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Abstract

In this paper we study the asymptotic behavior of the Steklov eigenvalues of the p-
Laplacian. We show the existence of lower and upper bounds of a Weyl-type expansion
of the function N(λ) which counts the number of eigenvalues less than or equal to λ, and
we derive from them asymptotic bounds for the eigenvalues.
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1 Introduction

In this paper we study the following eigenvalue problem:{
∆pu = |u|p−2u in Ω

|∇u|p−2 ∂u
∂ν = λ|u|p−2u on ∂Ω

(1.1)

in a bounded open set Ω ⊂ RN with smooth boundary ∂Ω (at least, C2), where ∆pu is
the p-laplacian operator div(|∇u|p−2∇u) for 1 < p < +∞, ∂/∂ν is the outer unit normal
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derivative, and λ is a real parameter. The case p = +∞ will be considered in a separate
work (see [6]).

From [7], we know that the variational spectrum consists on a countable sequence of
positive eigenvalues λ1 < λ2 ≤ . . . ≤ λk ≤ . . . (repeated according multiplicity) tending
to +∞, which are obtained with the aid of the Ljusternik-Schnirelmann theory. We recall
that the variational characterization of the eigenvalues is as follows:

λk = inf
F∈CΩ

k

sup
u∈F

∫
Ω

|∇u|p + |u|p, (1.2)

where
CΩ

k =
{
C ⊂ MΩ : C compact , C = −C, γ(C) ≥ k

}
,

MΩ =
{

u ∈ W 1,p(Ω) :
∫

∂Ω

|u|p = 1
}

and γ(C) is the Krasnoselskii genus (see [17] for the definition and properties of γ).
However, few facts are known about this sequence. It is not known if this variational

sequence exhausts the spectrum, although it was proved that λ1 is the only eigenvalue with
a positive eigenfunction, it is simple, and there are no other eigenvalues between λ1 and
λ2, see [15]. Moreover, it can be obtained by minimization of the Rayleigh quotient over
all of W 1,p(Ω):

λ1 = min
u∈W 1,p(Ω)\0

∫
Ω
|∇u|p + |u|p∫

∂Ω
|u|p

.

Also, λ2 is a variational eigenvalue which can be obtained by minimization in a different
set of functions, and the corresponding eigenfunction changes signs (see [8] for details).

Our objective is to obtain the asymptotic growth of this sequence. To this end, we intro-
duce the spectral counting function N(λ) defined as the number of variational eigenvalues
of problem (1.1) less than a given λ :

N(λ, Ω) = #{k : λk ≤ λ}.

We obtain two side estimates of the asymptotic expansion of N(λ), bounding it above and
by below. We state here our main result:

Theorem 1.1 Let {λk}k be the sequence of variational eigenvalues of Problem 1.1.
Then,

c|∂Ω|N−1λ
N−1
p−1 ≤ N(λ) ≤ C|∂Ω|N−1λ

N−1
p−1 ,

for certain positive constants c, C depending only on p and N .

The proof is based on variational arguments, by using an extension of the ‘Dirichlet-
Neumann bracketing’ method of Courant, see [2]. As a corollary, we have:

Corollary 1.1 Let {λk}k be the sequence of variational eigenvalues of Problem 1.1.
Then, there exists two positive constants c1 and c2 depending only on p and N such
that

c1

(
k

|∂Ω|N−1

) p−1
N−1

≤ λk ≤ c2

(
k

|∂Ω|N−1

) p−1
N−1

. (1.3)
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Let us emphasize the fact that c1 and c2 (and also c, C in the previous theorem) are
independent of the set Ω.

The problem of estimating the spectral counting function of different elliptic operators
has a long history in the linear case p = 2, see for instance [2, 13, 14] and the references
therein for the Laplacian. The linear Steklov problem was studied by L. Sandgren in [18],
and we will follow his method of proof. The main difference is due to our impossibility to
compute the Steklov eigenvalues in a square explicitly.

The nonlinear case is by far more recent. Concerning the variational eigenvalues {µk}k

of the p-Laplacian with zero Dirichlet boundary conditions, the first result was obtained by
Garcia Azorero and Peral Alonso in [12],

ckp/N ≤ µk ≤ Ckp/N ,

which was improved by Friedlander in [11]. The one dimensional case was refined in
[4, 16] where the following stronger result was obteined:

lim
k→∞

µk

kp
=

πp
p

|Ω|p
,

where πp is defined as πp = 2(p− 1)1/p
∫ 1

0
(1− sp)−1/pds (see [3]).

The paper is organized as follows: In §2 we introduce several auxiliary results con-
cerning the eigenvalue problem 1.1 together with different tools which will be used in the
paper. In §3 we obtain an upper bound for N(λ) in a cube Q with the eigenvalue in one
face and zero Neumann boundary conditions in the others. §4 is devoted to the upper bound
for N(λ) in a rectangle R with the eigenvalue in one face and zero Dirichlet boundary con-
ditions in the others. Finally, in §5 we prove Theorem 1.1.

2 Preliminaries

The main tool in the following sections is the Dirichlet Neumann Bracketing introduced by
Courant in [2] and extended to the nonlinear setting in [11] and independently in [4]. For
the Steklov problem it was extended in [18], and we will only sketch it for our case.

We introduce first certain spaces and eigenvalue problems. Given an open set Ω ⊂ RN ,
let ∂Ω = Γ1 ∪ Γ2, where Γ1 and Γ2 are relative open sets of ∂Ω; and now we have the
following problems:

Semi-Dirichlet Steklov eigenvalue problem: Find Λ ∈ R and u ∈ W 1,p
0,Γ2

(Ω) such
that 

∆pu = |u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = Λ|u|p−2u on Γ1

u = 0 on Γ2.
(2.1)

Semi-Neumann Steklov eigenvalue problem: Find Λ ∈ R and u ∈ W 1,p(Ω) such
that 

∆pu = |u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = Λ|u|p−2u on Γ1
∂u
∂ν = 0 on Γ2.

(2.2)
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For both problems there exists a sequence of variational eigenvalues given by a charac-
terization similar to 1.2, changing only the definition of MΩ as

MΩ =
{

u ∈ W 1,p
0,Γ2

(Ω) :
∫

Γ1

|u|p = 1
}

for the semi-Dirichlet problem, and

MΩ =
{

u ∈ W 1,p(Ω) :
∫

Γ1

|u|p = 1
}

for the semi-Neumann problem.
Also, it is not difficult to show that for both problems the first eigenvalue is positive and

the associate eigenfunction is nonnegative. We leave the details for the reader, although
they can be grasped from [7] and [15].

The asymptotic number of Steklov eigenvalues of problem 1.1 will be obtained from
the spectral asymptotic of both problems, and we will write NsD(λ, Ω,Γ1), NsN (λ, Ω,Γ1)
to denote their counting functions. To this end, we introduce the Dirichlet-Neumann
bracketing. We consider the Steklov problem 1.1 in Ω, and we divide it in two disjoint
open sets Ω1,Ω2 ∈ RN such that (Ω1 ∪ Ω2)int = Ω and |Ω \ Ω1 ∪ Ω2|N = 0. Let Γ2 be
the common boundary Ω1 ∩ Ω2, and Γ1,i = Ωi ∩ ∂Ω for 1 ≤ i ≤ 2.

For such decomposition we have the following inequalities

NsD(λ, Ω1,Γ1,1) + NsD(λ, Ω2,Γ1,2) ≤ N(λ, Ω) (2.3)

and
N(λ, Ω) ≤ NsN (λ, Ω1,Γ1,1) + NsN (λ, Ω2,Γ1,2), (2.4)

which give the asymptotic behavior for problem 1.1 in terms of the other problems.
The proof of this fact is a consequence of the variational characterization of the eigen-

values 1.2 combined with the following inclusions:

W 1,p
0,Γ2

(Ω1 ∪ Ω2) = W 1,p
0,Γ2

(Ω1)⊕W 1,p
0,Γ2

(Ω2) ⊂ W 1,p(Ω) (2.5)

and
W 1,p(Ω) ⊂ W 1,p(Ω1)⊕W 1,p(Ω2) = W 1,p(Ω1 ∪ Ω2). (2.6)

Let us note that, since Ω1 and Ω2 are disjoint sets, the eigenvalues are the union of the
eigenvalues of the problem in each set separately.

Also, we will need some auxiliary results for problems with the eigenvalue parameter
in the equation.

Let us consider following mixed eigenvalue problem:
−∆pu = µ|u|p−2u in RL

∂u
∂ν = 0 on Γ
u = 0 on ∂RL \ Γ

(2.7)

where RL = [0, L]N−1 × [0, L/2], and Γ is the face {(x1, . . . , xN ) : 0 ≤ xi ≤ L for 1 ≤
i ≤ N − 1; and xN = L/2}.
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By a symmetry argument, the first eigenvalue µ1 coincides with the first Dirichlet eigen-
value corresponding to the cube QL. Indeed, by extending the first eigenfunction u outside
RL as u(x1, . . . , xN−1, L/2 + x) = u(x1, . . . , xN−1, L/2 − x) for x ∈ (0, L/2), we
obtain a Dirichlet eigenfunction, since it is a weak solution of problem 1.1, and being pos-
itive, it must be the first eigenfunction. Let us note also that the maximum of the function
is attained at the center of QL.

We have the following result, which can be found also in [5]:

Proposition 2.1 Let µ
(RL)
1 be the first eigenvalue of Problem 2.7. Then,

µ
(RL)
1 ≤

{
πp

pNp/2

Lp if 2 < p,
πp

pN

Lp if p < 2.

Proof. In order to get a bound for µ
(RL)
1 , we will study a different operator, the so-called

pseudo p-Laplacian on QL: −
∑N

i=1
∂

∂xi

(∣∣∣ ∂v
∂xi

∣∣∣p−2
∂v
∂xi

)
= ν|v|p−2v in QL

v = 0 in ∂QL.
(2.8)

Due to the equivalence of norms in RN , we have |∇u|q ≤ Cp|∇u|p, where Cp = 1 if
p ≤ q, and Cp = N (p−q)/2q if p ≥ q (see, for instance, [10]).

Since ν1 = infu∈W 1,p
0

∫
QL

∑N
i=1

∣∣∣ ∂u
∂xi

∣∣∣p∫
QL

|u|p , by fixing the set B = {u ∈ W 1,p
0 :

∫
QL

|u|p},

we have the following characterization of the first eigenvalues µ1, ν1 of the p-laplacian and
the pseudo p-Laplacian in QL ⊂ RN respectively:

ν1 = inf
u∈B

‖|∇u|p‖p
p; µ1 = inf

u∈B
‖|∇u|2‖p

p,

and the norms inequality enable us to compare ν1 and µ1.
Now, we have an explicit expression for ν1:

v1 = sinp(πpx1/L) · · · sinp(πpxN/L), ν1 =
πp

pN

Lp

is the first eigenpair of the pseudo p-Laplacian on QL. This result follows directly by
separation of variables, and v1 is the first eigenfunction since there exists only one positive
eigenfunction of the pseudo p-laplacian (see [1]). 2

3 An Upper Bound for N(λ)

We will study the asymptotic behavior of the eigenvalues of the following semi-Neumann
problem: 

∆pu = |u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = Λ|u|p−2u on Γ
∂u
∂ν = 0 on ∂Ω \ Γ.
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Let us consider first the particular case Ω = QL ⊂ RN , the cube [0, L]N , and let Γ be
one of its faces, say {(x1, . . . , xN ) : 0 ≤ xi ≤ L for 1 ≤ i ≤ N − 1; and xN = L}. We
have the following result:

Proposition 3.1 Let λ
(QL)
k and Λ(QL)

k be the kth-eigenvalues of Problem 1.1 and Prob-
lem 2.2 in QL. Then,

Λ(QL)
k > λ

(QL)
k .

Moreover, when k ≥ 2,
λ

(QL)
k ∼ λ

(Q1)
k L1−p.

Proof. Let us recall the variational characterization of eigenvalues,

λ
(QL)
k = inf

F∈C
QL
k

sup
u∈F

∫
QL

|∇u|p + |u|p∫
∂QL

|u|p
,

Λ(QL)
k = inf

F∈C
QL
k

sup
u∈F

∫
QL

|∇u|p + |u|p∫
Γ
|u|p

,

where
CQL

k =
{
C ⊂ W 1,p(QL) : C compact , C = −C, γ(C) ≥ k

}
.

Since Γ ⊂ ∂Ω, the inequality Λ(QL)
k > λ

(QL)
k holds.

Now, the proof that λ
(QL)
k ∼ λ

(Q1)
k L1−p can be found in [9], and follows by changing

variables in the Rayleigh quotient, since |∇u|p contributes with the factor L−p, and the
differentials of volume and surface area differs by a factor L.

Remark 3.1 Let us note that for k = 1 this is not true, since λ
(QL)
k goes to zero when L

decreases. See [9] for further details on scaling.

Our next Theorem gives the upper bound for the eigenvalue counting function for cer-
tain domains.

Theorem 3.1 Let us suppose that Γ1 is an hyperplane. Then,

NsN (λ, Ω,Γ1) ≤
|Γ1|N−1λ

N−1
p−1

(λ(Q1)
2 )N−1

.

Proof. Let λ be fixed, and let us divide Ω in several parts: cubes {Qi
L}1≤i≤J with one of

its faces in Γ1, and a complementary set Qc = Ω \ ∪J
i=1QL

i
.

Now, applying the Dirichlet Neumann Bracketing by decomposing Ω as Qc∪(∪J
i=1Q

i
L),

with the eigenvalue parameter only on the faces of the cubes in Γ1 and zero Neumann
boundary conditions in the others and in ∂Qc gives an upper bound for NsN (λ, Ω,Γ1)
given by

J∑
i=1

N(λ, Qi
L).
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We are free to choose the length L yet. By using Proposition 3.1, if L < (λ(Q1)
2 /λ)1/(p−1),

then Λ(QL)
2 > λ, and therefore N(λ, Qi

L) ≤ 1.
Hence, we choose L = (λ(Q1)

2 /λ)1/(p−1) and we can bound N(λ, Ω,Γ1) by the num-
ber of cubes J , and by equating surface areas we obtain JLN−1 = |Γ1|N−1, that is,

NsN (λ, Ω,Γ1) ≤
|Γ1|N−1λ

N−1
p−1

(λ(Q1)
2 )N−1

and the proof is finished. 2

4 A Lower Bound for N(λ)

We will consider now the semi-Dirichlet eigenvalue problem:
∆pu = |u|p−2u in Ω

|∇u|p−2 ∂u
∂ν = Λ|u|p−2u on Γ
u = 0 on ∂Ω \ Γ.

We consider the particular case Ω = RL = [0, L]N−1 × [0, L/2], and let Γ be the
face {(x1, . . . , xN ) : 0 ≤ xi ≤ L for 1 ≤ i ≤ N − 1; and xN = L/2}. We obtain
upper bounds for Λ(RL)

1 from the previous bounds of µ
(RL)
1 in Proposition 2.1. We have

the following result:

Proposition 4.1 Let Λ(RL)
1 and µ

(RL)
1 be the first eigenvalues of Problems 2.1 and

2.7 in RL. Then,

Λ(RL)
1 ≤ (µ(RL)

1 + 1)
L

2
.

Proof. Let us recall the variational characterization of the first eigenvalue,

Λ(RL)
1 = inf

u∈W 1,p(QL),u|∂RL\Γ=0

∫
RL

|∇u|p + |u|p∫
Γ
|u|p

.

Now, we use as a test function the first eigenfunction ϕ of problem 2.7, obtaining

Λ(RL)
1 ≤

(∫
RL

|∇ϕ|p + |ϕ|p∫
RL

|ϕ|p

)(∫
RL

|ϕ|p∫
Γ
|ϕ|p

)
≤ (µ(RL)

1 + 1)

(∫
RL

|ϕ|p∫
Γ
|ϕ|p

)
.

Finally, by using Fubini’s Theorem, the second factor could be bounded by L/2 and
the proof is complete.

Remark 4.1 Combining the previous Proposition with Proposition 2.1, we have

Λ(RL)
1 ≤ Cp

2

(
πp

pN

Lp−1
+ L

)
∼

πp
pCpN

2Lp−1

when L → 0.
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As in the previous section, the next Theorem gives the lower bound for the eigenvalue
counting function in certain domains.

Theorem 4.1 Let NsD(λ, Ω,Γ1) be the spectral counting function of Problem 2.1
where Γ1 is an hyperplane. Then,

NsD(λ, Ω,Γ1) ≥ c|Γ1|N−1λ
N−1
p−1 ,

where c depends only on p and N .

Proof. Let λ be fixed, and let us divide Ω in several parts as before: rectangles
{Ri

L}1≤i≤J with one of this faces in Γ, and a complementary set Rc = Ω \ ∪J
i=1RL

i
.

Now, applying the Dirichlet Neumann bracketing by decomposing Ω as Rc ∪J
i=1 Ri

L,
with the eigenvalue parameter only on the faces of the rectangles in Γ1 and zero Dirichlet
boundary conditions in the others and in ∂Rc gives an upper bound for NsD(λ, Ω,Γ1)
given by

J∑
i=1

N(λ, Ri
L).

We choose now the length L. By using the remark below Proposition 2.1, if L =
(πp

pCpN/2λ)1/(p−1), then each rectangle has at least one eigenvalue, and therefore N(λ, Ri
L) ≥

1.
Hence, NsD(λ, Ω,Γ1) is greater than or equal to J , and by equating surface areas we

obtain JLN−1 = |Γ1|N−1, that is,

NsD(λ, Ω,Γ1) ≥ c|Γ1|N−1λ
N−1
p−1 ,

2

5 Proof of Theorem 1.1

The proof of Theorem 1.1 is rather lengthy and technical, and follows the same lines of
sections 4.3 - 4.5 in [18]. We only sketch the main steps, since the critical estimations were
given in Theorems 3.1 and 4.1.

Given an arbitrary open set Ω with smooth boundary, we divide its boundary in a finite
number of connected parts {Sj}1≤j≤J , and there exist J coordinate neighborhoods Uj ⊂
RN−1, ϕj such that any x ∈ Sj is given by the equation x = ϕ(y1, . . . , yN−1).

Now, given x ∈ Sj , let νx be the outer unit normal at x, and let us introduce the sets

Dj = {z : z = x− yNνx, x ∈ Sj , 0 < yN < δ}.

Clearly, δ could be chosen such that Dj ⊂ Ω for 1 ≤ j ≤ J .
The first step in the proof of Theorem 1.1 is the following Lemma, which is a conse-

quence of the Dirichlet Neumann bracketing:
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Lemma 5.1 Let Dj and Sj be defined as before. Then,

J∑
j=1

NsD(λ, Dj , Sj) ≤ N(λ, Ω, ∂Ω) ≤
J∑

j=1

NsN (λ, Dj , Sj).

Let ε > 0 be fixed, and let us introduce the set ϕ−1
j (Dj) = Vj× (0, δ), where Vj ⊂ Uj .

By a change of variables, the eigenvalue problem could be studied on the sets Vj ⊂ Uj .
By subdividing Sj and after an orthogonal transformation if necessary, the jacobian of the
transformation could be bounded as 1±ε in the variational characterization of eigenvalues.

Hence, |Sj |N−1 ∼ |Vj |N−1, and we have (as in subsections 4.5.4 and 4.5.5 of [18]),
the next step of the proof:

Lemma 5.2 Let Dj , Sj and Vj × (0, δ) be defined as before. Then,

NsN (λ, Dj , Sj) ∼ NsN (λ, Vj × (0, δ), Vj × {0}),

NsD(λ, Dj , Sj) ∼ NsD(λ, Vj × (0, δ), Vj × {0}).

Let us note that the asymptotic expansion of NsN (λ, Vj×(0, δ), Vj×{0}) and NsD(λ, Vj×
(0, δ), Vj ×{0}) was obtained in Theorems 3.1 and 4.1 respectively, and therefore we have
the last step of the proof:

Lemma 5.3 Let Sj and Vj × (0, δ) be defined as before. Then,

NsN (λ, Vj × (0, δ), Vj × {0}) ≤ C|Sj |N−1λ
N−1
p−1

NsD(λ, Vj × (0, δ), Vj × {0}) ≥ c|Sj |N−1λ
N−1
p−1 .

Combining this result with Lemma 5.1, we obtain the desired asymptotic bounds for
N(λ).

Remark 5.1 Let us note that Corollary 1.1 follows immediately from Theorem 1.1 since
N(λk) = k gives the inequalities

c|∂Ω|N−1λ
N−1
p−1
k ≤ k ≤ C|∂Ω|N−1λ

N−1
p−1
k .
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[3] P. Drabek and R. Manásevich, On the Closed Solutions to some nonhomegeneous eigen-
value problemes with p-laplacian, Diff. Int. Equations, 12, 6, (1999), 773–788.



10 J.P. Pinasco

[4] J. Fernández Bonder and J. P. Pinasco, Asymptotic behavior of the eigenvalues of the one-
dimensional wheighted p-Laplace operator, Arkiv fur Mathematik 41 (2003) 267–280.

[5] J. Fernández Bonder and J. P. Pinasco, Estimates for Eigenvalues of Quasilinear Elliptic
Systems, Part II, Preprint (2006).

[6] J. Fernández Bonder, J. P. Pinasco, and J. D. Rossi, Asymptotic of eigenvalues of the
Steklov ∞−Laplace eigenvalues, in preparation.

[7] J. Fernández Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear
boundary conditions, J. Math. Anal. Appl. 263 (2001), 195–223.

[8] J. Fernández Bonder and J. D. Rossi, A nonlinear eigenvalue problem with indefinite
weights related to the Sobolev trace embedding, Publ. Mat. 46 (2002), 221–235.

[9] J. Fernández Bonder and J. D. Rossi. Asymptotic behavior of the best Sobolev trace con-
stant in expanding and contracting domains, Comm. Pure Appl. Anal. 1, 3 (2002), 359–
378.

[10] J. Fleckinger, E. M. Harrell II, and F. de Thélin, Boundary behavior and estimates for so-
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