B×B
|x− y| dγ∗(x, y) = min

{∫
B×B
|x− y| dγ(x, y) : γ ∈ ΠB(µ, ν)

}
,

where ΠB(µ, ν) := {Radon measures γ in B ×B : π0#γ = µ, π1#γ = ν}. The elements
γ ∈ ΠB(µ, ν) are called transport plans between µ and ν, and a minimizer γ∗ an optimal
transport plan. These minimizers always exist.

The Monge-Kantorovich problem has a dual formulation that can be stated in this case
as follows (see for instance [22, Theorem 1.14]).

Kantorovich-Rubinstein Theorem. Let µ, ν ∈ M+(B) be two measures satisfying
the mass balance condition (1.1). Then,
(1.4)

min

{∫
B×B
|x− y| dγ(x, y) : γ ∈ ΠB(µ, ν)

}
= sup

{∫
Ω

u d(µ− ν) : u ∈ K1(B)

}
,

where K1(B) := {u : B → R : |u(x)−u(y)| ≤ |x−y| ∀x, y ∈ B} is the set of 1-Lipschitz
functions in B.

The maximizers u∗ of the right hand side of (1.4) are called Kantorovich potentials.

We can see the optimal problem (1.3) as a kind of Monge’s problem (recall the results
gathered in the previous section). The corresponding Monge-Kantorovich’s problem is
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the following

inf
µ∈M(Γ,Θ,M0)

inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−,

where

Π(f+, f−, µ) :=
{

(γ+, γ−) ∈M+(Ω× Ω)2 : γ+ ∈ ΠΩ(f+, µ), γ− ∈ ΠΩ(f−, µ)
}
.

For this problem, similarly to (1.3), we have that

inf
µ∈M(Γ,Θ,M0)

inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−

= inf
(γ+,γ−)∈ΠΓ,Θ(f+,f−)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−,

where

ΠΓ,Θ(f+, f−) =
{

(γ+, γ−) ∈M+(Ω× Ω)2 : π0#γ± = f±, π1#γ+ = π1#γ−,

supp(π1#γ±) ⊂ Γ, 0 ≤ π1#γ± ≤ Θ
}
.

For two measures µ, ν ∈ M+(B) satisfying the mass balance condition (1.1), the
1–Wasserstein distance (also called Kantorovich-Rubinstein distance) between µ and ν
is defined as

WB
1 (µ, ν) := inf

{∫
B×B
|x− y| dγ(x, y) : γ ∈ ΠB(µ, ν)

}
.

In the case µ has no atom, by [1, Theorem 2.1], we have that

(1.5) WB
1 (µ, ν) = inf

{∫
B

|x− T (x)| dµ(x) : T ∈ AB(µ, ν)

}
.

Remark 1.1. Observe that, by (1.3) and (1.5), we have:

W Γ,Θ
f± = inf

µ∈M(Γ,Θ,M0)
[WΩ

1 (f+, µ) +WΩ
1 (f−, µ)].

Let us briefly summarize the contents of this paper: Section 2 is devoted to the first
proof of Theorem 2.1 (using ideas from optimal mass transport theory); in Section 3
we study the limit as p → ∞ in a p−Laplacian system and give a different proof of
Theorem 2.1; in Section 4 we present, as an example where our existence result applies,
an optimal transport problem with a permeable membrane.
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2. The existence result

We have the following existence theorem.

Theorem 2.1. The optimal problem (1.2) has a solution, that is, there exist Borel func-
tions (T ∗+, T

∗
−) ∈ AΓ,Θ(f+, f−) such that

F(T ∗+, T
∗
−) = inf

(T+,T−)∈AΓ,Θ(f+,f−)
F(T+, T−).

Proof. We have
W Γ,Θ
f± = inf

µ∈M(Γ,Θ,M0)
[WΩ

1 (f+, µ) +WΩ
1 (f−, µ)].

Take a minimizing sequence µn ∈ M(Γ,Θ,M0), then by the weak compactness of the
convex setM(Γ,Θ,M0) there exists a subsequence, denoted equal, that converges weakly
in the sense of measures to a measure µ∞ ∈ M(Γ,Θ,M0). Hence, by the weakly lower

semi-continuity of the function ν 7→ WΩ
1 (µ, ν), we have

WΩ
1 (f+, µ∞) +WΩ

1 (f−, µ∞) ≤ lim
n

(
WΩ

1 (f+, µn) +WΩ
1 (f−, µn)

)
= W Γ,Θ

f± .

Therefore,

WΩ
1 (f+, µ∞) +WΩ

1 (f−, µ∞) = W Γ,Θ
f± .

Now, by [1, Theorem 6.2], which states the existence of an optimal transport map T ∗+
transferring f+ to µ∞, and an optimal transport map T ∗− transferring f− to µ∞, we
obtain that

F(T ∗+, T
∗
−) = W Γ,Θ

f± .

This finishes the proof. 2

Corollary 2.2. There exists µ ∈M(Γ,Θ,M0) such that

W Γ,Θ
f± = WΩ

1 (f+, µ) +WΩ
1 (f−, µ).

Remark 2.3. Having in mind the results in [6], let us point out that Theorem 2.1 is also
true in the case that we change in the cost function the Euclidean norm by any norm
in RN .

3. The limit as p→∞ in a p−Laplacian system

In this section we show that we can follow the ideas of Evans-Gangbo ([14]) to get at the
same time a Θ-optimal matching measure and Kantorovich potentials for the transports
involved. Let us begin with the following result. We will use the following notation for
shortness:

EΓ = E ∩ Γ;
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and
∫
EΓ
gdΘ even if not necessary since the support of Θ is included in Γ. We will also

write, for example, {f ≤ g} to denote {x ∈ Ω : f(x) ≤ g(x)}.

Theorem 3.1.

W Γ,Θ
f± = sup

(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}

= sup
(v, w) ∈ K1(Ω)×K1(Ω),∫

{w−v<0}Γ
dΘ ≤M0 ≤

∫
{w−v≤0}Γ

dΘ

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}
.

Proof. For a fixed µ ∈M(Γ,Θ,M0), it is well known (see for instance [1, 22]) that

min
T∈AΩ(f+,µ)

∫
Ω

|x− T (x)|f+(x)dx = max
u∈K1(Ω)

∫
Ω

u(f+ − µ),

and

min
T∈AΩ(f−,µ)

∫
Ω

|x− T (x)|f−(x)dx = max
u∈K1(Ω)

∫
Ω

u(f− − µ).

Therefore,

min
(T+,T−)∈A(f+,f−,µ)

F(T+, T−)

= sup
(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
Γ

(w − v)µ

}

≥ sup
(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}

≥ sup
(v, w) ∈ K1(Ω)×K1(Ω),∫

{w−v<0}Γ
dΘ ≤M0 ≤

∫
{w−v≤0}Γ

dΘ

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}
.
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Consequently,
(3.1)

W Γ,Θ
f± = inf

µ∈M(Γ,Θ,M0)
min

(T+,T−)∈A(f+,f−,µ)
F(T+, T−)

≥ sup
(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}
≥ sup

(v, w) ∈ K1(Ω)×K1(Ω),∫
{w−v<0}Γ

dΘ ≤M0 ≤
∫
{w−v≤0}Γ

dΘ

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}
.

On the other hand, by Fan’s Minimax Theorem ([15]),

W Γ,dΘ
f± = inf

µ∈M(Γ,Θ,M0)
sup

(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
Γ

(w − v)µ

}
= sup

(v, w) ∈ K1(Ω)×K1(Ω)

inf
µ∈M(Γ,Θ,M0)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
Γ

(w − v)µ

}
.

Now, we observe that there exists a number s0 such that

(3.2)

∫
{w−v<s0}Γ

dΘ ≤M0 ≤
∫
{w−v≤s0}Γ

dΘ.

Indeed, consider

g(s) :=

∫
{w−v<s}Γ

dΘ.

This function is non–decreasing, {s : g(s) < M0} 6= ∅ and {s : g(s) > M0} 6= ∅. Therefore,
there exists s0 such that

g(s) ≤M0 ∀s < s0

and
g(s) ≥M0 ∀s > s0.

Now, since

{w − v < s}Γ =
⋃
n∈N

{
w − v < s− 1

n

}
Γ

,

we get ∫
{w−v<s0}Γ

dΘ = lim
n
g

(
s0 −

1

n

)
≤M0.

On the other hand, using that

{w − v ≤ s}Γ =
⋂
n∈N

{
w − v < s+

1

n

}
Γ

,
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we obtain

M0 ≤ lim
n
g

(
s0 +

1

n

)
=

∫
{w−v≤s0}Γ

dΘ.

Therefore (3.2) holds.

Using (3.2) we have that

inf
µ∈M(Γ,Θ,M0)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
Γ

(w − v)µ

}
= inf

µ∈M(Γ,Θ,M0)

{∫
Ω

vf+ −
∫

Ω

(w − s0)f− +

∫
Γ

(w − s0 − v)µ

}
≤ sup

(ṽ, w̃) ∈ K1(Ω)×K1(Ω),∫
{w̃−ṽ<0}Γ

dΘ ≤M0 ≤
∫
{w̃−ṽ≤0}Γ

dΘ

inf
µ∈M(Γ,dΘ,M0)

{∫
Ω

ṽf+ −
∫

Ω

w̃f− +

∫
Γ

(w̃ − ṽ)µ

}
.

Consequently,

W Γ,Θ
f± = sup

(v, w) ∈ K1(Ω)×K1(Ω),∫
{w−v<0}Γ

dΘ ≤M0 ≤
∫
{w−v≤0}Γ

dΘ

inf
µ∈M(Γ,Θ,M0)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
Γ

(w − v)µ

}

= sup
(v, w) ∈ K1(Ω)×K1(Ω),∫

{w−v<0}Γ
dΘ ≤M0 ≤

∫
{w−v≤0}Γ

dΘ

{∫
Ω

vf+ −
∫

Ω

wf− + inf
µ∈M(Γ,Θ,M0)

∫
Γ

(w − v)µ

}
.

For a fixed choice of v and w as in the above supremum,

inf
µ∈M(Γ,Θ,M0)

∫
Γ

(w − v)µ ≤
∫

Γ

(w − v)µ0

for µ0 ∈ M(Γ,Θ,M0) such that µ0 = Θ in {w − v < 0}Γ and µ0 = 0 in {w − v > 0}Γ.
Now, since ∫

Γ

(w − v)µ0 =

∫
{w−v<0}Γ

(w − v)dΘ,

we have

inf
µ∈M(Γ,Θ,M0)

∫
Γ

(w − v)µ ≤
∫
{w−v<0}Γ

(w − v)dΘ.

Therefore,

W Γ,Θ
f± ≤ sup

(v, w) ∈ K1(Ω)×K1(Ω),∫
{w−v<0}Γ

dΘ ≤M0 ≤
∫
{w−v≤0}Γ

dΘ

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
{w−v<0}Γ

(w − v)dΘ

}
.

Joining this fact with (3.1) we get the conclusion. 2
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By Theorem 3.1, in order to approximate our problem using the Evans-Gangbo method,
we need to consider the functional

Ψp(v, w) :=
1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf− +

∫
Γ

(w − v)−dΘ

and the variational problem associated with this functional:

(3.3) min
(v,w)∈W 1,p(Ω)×∈W 1,p(Ω)

Ψp(v, w).

To study the variational problem (3.3) we need the following inequality of Poincaré
type.

Lemma 3.2. Assume N < p <∞. Then there exists a constant C > 0 such that

‖v‖Lp(Ω) + ‖w‖Lp(Ω) ≤ C

(
‖∇v‖Lp(Ω) + ‖∇w‖Lp(Ω) +

∣∣∣∣∫
Ω

v +

∫
Ω

w

∣∣∣∣)
for every v ∈ W 1,p(Ω) and w ∈ W 1,p(Ω) such that {w − v = 0} 6= ∅.

Proof. Suppose the result is not true. Then, there exists vn ∈ W 1,p(Ω), wn ∈ W 1,p(Ω)
and xn ∈ Ω such that wn(xn)− vn(xn) = 0 and

(3.4) ‖vn‖Lp(Ω) + ‖wn‖Lp(Ω) > n

(
‖∇vn‖Lp(Ω) + ‖∇wn‖Lp(Ω) +

∣∣∣∣∫
Ω

vn +

∫
Ω

wn

∣∣∣∣) ,
for every n ∈ N. By homogeneity we can assume that

‖vn‖Lp(Ω) + ‖wn‖Lp(Ω) = 1

for all n ∈ N. Thus, by (3.4), we get

(3.5)

(
‖∇vn‖Lp(Ω) + ‖∇wn‖Lp(Ω) +

∣∣∣∣∫
Ω

vn +

∫
Ω

wn

∣∣∣∣) ≤ 1

n
∀n ∈ N.

Then, we have {vn} is a bounded sequence in W 1,p(Ω) and {wn} is a bounded sequence
in W 1,p(Ω). Therefore, we can assume, after taking a subsequence, that

vn ⇀ w weakly in W 1,p(Ω)

and
wn ⇀ w weakly in W 1,p(Ω).

By Rellich-Kondrakov’s Theorem, we can assume that (for a subsequence, denoted equal)

vn ⇒ v uniformly in Ω and wn ⇒ w uniformly in Ω.

We also get x ∈ Ω, a limit of a subsequence of xn, such that

(3.6) w(x) = v(x).
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Now,

N(v, w) :=

∣∣∣∣∫
Ω

v +

∫
Ω

w

∣∣∣∣
is continuous in Lp(Ω)× Lp(Ω), hence

N(v, w) = lim
n→∞

N(vn, wn) = 0.

Moreover, by the weak convergence of ∇vn ⇀ ∇v and ∇wn ⇀ ∇w in Lp, by (3.5), we
deduce that v and w are constant. Now, since (3.6) holds, we conclude that v = w = c.
On the other hand, since N(v, w) = 0, we have

0 =

∫
Ω

v +

∫
Ω

w = c (|Ω|+ |Ω|) ,

and then 0 = c = v = w, but this contradicts the fact that that ‖v‖Lp(Ω) + ‖w‖Lp(Ω) = 1
must be also true. 2

Theorem 3.3. Assume p > N . There exists a minimizer (vp, wp) of (3.3).

Proof. To prove this result we apply the Direct Method of Calculus of Variations. Let
Ω̃ ⊂ Ω be a compact and connected set such that Γ ⊂ Ω̃. We first observe that

(3.7) inf
(v,w)∈W 1,p(Ω)×∈W 1,p(Ω)

Ψp(v, w) = inf
(v,w)∈Bp

Ψp(v, w),

where
Bp :=

{
(v, w) ∈ W 1,p(Ω)×W 1,p(Ω) : {w − v = 0}Ω̃ 6= ∅

}
.

Indeed, if (v, w) ∈ W 1,p(Ω)× ∈ W 1,p(Ω) does not satisfy {w − v = 0}Ω̃ 6= ∅ then, since Ω̃

is connected, we have {w−v > 0}Ω̃ = Ω̃ or {w−v < 0}Ω̃ = Ω̃. Now in the first case, since
the functions v and w are continuous and Γ is compact, there is a constant α > 0 such
that {w−(v+α) ≤ 0}Γ = Γ. Then, since

∫
Γ
(w−v)−dΘ = 0 and

∫
Γ
(w−(v+α))−dΘ = 0,

Ψp(v + α,w) = Ψp(v, w)− αM0 < Ψp(v, w).

In the second case, there is a constan α > 0 such that {w + α− v ≤ 0}Γ = Γ. Now,∫
Γ

(w + α− v)−dΘ −
∫

Γ

(w − v)−dΘ = −α
∫

Γ

dΘ,

and then

Ψp(v, w + α) = Ψp(v, w) + αM0 − α
∫

Γ

dΘ < Ψp(v, w).

Therefore (3.7) holds.

On the other hand, since

Ψp(v, w) = Ψp(v − c, w − c) for any constant c,
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by taking

c =
1

2|Ω|

(∫
Ω

v +

∫
Ω

w

)
,

we can minimize Ψp(v, w) between functions (v, w) with the constraint∫
Ω

v +

∫
Ω

w = 0.

Let (vn, wn) be a minimizing sequence in Bp with
∫

Ω
vn +

∫
Ω
wn = 0. Then

lim
n→∞

Ψp(vn, wn) = inf
(v,w)∈Bp

Ψp(v, w),

and we have that there exists a constant C1 > 0 such that Ψp(vn, wn) ≤ C1. Then, by
Lemma 3.2, we get that {vn} is bounded in W 1,p(Ω) and {wn} is bounded in W 1,p(Ω).
Therefore, by Rellich-Kondrakov’s Theorem, taking a subsequence if necessary, we have
that

vn ⇀ vp weakly in W 1,p(Ω) and wn ⇀ wp weakly in W 1,p(Ω),

vn ⇒ vp uniformly in Ω and wn ⇒ wp uniformly in Ω,

and

{wp − vp = 0}Ω̃ 6= ∅.
Then, (vp, wp) ∈ Bp and

Ψp(vp, wp) ≤ lim inf
n→∞

Ψp(vn, wn),

from where it follows that

Ψp(vp, wp) = min
(v,w)∈Bp

Ψp(v, w).

2

Theorem 3.4. Let (vp, wp) be minimizer functions of (3.3) with∫
Ω

vp +

∫
Ω

wp = 0.

Then, up to a subsequence,

lim
p→∞

(vp, wp) = (v∞, w∞) uniformly,

where (v∞, w∞) is a solution of the variational problem

(3.8) sup
(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− −
∫

Γ

(w − v)−dΘ

}
.
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Proof. Let us take (vp, wp) ∈ Bp a minimizer of (3.3). For (v, w) ∈ K1(Ω) × K1(Ω), we
have that

(3.9)

−
∫

Ω

vpf
+ +

∫
Ω

wpf
− +

∫
Γ

(wp − vp)−dΘ

≤ 1

p

∫
Ω

|∇vp|p +
1

p

∫
Ω

|∇wp|p −
∫

Ω

vpf
+ +

∫
Ω

wpf
− +

∫
Γ

(wp − vp)−dΘ

≤ 1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf− +

∫
Γ

(w − v)−dΘ

≤ 2
|Ω|
p
−
∫

Ω

vf+ +

∫
Ω

wf− +

∫
Γ

(w − v)−dΘ .

Let xp ∈ Ω be such that vp(xp) = wp(xp). Note that we can also assume that there exists
z∞ ∈ Ω such that vp(z∞) = 0 for all p > N .

Let us see now that

(3.10) ‖vp‖L∞(Ω) ≤ C1‖∇vp‖Lp(Ω),

and

(3.11) ‖wp‖L∞(Ω) ≤ C1

(
‖∇wp‖Lp(Ω) + ‖∇vp‖Lp(Ω)

)
,

with C1 not depending on p. Indeed, first note that since Ω is bounded, in Morrey’s
inequality (see, e.g., [12] or [3]) we can take the constant independent of p > N . Then,
given x ∈ Ω, we have

|vp(x)| = |vp(x)− vp(z∞)| ≤ C1‖∇vp‖Lp(Ω),

being Ci independent of p. On the other hand,

|wp(x)| = |wp(x)− wp(xp)|+ |vp(xp)| ≤ C1‖∇wp‖Lp(Ω) + |vp(xp)|.

From (3.9), using Hölder’s inequality and having in mind (3.10) and (3.11), we get

1

p

∫
Ω

|∇vp|p +
1

p

∫
Ω

|∇wp|p ≤ C2(‖vp‖Lp(Ω) + ‖wp‖Lp(Ω) + 1)

≤ C3(‖∇vp‖Lp(Ω) + ‖∇wp‖Lp(Ω) + 1),

with Ci independent of p. Hence,

(3.12) ‖∇vp‖p−1
Lp(Ω), ‖∇wp‖

p−1
Lp(Ω) ≤ pC4 ∀p > N,

with C4 independent of p.
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Therefore, ‖vp‖W 1,p(Ω) and ‖wp‖W 1,p(Ω) are bounded uniformly in p, and, by Morrey’s
inequality (e.g. [3] or [12]) |vp(x)− vp(y)| ≤ C5|x− y|1−

N
p ,

|wp(x)− wp(y)| ≤ C5|x− y|1−
N
p ,

for some constant C5 not depending on p. Then, by Arzela-Ascoli’s compactness criterion
we can extract a sequence pi →∞ such that

vpi ⇒ v∞ uniformly in Ω,

wpi ⇒ w∞ uniformly in Ω,

and, so,
{w∞ − v∞ = 0}Γ 6= ∅.

Moreover, by (3.12), we have

‖∇v∞‖L∞(Ω), ‖∇w∞‖L∞(Ω) ≤ 1.

Finally, passing to the limit in (3.9), we get∫
Ω

v∞f
+ −

∫
Ω

w∞f
− −

∫
Γ

(w∞ − v∞)−dΘ

= sup
(v,w)∈A

{∫
Ω

vf+ −
∫

Ω

wf− −
∫

Γ

(w − v)−dΘ

}
.

This ends the proof. 2

Theorem 3.5. Let (v∞, w∞) as in Theorem 3.4. If µ∗ is a Θ-optimal matching measure
for problem (1.2), then:

1. The measure µ∗ satisifies that

(3.13) supp(µ∗) ⊂ {w∞ − v∞ ≤ 0}Γ,

and

(3.14) µ∗ {w∞ − v∞ < 0}Γ = Θ {w∞ − v∞ < 0}Γ.

2. v∞ is Kantorovich potential for the optimal mass transport problem of f+LN Ω to
µ∗, and w∞ is Kantorovich potential for the optimal mass transport problem of µ∗ to
f−LN Ω.

3. The following relation holds:

(3.15)

∫
{w∞−v∞<0}Γ

dΘ ≤M0 ≤
∫
{w∞−v∞≤0}Γ

dΘ.
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Proof. By Corollary 2.2, (3.8) and having in mind that µ∗ ≤ Θ, we obtain that

(3.16)

W Γ,Θ
f± = WΩ

1 (f+, µ∗) +WΩ
1 (f−, µ∗)

= sup
(v, w) ∈ K1(Ω)×K1(Ω)

{∫
Ω

vf+ −
∫

Ω

wf− +

∫
Γ

(w − v)µ∗
}

≥
∫

Ω

v∞f
+ −

∫
Ω

w∞f
− +

∫
Γ

(w∞ − v∞)µ∗

≥
∫

Ω

v∞f
+ −

∫
Ω

w∞f
− +

∫
{w∞−v∞<0}Γ

(w∞ − v∞)dΘ = W Γ,Θ
f± .

Consequently, all the inequalities in (3.16) are equalities. From where it follows that
(3.13) and (3.14) holds, and also that v∞ is Kantorovich potential for the optimal mass
transport problem of f+ to µ∗, and w∞ is Kantorovich potential for the optimal mass
transport problem of µ∗ to f−. Finally, (3.15) is an easy consequence of 1. 2

Let us now see that, taking limits in the variational problem (3.3), we also obtain a
Θ-optimal matching measure.

Theorem 3.6.

1. Let (vp, wp) be a minimizer of (3.3). Set Vp := |∇vp|p−2∇vp andWp := |∇wp|p−2∇wp.
Define the distributions Vηp , Wη

p in RN as

〈Vηp , ϕ〉 := −
∫

Ω

Vp · ∇ϕ+

∫
Ω

f+ϕ ∀ϕ ∈ D(RN),

〈Wη
p , ϕ〉 :=

∫
Ω

Wp · ∇ϕ+

∫
Ω

f−ϕ ∀ϕ ∈ D(RN).

Then, Vηp =Wη
p ; and this distribution is given by a positive Radon measure supported on

{wp − vp ≤ 0}Γ.

2. There exist Radon measures V, W in Ω and X in Γ, and a sequence pi → +∞, such
that

Vpi → V weakly* in the sense of measures in Ω,

Wpi →W weakly* in the sense of measures in Ω,

Vηpi → X weakly* in the sense of measures in Γ.

3. X is a Θ-optimal matching measure.

Proof. Let (vp, wp) be a minimizer of (3.3). Given ϕ ∈ D(RN), we have that the function

I(t) := Ψp(vp + tϕ, wp + tϕ)
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has a minimum at t = 0. Thus, I ′(0) = 0, from where it follows that∫
Ω

|∇vp|p−2∇vp∇ϕ+

∫
Ω

|∇wp|p−2∇wp∇ϕ =

∫
Ω

f+ϕ−
∫

Ω

f−ϕ.

Therefore, we have

Vηp =Wη
p as distributions in RN .

Given ϕ ∈ D(RN) such that supp(ϕ) ∩ {wp − vp ≤ 0}Γ = ∅, we have

Ψp(vp, wp) ≤ Ψp(vp + tϕ, wp).

Then

(3.17)

∫
Ω

f+(vp + tϕ) dx−
∫

Ω

f+vp dx ≤
1

p

∫
Ω

|∇vp + t∇ϕ|p dx− 1

p

∫
Ω

|∇vp|p dx

+

∫
Γ

(
(wp − vp − tϕ)− − (wp − vp)−

)
dΘ,

Now, if we divide by t > 0 we get

(3.18)

∫
Ω

f+ϕdx ≤ 1

p

∫
Ω

|∇vp + t∇ϕ|p − |∇vp|p

t
dx

+
1

t

∫
Γ

(
(wp − vp − tϕ)− − (wp − vp)−

)
dΘ.

Hence, since

1

t

∫
Γ

(
(wp − vp − tϕ)− − (wp − vp)−

)
dΘ =

1

t

∫
{0<wp−vp<tϕ}Γ

(tϕ− (wp − vp)) dΘ

≤
∫
{0<wp−vp<tϕ}Γ

ϕdΘ → 0 as t→ 0,

taking limits in (3.18) we get

(3.19)

∫
Ω

f+ϕdx ≤
∫

Ω

Vp · ∇ϕdx.

Now, if we divide by t < 0 in (3.17)

(3.20)

∫
Ω

f+ϕdx ≥ 1

p

∫
Ω

|∇vp + t∇ϕ|p − |∇vp|p

t
dx

+
1

t

∫
Γ

(
(wp − vp − tϕ)− − (wp − vp)−

)
dΘ.
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Since
1

t

∫
Γ

(
(wp − vp − tϕ)− − (wp − vp)−

)
dΘ =

1

t

∫
{0<wp−vp<tϕ}Γ

(tϕ− (wp − vp)) dΘ

≥
∫
{0<wp−vp<tϕ}Γ

ϕdΘ ≥ 0,

taking limits in (3.20) we get

(3.21)

∫
Ω

f+ϕdx ≥
∫

Ω

Vp · ∇ϕ dx.

Therefore, putting together (3.19) and (3.21), we get

〈Vηp , ϕ〉 = 0,

which implies

(3.22) supp(Vηp ) ⊂ {wp − vp ≤ 0}Γ.

Given ϕ ∈ D(RN), ϕ ≥ 0, and t > 0, we have

Ψp(vp, wp) ≤ Ψp(vp − tϕ, wp).
Now, we have that (wp − vp + tϕ)− − (wp − vp)− ≤ 0, then

0 ≤ t

∫
Ω

f+ϕdx+
1

p

∫
Ω

|∇vp − t∇ϕ|p dx−
1

p

∫
Ω

|∇vp|p dx.

Dividing by t and taking limit as t→ 0, we get

−
∫

Ω

Vp · ∇ϕdx+

∫
Ω

f+ϕdx ≥ 0,

from where it follows that Vηp is a positive Radon measure.

Now, we have that (wp − vp + tϕ)− − (wp − vp)− ≤ 0, then∫
Ω

f+ϕdx− 1

p

∫
Ω

|∇vp + t∇ϕ|p − |∇vp|p

t
dx

≤ 1

t

∫
Γ

(
(wp − vp − tϕ)− − (wp − vp)−

)
dΘ

≤
∫
{wp−vp≤0}Γ

ϕdΘ +

∫
{0<wp−vp<tϕ}Γ

ϕdΘ ,

for, as before, ϕ ∈ D(RN), ϕ ≥ 0, and t > 0.

Taking limit as t→ 0, we get that

Vηp ≤ Θ {wp − vp ≤ 0}Γ.
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Hence,

(3.23) 0 ≤ Vηp ≤ Θ {wp − vp ≤ 0}Γ.

Observe that we have

(3.24)

∫
Ω

Vp · ∇ϕ =

∫
Ω

f+ϕ−
∫

Γ

ϕdVηp ∀ϕ ∈ W 1,p(Ω).

and

(3.25) −
∫

Ω

Wp · ∇ϕ =

∫
Ω

f−ϕ−
∫

Γ

ϕdWη
p ∀ϕ ∈ W 1,p(Ω).

Taking ϕ = χΩ in (3.24), we get

(3.26)

∫
Γ

dVηp =

∫
Γ

dWη
p = M0.

If we take ϕ = vp in (3.24), we have

(3.27)

∫
Ω

|∇vp|p =

∫
Ω

f+vp −
∫

Γ

vpdVp · η ≤ ‖f+‖Lp′ (Ω)‖vp‖Lp(Ω) + ‖vp‖L∞(Ω)M0 ≤ C

with C independent of p > N . As consequence of (3.27), we have {Vp : p > N} is
bounded in L1(Ω). Therefore, we can assume there exists a subsequence pi → +∞ such
that

(3.28) Vpi ⇀ V weakly∗ as measures in Ω.

Similarly, we get that

(3.29) Wpi ⇀W weakly∗ as measures in Ω.

Moreover, by (3.26), we have that

(3.30) Vηpi ⇀ X weakly∗ as measures in Γ.

Hence, by (3.26), we obtain ∫
Γ

dX = M0.

For the above sequence {pi}, Theorem 3.4 states

vpi ⇒ v∞ uniformly in Ω, with ‖∇v∞‖L∞(Ω) ≤ 1

and
wpi ⇒ w∞ uniformly in Ω, with ‖∇w∞‖L∞(Ω) ≤ 1.

Hence, by (3.22), we get

supp(X ) ⊂ {w∞ − v∞ ≤ 0}Γ.
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Moreover, by (3.23),

(3.31) 0 ≤ X ≤ Θ {w∞ − v∞ ≤ 0}Γ.

Since |ξ|p − |η|p ≤ p|ξ|p−2ξ · (ξ − η) for any ξ, η ∈ RN , we have

(3.32)

1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dVηp )vp +

∫
Ω

Vp · (∇ϕ−∇vp)

−
∫

Ω

(f+ − dVηp )(ϕ− vp) ≤
1

p

∫
Ω

|∇ϕ|p −
∫

Ω

(f+ − dVηp )ϕ

for every ϕ ∈ W 1,p(Ω). Now, by (3.24), we have∫
Ω

Vp · (∇ϕ−∇vp)−
∫

Ω

(f+ − dVηp )(ϕ− vp)) = 0,

and using this in (3.32) we arrive to

1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dVηp )vp ≤
1

p

∫
Ω

|∇ϕ|p −
∫

Ω

(f+ − dVηp )ϕ ∀ϕ ∈ W 1,p(Ω).

Therefore, for any v ∈ W 1,∞(Ω) with ‖∇v‖L∞(Ω) ≤ 1,

−
∫

Ω

(f+ − dVηp )vp ≤
1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dVηp )vp

≤ 1

p

∫
Ω

|∇v|p −
∫

Ω

(f+ − dVηp )v ≤ 1

p
|Ω| −

∫
Ω

(f+ − dVηp )v.

Taking p = pi and taking limit as i→∞ in the last inequality, we get∫
Ω

(f+ − dX )v ≤
∫

Ω

(f+ − dX )v∞,

from where it follows that∫
Ω

(f+ − dX )v∞ = sup
v ∈W 1,∞(Ω)

|∇v|∞ ≤ 1

∫
Ω

v(f+ − dX ).

Similarly we get ∫
Ω

(dX − f−)w∞ = sup
w ∈W 1,∞(Ω)

|∇w|∞ ≤ 1

∫
Ω

w(dX − f−).
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Adding up this two last expressions we get∫
Ω

f+v∞ −
∫

Ω

f−w∞ −
∫

Γ

(w∞ − v∞)−dX

= sup
(v,w)∈(v,w)∈K1(Ω)×K1(Ω)

∫
Ω

f+v −
∫

Ω

f−w −
∫

Γ

(w − v)−dX

≥ sup
(v,w)∈(v,w)∈K1(Ω)×K1(Ω)

∫
Ω

f+v −
∫

Ω

f−w −
∫

Γ

(w − v)−dΘ

=

∫
Ω

f+v∞ −
∫

Ω

f−w∞ −
∫

Γ

(w∞ − v∞)−dΘ.

From where it follows, by (3.31), that

X {w∞ − v∞ < 0}Γ = Θ {w∞ − v∞ < 0}Γ

and that X is a Θ-optimal matching measure. 2

Remark 3.7. As consequence of the proof of the above theorem we have that if (vp, wp)
be a minimizer of (3.3), then (vp, wp,Vηp ) is a weak solution of the following problem:

(3.33)


−∆pv = f+ − Ξ with homogeneous Neumann B.C.

−∆pw = Ξ− f− with homogeneous Neumann B.C.

Ξ ∈M+(RN), Ξ ≤ Θ {w − v ≤ 0}Γ, Ξ(Γ) = M0.

Let us see now that if (v, w,Ξ) is a solution of (3.33) and satifies

(3.34)

∫
(w − v)−dΞ =

∫
(w − v)−dΘ,

then

(v, w) is a minimizer of (3.3).

In fact, working as in the proof of the previous theorem, for any ṽ, w̃ ∈ W 1,p(Ω), we have

1

p

∫
Ω

|∇v|p −
∫

Ω

vf+ +

∫
Γ

vdΞ ≤ 1

p

∫
Ω

|∇ṽ|p −
∫

Ω

ṽf+ +

∫
Γ

ṽdΞ

and
1

p

∫
Ω

|∇w|p +

∫
Ω

wf− −
∫

Γ

wdΞ ≤ 1

p

∫
Ω

|∇ṽ|p +

∫
Ω

w̃f− −
∫

Γ

w̃ − dΞ.
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Adding these inequalities we get

1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf− −
∫

Γ

(w − v)dΞ

≤ 1

p

∫
Ω

|∇ṽ|p +
1

p

∫
Ω

|∇w̃|p −
∫

Ω

ṽf+ +

∫
Ω

w̃f− −
∫

Γ

(w̃ − ṽ)dΞ.

Now, since 0 ≤ Ξ ≤ Θ {w − v ≤ 0}Γ ≤ Θ and −r ≤ r−, from the last inequality, we
obtain that

1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf− +

∫
Γ

(w − v)−dΞ

≤ 1

p

∫
Ω

|∇ṽ|p +
1

p

∫
Ω

|∇w̃|p −
∫

Ω

ṽf+ +

∫
Ω

w̃f− +

∫
Γ

(w̃ − ṽ)−dΘ.

Finally, having in mind (3.34),

1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf− +

∫
Γ

(w − v)−dΘ

≤ 1

p

∫
Ω

|∇ṽ|p +
1

p

∫
Ω

|∇w̃|p −
∫

Ω

ṽf+ +

∫
Ω

w̃f− +

∫
Γ

(w̃ − ṽ)−dΘ,

from where it follows that (v, w) is a minimizer of (3.3).

Remark 3.8. Given ϕ ∈ C1(Ω) and ψ ∈ C1(Ω) taking limits in (3.24) and (3.25) for
p = pi, on account of (3.28), (3.29) and (3.30), we get∫

Ω

∇ϕ dV =

∫
Ω

f+ϕ−
∫

Γ

ϕdX ,

and ∫
Ω

∇ψ dW = −
∫

Ω

f−ψ +

∫
Γ

ψdX .

Therefore, we have

 −div(V) = f+ −X in Ω

∇V · η = 0 on ∂Ω
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and  −div(W) = −f− + X in Ω

∇W · η = 0 on ∂Ω

Observe also that we can also get

lim
i→∞

∫
Ω

Vpi · ∇v∞ =

∫
Ω

f+v∞ −
∫

Γ

v∞dX ,

lim
i→∞

∫
Ω

Wpi · ∇w∞ = −
∫

Ω

f−w∞ +

∫
Γ

w∞dX .

That is, formally, ∫
Ω

∇v∞ dV =

∫
Ω

f+v∞ −
∫

Γ

v∞dX ,

and ∫
Ω

∇w∞ dW = −
∫

Ω

f−w∞ +

∫
Γ

w∞dX .

Let us finish this section going back to the variational problem that defines the approx-
imations and discuss uniqueness of minimizers (vp, wp) of (3.3). Remark that we can pass
to the limit as p → ∞ as we did in Theorem 3.4, without any assumption concerning
uniqueness of the minimizers.

In fact, it is immediate to see that if (v, w) is a minimizer then (ṽ, w̃) = (vp +k, wp +k)
is also a minimizer for every constant k, therefore uniqueness does not hold in general.
However, one may ask if uniqueness of minimizers hold under the additional constraint

(3.35)

∫
Ω

v +

∫
Ω

w = 0.

In the next result we show that this is not necessarily the case and moreover we charac-
terize when this uniqueness hold.

Theorem 3.9. Let (v, w) be a minimizer of (3.3) satisfying (3.35). Then∫
{w−v≤0}Γ

dΘ ≥M0.
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Moreover, (3.3) has another minimizer satisfying (3.35) if and only if there exists c 6= 0
such that 

∫
{w−v≤0}Γ

dΘ =

∫
{w−v<c}Γ

dΘ = M0 if c > 0,∫
{w−v≤c}Γ

dΘ =

∫
{w−v<0}Γ

dΘ = M0 if c < 0.

Proof. Let Vηp be defined as in Theorem 3.6 for the pair (v, w). Remember that by (3.23)
and (3.26) we have

0 ≤ Vηp ≤ Θ {w − v ≤ 0}Γ

and ∫
Γ

dVηp = M0.

Consequently, also ∫
{w−v≤0}Γ

dΘ ≥M0.

Suppose that (ṽ, w̃) is another minimizer of (3.3) satisfying (3.35). Then, since Ψp is
convex, and ‖ · ‖Lp(Ω) is strictly convex, there exists constants c1, c2 such that

(ṽ, w̃) = (v + c1, w + c2).

Now, since (v, w) and (ṽ, w̃) satisfy (3.35), we get

c1 = −c2;

that is, every possible minimizer satisfying (3.35) is of the form

(ṽ, w̃) = (v + c1, w − c1).

Now,
Ψp(v, w) = Ψp(v + c1, w − c1)

=
1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf−

−2c1M0 +

∫
Γ

(w − c1 − (v + c1))−dΘ

= Ψp(v, w)− 2c1M0 +

∫
Γ

(w − v − 2c1)−dΘ−
∫

Γ

(w − v)−dΘ.

Hence ∫
Γ

(w − v − 2c1)−dΘ−
∫

Γ

(w − v)−dΘ = 2c1M0.
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Note that (v + c1, w − c1) + (c1, c1) = (v + 2c1, w) is also a minimizer of (3.3) and, by
convexity, using that (v, w) and (v+ 2c1, w) are minimizers, we get that every pair of the
form (v+ c, w), with c between 0 and 2c1, is also a minimizer of (3.3). From our previous
arguments we obtain that∫

Γ

(w − v − c)−dΘ−
∫

Γ

(w − v)−dΘ = cM0,

for every c between 0 and 2c1.

Now, if c1 > 0 then we have

M0 =

∫
Γ

(w − v − 2c1)− − (w − v)−

2c1

dΘ

=

∫
{w−v≤0}

dΘ +

∫
{0<w−v<2c1}

(w − v − 2c1)−

2c1

dΘ

≥
∫
{w−v≤0}

dΘ ≥
∫
{w−v≤0}Γ

dVηp = M0,

from where it follows that

(3.36)

∫
{w−v≤0}Γ

dΘ = M0, and

∫
{w−v<2c1}Γ

dΘ = M0.

Remark that, since

M0 ≤
∫
{w−v≤0}Γ

dΘ ≤
∫
{w−v<2c1}Γ

dΘ,

we have that (3.36) is equivalent to∫
{w−v<2c1}Γ

dΘ ≤M0.

On the other hand, if c1 < 0 then, for 2c1 ≤ c < 0, we have

M0 =

∫
Γ

(w − v − c)− − (w − v)−

c
dΘ

=

∫
{w−v≤c}Γ

dΘ +

∫
{c<w−v<0}

−(w − v)−

c
dΘ

≥
∫
{w−v≤c}Γ

dΘ.
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Taking c→ 0 we obtain ∫
{w−v<0}Γ

dΘ ≤M0.

Let us see that

(3.37)

∫
{w−v<0}Γ

dΘ = M0 and

∫
{w−v≤2c1}Γ

dΘ = M0.

Indeed,

M0 =

∫
Γ

(w − v − 2c1)− − (w − v)−

2c1

dΘ

=

∫
{w−v≤2c1}Γ

dΘ +

∫
{2c1<w−v<0}

−(w − v)−

2c1

dΘ

≤
∫
{w−v≤2c1}Γ

dΘ +

∫
{2c1<w−v<0}

dΘ

=

∫
{w−v<0}Γ

dΘ ≤M0.

Then, since −(w−v)−

2c1
< 1 on {2c1 < w − v < 0}, the integrals∫

{2c1<w−v<0}
dΘ and

∫
{2c1<w−v<0}

−(w − v)−

2c1

dΘ

vanish, and consequently∫
{w−v<0}Γ

dΘ = M0 and

∫
{w−v≤2c1}Γ

dΘ = M0.

Let us see that the reciprocal also holds. Let (v, w) be a minimizer of (3.3) and let
c1 > 0 satisfying (3.36). Then we have

Ψp(v + c1, w − c1) =
1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf−

−2c1M0 +

∫
Γ

(w − v − 2c1)−dΘ

=
1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf−

−2c1M0 +

∫
{w−v≤0}

(w − v − 2c1)−dΘ +

∫
{0<w−v<2c1}

(w − v − 2c1)−dΘ.
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Now, from (3.36) we deduce that

−2c1M0 +

∫
{w−v≤0}

(w − v − 2c1)−dΘ =

∫
{w−v≤0}

(w − v)−dΘ.

Also from (3.36), we have ∫
{0<w−v<2c1}Γ

dΘ = 0.

Therefore, ∫
{0<w−v<2c1}

(w − v − 2c1)−dΘ = 0,

and hence,

Ψp(v + c1, w − c1) = Ψp(v, w).

Now, let (v, w) be a minimizer of (3.3) and c1 < 0 satisfying (3.37). Then we have

Ψp(v + c1, w − c1) =
1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf−

−2c1M0 +

∫
Γ

(w − v − 2c1)−dΘ

=
1

p

∫
Ω

|∇v|p +
1

p

∫
Ω

|∇w|p −
∫

Ω

vf+ +

∫
Ω

wf−

−2c1M0 +

∫
{w−v≤2c1}

(w − v − 2c1)−dΘ.

Now, from (3.37) we obtain that

−2c1M0 +

∫
{w−v≤2c1}

(w − v − 2c1)−dΘ =

∫
{w−v≤2c1}

−(w − v)dΘ,

and also that ∫
{2c1<w−v<0}Γ

dΘ = 0.

Therefore,∫
{w−v≤2c1}

−(w − v)dΘ =

∫
{w−v<0}

−(w − v)dΘ =

∫
{w−v≤0}

(w − v)−dΘ.

Hence, also in this case we conclude that

Ψp(v + c1, w − c1) = Ψp(v, w),

and the proof is finished. 2
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Example 3.10. Let Ω be an open bounded subset of RN . We take f+, f− ∈ L∞(Ω) with
disjoint supports, X+ and X−, respectively, such that∫

X+

f+ =

∫
X−

f− = M0.

Let x0 ∈ Ω \ (X+ ∪X−). Consider Γ = {x0} and Θ = kδx0 , with k ≥M0. For these data,
let (v, w) be a minimizer of (3.3) satisfying (3.35). By Theorem 3.9, we have∫

{w−v≤0}Γ
dΘ ≥M0.

Then, since Θ is concentrated on {x0}, we have

x0 ∈ {w − v ≤ 0}Γ.

Therefore, if k = M0, we have∫
{w−v≤0}Γ

dΘ =

∫
{w−v<c}Γ

dΘ = M0 ∀c > 0.

Hence, by Theorem 3.9, for any c > 0, (v+c, w−c) is a minimizer of (3.3) satisfying (3.35)
and consequently, in this case, there is no uniqueness of minimizers.

On te other hand, if k > M0, then we have uniqueness. In fact, in this case∫
{w−v<c}Γ

dΘ = k > M0 ∀c > 0.

Moreover, if x0 ∈ {w − v < 0}Γ, then∫
{w−v<0}Γ

dΘ = k > M0,

and if x0 6∈ {w − v < 0}Γ, then∫
{w−v≤c}Γ

dΘ = 0 6= M0 ∀c < 0.

Therefore, by Theorem 3.9, we have uniqueness a minimizer of (3.3) satisfying (3.35) in
this case.

4. An example. An optimal transport problem with a permeable
membrane

4.1. Optimal mass transport problem through a partially permeable mem-
brane.



AN OPTIMAL MATCHING PROBLEM WITH RESTRICTIONS 29

In this section we are interested in the optimal mass transport problem in which the
mass transported must cross a partially permeable membrane, that is, we want to trans-
port one measure into another that are located in different places separated by a membrane
which only let through a point in the membrane a predetermined amount of matter. We
can see that this problem fits into our general optimal matching with constraints. In
fact, the membrane can be seen as the target set and the permeability of the membrane
is understood as the amount of mass that each point on the membrane can receive. Of
course, note that we need that the total amount of mass that the membrane can aloud
must be bigger than the mass that we have to transport (otherwise the transport problem
is impossible). Using our previous results we have that there exists a solution to this
problem, that is, there is a way of transporting the two involved measures to the mem-
brane (a hypersurface that separates the two measures) in such a way that they match,
the total amount of mass that can be located at a point on the membrane is bounded
by a given measure (the permeability of the membrane) and the total cost (measured in
terms of the distance that the measures have to be transported) is minimized.

Note that if we assume that the membrane separates the domain into two subdomains
Ω+ (where f+ is supported) and Ω− (where f− is supported) our p−Laplacian approxi-
mation reads as look for (vp, wp,Ξ), a weak solution of the following problem:

−∆pv = f+ − Ξ in Ω+ with Neumann B.C.

−∆pw = Ξ− f− in Ω− with Neumann B.C.

Ξ ∈M+(RN), Ξ ≤ Θ {w − v ≤ 0}Γ, Ξ(Γ) = M0.

Here we have two p−Laplacian equations in two different domains (Ω+ and Ω−) that
have some part of their boundaries in common (the membrane Γ) and the coupling in the
system is given by the existence of the measure Ξ supported on the common boundary Γ.
Remark that we can formally write

|∇vp|p−2∂vp
∂η

= −|∇vp|p−2∂vp
∂η

= −Ξ on Γ,

where η is the normal vector field to Γ pointing to the exterior of Ω+, and homogeneous
Neumann boundary condition on the rest of the boundary of Ω+ and that of Ω−.

Next, we will see that in a particular case (a membrane with only two holes) we can
give a geometrical characterization of an optimal transport.

4.2. A membrane with two holes.

Here we face the following situation, we have a quantity of resources that has to be
delivered to the consumers, but between both there is a frontier (or a river) with only
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two frontier passes (or only two bridges) that allow a maximum amount of mass to pass
through each one of them (each bridge has a limited amount of weight that can support).
Our goal in this situation is to distribute the resources determining which part of them
has to be delivered to which consumer (and also we need to specify through which pass
(or bridge) has to be send). This distribution is to be optimized in the sense that we want
to minimize the total cost of the operation (measured in terms of the distance that me
have to move the mass). Note that in this setting it may perfectly happen that sending
al the resources through one frontier point is more convenient (since the distances to that
point are shorter than the distances to the other point) but this strategy is impossible
since we have more resources than the ones that this frontier point allows. Therefore, in
this case, we have to select which mass has to be send to the second frontier point (and
doing so in such a way that we minimize the total cost).

Now, we put this problem into mathematical terms. Assume that we have two uniform
measures given by

µ = χA and ν = χB

for two disjoint sets A and B with the same measure |A| = |B| = M0. The set A encodes
the resources and B the consumers. Separating these two sets we have a membrane Γ
and furthermore assume that we only have two bridges on Γ, that is, we have two points
x1, x2 ∈ Γ and the restriction measure is

Θ = k1δx1 + k2δx2 , k1 > 0, k2 > 0.

(to simplify the exposition, we do not care too much about geometric restrictions, but we
suppose that the membrane is such that for going from A to each xi it must be crossed
only once, the same about B). Note that we need to assume

M0 < k1 + k2 =

∫
Γ

dΘ.

Now, we have to determine which points in A and B has to be send to x1 and x2, or
equivalently, which points in A has to be send to x1 and x2, and which points in B must
receive mass from x1 and x2, for an optimal transport.

Now, for an optimal transport map pair (T+, T−) ∈ AΓ,Θ(f+, f−), set

A1 := {a ∈ T−1
+ ({x1}) : a is a point of density 1 of A}

and

A2 := {a ∈ T−1
− ({x2}) : a is a point of density 1 of A}.

If |A1| > 0 and |A2| > 0, for a1 ∈ A1 and a2 ∈ A2 we must have

|a1 − x1|+ |a2 − x2| ≤ |a2 − x1|+ |a1 − x2|.
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In fact, if we have
|a1 − x1|+ |a2 − x2| > |a2 − x1|+ |a1 − x2|,

for some a1 ∈ A1 and a2 ∈ A2, we argue as follows: by continuity of the distance we have
that the same relation

|ã1 − x1|+ |ã2 − x2| > |ã2 − x1|+ |ã1 − x2|,
holds for every ã1 ∈ Bδ1(a1) and for every ã2 ∈ Bδ2(a2). We can choose δ1, δ2 (decreasing
one of them if necessary) in such a way that |Bδ1(a1) ∩ A| = |Bδ2(a2) ∩ A| > 0. Now we
redefine T+ as

T̃+(a) =


x2, if a ∈ Bδ1(a1) ∩ A

x1, if a ∈ Bδ2(a2) ∩ A

T+(a), if a ∈ A \ (Bδ1(a1) ∪Bδ2(a2)).

Note that since we have |Bδ1(a1) ∩ A| = |Bδ2(a2) ∩ A| > 0 then the total mass that we
are sending to x1 (and to x2) with T+ is the same that we are sending with T̃+.

Now, when we compute the cost we have that

F(T+, T−) > F(T̃+, T−)

due to the inequality

|ã1 − x1|+ |ã2 − x2| > |ã2 − x1|+ |ã1 − x2|,
that holds for every ã1 ∈ Bδ1(a1) and for every ã2 ∈ Bδ2(a2). Therefore we arrive to a
contradiction with we the assumption that (T+, T−) is optimal.

Therefore, we need to consider the function Λx1,x2 : A 7→ R given by

Λx1,x2(a) = |a− x1| − |a− x2|.
This function encodes which part of A has to be send to x1 and which part to x2. Indeed,
from

|a1 − x1| − |a1 − x2| ≤ |a2 − x1| − |a2 − x2|
we get

Λx1,x2(a1) ≤ Λx1,x2(a2)

for almost any pair of pair of points a1, a2 such that a1 is send to x1 and a2 to x2. We
also have the same relation in the case that |A1| = 0 or |A2| = 0.

Let 0 ≤ β ≤M0 be the amount of material that is transported to x1 (and therefore we
transport M0 − β to x2). From our constraint on the permeability of the membrane we
have the following constraints for β,

β ≤ k1 and M0 − β ≤ k2,
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that is

max{0,M0 − k2} ≤ β ≤ min{k1,M0}.

Let us define

λA(θ) :=
∣∣{x ∈ A : Λx1,x2(x) < θ}

∣∣,
which is non-decreasing as a function of θ.

We have that there exists a value θ(β) such that

λA(θ(β)) = β

and

λA(θ) ≥ β ∀θ > θ(β).

Then the set

{x ∈ A : Λx1,x2(x) < θ(β)}
has to be sent to x1, and

{x ∈ A : Λx1,x2(x) > θ(β)}
has to be sent to x2.

In an analogous way we have, for B, that the set

{x ∈ B : Λx1,x2(x) < γ(β)}
has to be sent to x1, and the set

{x ∈ A : Λx1,x2(x) > γ(β)}
has to be sent to x2, if we choose γ(β) in such a way that

λB(γ(β)) ≤ β,

and

λB(γ) ≥ β ∀γ > γ(β),

where

λB(γ) := |{x ∈ B : Λx1,x2(x) < γ}|.

The total cost of this transport is given by

(4.1)

Wx1,x2(β) =

∫
{x∈A:Λx1,x2 (x)<θ(β)}

Λx1,x2(x)dx+ θ(β)
(
β − λA(θ(β))

)
+

∫
{x∈B:Λx1,x2 (x)<γ(β)}

Λx1,x2(x)dx+ γ(β)
(
β − λB(γ(β))

)
+

∫
A

|x− x2|dx+

∫
B

|x− x2|dx
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in dimension N = 1; and, for N ≥ 2, by

(4.2)

Wx1,x2(β) =

∫
{x∈A:Λx1,x2 (x)<θ(β)}

Λx1,x2(x)dx+

∫
{x∈B:Λx1,x2 (x)<γ(β)}

Λx1,x2(x)dx

+

∫
A

|x− x2|dx+

∫
B

|x− x2|dx.

Indeed:

Wx1,x2(β) =

∫
{x∈A:Λx1,x2 (x)<θ(β)}

|x− x1|dx

+

∫
{x∈A:Λx1,x2 (x)=θ(β), x is sent to x1}

|x− x1|dx+

∫
{x∈A:Λx1,x2 (x)>θ(β)}

|x− x2|dx

+

∫
{x∈A:Λx1,x2 (x)=θ(β), x is sent to x2}

|x− x2|dx+

∫
{x∈B:Λx1,x2 (x)<γ(β)}

|x− x1|dx

+

∫
{x∈B:Λx1,x2 (x)=γ(β), x is sent to x1}

|x− x1|dx+

∫
{x∈B:Λx1,x2 (x)>γ(β)}

|x− x2|dx

+

∫
{x∈B:Λx1,x2 (x)=γ(β), x is sent to x2}

|x− x2|dx.

Now, we replace ∫
{x∈A:Λx1,x2 (x)>θ(β)}

|x− x2|dx

by the equivalent expression∫
A

|x− x2|dx−
∫
{x∈A:Λx1,x2 (x)<θ(β)}

|x− x2|dx

−
∫
{x∈A:Λx1,x2 (x)=θ(β) x is sent to x1}

|x− x2| −
∫
{x∈A:Λx1,x2 (x)=θ(β) x is sent to x2}

|x− x2|,

and the similar one for ∫
{x∈B:Λx1,x2 (x)>γ(β)}

|x− x2|dx

to get,

Wx1,x2(β) =

∫
{x∈A:Λx1,x2 (x)<θ(β)}

Λx1,x2(x)dx+

∫
B

|x− x2|dx

+

∫
{x∈A:Λx1,x2 (x)=θ(β), x is sent to x1}

Λx1,x2(x)dx+

∫
A

|x− x2|dx

+

∫
{x∈B:Λx1,x2 (x)<γ(β)}

Λx1,x2(x)dx+

∫
{x∈B:Λx1,x2 (x)=γ(β), x is sent to x1}

Λx1,x2(x)dx.
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But now, in the above expression we use that∫
{x∈A:Λx1,x2 (x)=θ(β), x is sent to x1}

Λx1,x2(x)dx

= θ(β)
∣∣{x ∈ A : Λx1,x2(x) = θ(β), x is sent to x1}

∣∣
= θ(β)(β − λA(θ(β))),

which is null if N ≥ 2, and∫
{x∈B:Λx1,x2 (x)=γ(β), x is sent to x1}

Λx1,x2(x)dx = γ(β)(β − λB(γ(β))),

which is also null for N ≥ 2; from where we obtain the expression (4.1), or (4.2), for
Wx1,x2(β).

Now our task is to search for β solving

(4.3) min
max{0,M0−k2}≤β≤min{k1,M0}

Wx1,x2(β).

This problem has the following simple geometric interpretation for N ≥ 2: consider
that the points x1 and x2 are located at (−h, 0) and (h, 0), for some h > 0, and 0 ∈ RN−1.
There is no loss of generality in localizing the two points in this way since the transport
problem under consideration is invariant under translations and rotations. Then from our
previous arguments the problem reduces to make an hyperbolic foliation of the sets A and
B to obtain,

Aθ = {x ∈ A : Λx1,x2(x) < θ}, Bγ = {x ∈ B : Λx1,x2(x) < γ}.

Now, for sets of equal measure β = |Aθ(β)| = |Bγ(β)| between max{0,M0 − k2} and
min{k1,M0}, we have to compute the sum of the integrals of Λx1,x2 , that is,

wx1,x2(β) =

∫
Aθ(β)

Λx1,x2(x) +

∫
Bγ(β)

Λx1,x2(x),

and we have to select β such that wx1,x2(β) is minimized. Note that in doing this we also
obtain the subsets of A and B that have to be connected to each point xi.

4.2.1. Monotonicity: θ(β) and γ(β) are increasing. Of course, −h < θ(β) < h and −h <
γ(β) < h.

Let us call

βi := max{0,M0 − k2}, βs := min{k1,M0}.
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4.2.2. Continuity of wx1,x2(β): Let β ∈
]

max{0,M0−k2}, min{k1,M0}}
[
. Now, for t > 0

such that β + t ∈
]

max{0,M0 − k2}, min{k1,M0}}
[

we have

θ(β)
∣∣∣{x ∈ A : θ(β) < Λx1,x2(x) < θ(β + t)

}∣∣∣
≤
∫
{x∈A:θ(β)<Λx1,x2 (x)<θ(β+t)}

Λx1,x2(x) dx

≤ θ(β + t)
∣∣∣{x ∈ A : θ(β) < Λx1,x2(x) < θ(β + t)

}∣∣∣
and ∣∣∣{x ∈ A : θ(β) < Λx1,x2(x) < θ(β + t)

}∣∣∣ = β + t− β = t.

Hence, using a similar property for B and γ(β) we get

(4.4)
(
θ(β) + γ(β)

)
t ≤ wx1,x2(β + t)− wx1,x2(β) ≤

(
θ(β + t) + γ(β + t)

)
t.

Also, for t > 0 such that β − t ∈
]

max{0,M0 − k2}, min{k1,M0}}
[
,(

θ(β − t) + γ(β − t)
)
t ≤ wx1,x2(β)− wx1,x2(β − t) ≤

(
θ(β) + γ(β)

)
t.

Observe that for βi and for t > 0 such that βi + t ∈
]

max{0,M0 − k2}, min{k1,M0}}
[

we also have,

(4.5)
(
θ(βi) + γ(βi)

)
t ≤ wx1,x2(βi + t)− wx1,x2(βi) ≤

(
θ(βi + t) + γ(βi + t)

)
t;

ando for βs and t > 0 such that βs − t ∈
]

max{0,M0 − k2}, min{k1,M0}}
[
,

(4.6)
(
θ(βs − t) + γ(βs − t)

)
t ≤ wx1,x2(βs)− wx1,x2(βs − t) ≤

(
θ(βs) + γ(βs)

)
t.

Then, from the boundedness of θ(β) and γ(β), we get the continuity of wx1,x2(β) in[
max{0,M0 − k2}, min{k1,M0}}

]
.

4.2.3. Minimizers:

1. Observe that

if θ(βi) + γ(βi) ≥ 0 then, from (4.5), βi is a minimizer of (4.3).

This is the case, for example, when A and B are located in [0,+∞[×RN−1.

2. And

if θ(βs) + γ(βs) ≤ 0 then, from (4.6), βs is a minimizer of (4.3).
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This is the case, for example, when A and B are located in ]−∞, 0]× RN−1.

3. On the other hand, if θ(βi) + γ(βi) < 0 and θ(βs) + γ(βs) > 0, we have that, if
θ(β) + γ(β) is continuous then there exists β0 ∈

]
max{0,M0 − k2}, min{k1,M0}}

[
such

that
θ(β0) + γ(β0) = 0,

and this is a critical point of wx1,x2(β) as can be seen in Section 4.2.4.

Nevertheless, without using continuity of θ(β)+γ(β), if there exists β0 ∈
]

max{0,M0−
k2}, min{k1,M0}}

[
such that

θ(β0) + γ(β0) = 0 then β0 is a a minimizer of (4.3).

This follows directly from (4.5) and (4.6). However, the existence of such a β0 can
not be guaranteed, but what can be assured is the existence of β0 ∈

]
max{0,M0 −

k2}, min{k1,M0}}
[

such that

θ(b) + γ(b) ≤ 0 ≤ θ(c) + γ(c) for all b < β0 < c,

and this implies, by (4.5) and (4.6), that

β0 is a a minimizer of (4.3).

4.2.4. Continuous differentiability of wx1,x2(β) for θ(β) + γ(β) continuous. Note that, if
A and B are domains then θ(β) and γ(β) are continuous.

For β ∈
]

max{0,M0 − k2}, min{k1,M0}}
[
, we have

(4.7)

(
d

dβ

)+

wx1,x2(β) = θ(β) + γ(β).

In fact, from (4.4), we obtain, for t > 0 small enough,

θ(β) + γ(β) ≤ 1

t

(
wx1,x2(β + t)− wx1,x2(β)

)
≤ θ(β + t) + γ(β + t).

Then, from the continuity of θ(β) + γ(β), we get (4.7). In an analogous way we get(
d

dβ

)−
wx1,x2(β) = θ(β) + γ(β).

Therefore,

wx1,x2

′(β) = θ(β) + γ(β),

which moreover is continuous.

The next simple example shows how formula (4.8) can be used in one dimension.
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Example 4.1. Let f+ = χ[0,1] and f− = χ[a,a+1] with a > 1, and Θ = k1δx1 + k2δx2 ,
k1 > 0, k2 > 0 , k1 + k2 > 1, with x1 < 0 and 1 < x2 < a.

We are interested in getting

(4.8) β0 := argumin{F (β) : max{0,M0 − k2} ≤ β ≤ min{k1,M0}},
being

F (β) =

∫
{x∈A:Λx1,x2 (x)<θ(β)}

Λx1,x2(x)dx+ θ(β)
(
β − λA(θ(β))

)
+

∫
{x∈B:Λx1,x2 (x)<γ(β)}

Λx1,x2(x)dx+ γ(β)
(
β − λB(γ(β))

)
.

β0 represent the optimal amount of mass that we must sent to x1.

We have

Λx1,x2(x) = 2x− (x1 + x2) for x ∈ A and Λx1,x2(x) = x2 − x1 for x ∈ B.
Then,

λA(s) =


0 if s < −(x1 + x2)
x1 + x2 + s

2
if − (x1 + x2) ≤ s ≤ 2− (x1 + x2)

1 if s > 2− (x1 + x2)

and

λB(r) =

{
0 if r ≤ x2 − x1

1 if r > x2 − x1.

Now,

λA(θ(β)) =
x1 + x2 + θ(β)

2
≤ β and λA(θ) ≥ β ∀θ > θ(β),

implies that θ(β) = 2β − (x1 + x2). Moreover, γ(β) = x2 − x1. Then, F (β) = β2 − 2βx1

and

β0 = argmin{β2 − 2βx1 : max{0, 1− k2} ≤ β ≤ min{k1, 1}} = max{0, 1− k2}.
Therefore, if k2 ≥ 1, then β0 = 0, which means that the optimal transport consists in
tranport all the masses to x2. Now if 0 < k2 < 1, then β0 = 1− k2, which means that the
optimal transport in this case is the following: transport the masses from A and B to x2

to saturate, and send the rest to x1.

Remark 4.2. In this example, when k1 > 1 and k2 > 1 we have uniqueness of our
approximations for p finite, that is, there is a unique minimizer of (3.3) verifying∫

Ω

v +

∫
Ω

w = 0.
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In fact, in this case, since we always have∫
{wp−vp≤0}Γ

dΘ > 1 = M0,

we can apply Theorem 3.9 to get uniqueness.
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