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Abstract. Let T ⊂ [a, b] be a time scale with a, b ∈ T. In this paper we
study the asymptotic distribution of eigenvalues of the following linear prob-
lem −u∆∆ = λuσ, with mixed boundary conditions αu(a) + βu∆(a) = 0 =
γu(ρ(b))+ δu∆(ρ(b)). It is known that there exists a sequence of simple eigen-
values {λk}k; we consider the spectral counting function N(λ,T) = #{k :
λk ≤ λ}, and we seek for its asymptotic expansion as a power of λ. Let d
be the Minkowski (or box) dimension of T, which gives the order of growth
of the number K(T, ε) of intervals of length ε needed to cover T, namely
K(T, ε) ≈ εd. We prove an upper bound of N(λ) which involves the Minkowski

dimension, N(λ,T) ≤ Cλd/2, where C is a positive constant depending only
on the Minkowski content of T (roughly speaking, its d-volume, although the
Minkowski content is not a measure). We also consider certain limiting cases
(d = 0, infinite Minkowski content), and we show a family of self similar fractal
sets where N(λ,T) admits two-side estimates.

1. Introduction

In this paper we study the following eigenvalue problem:

(1.1) −u∆∆ = λuσ,

in a time scale T ⊂ [a, b], with boundary conditions:

(1.2) αu(a) + βu∆(a) = 0 = γu(ρ(b)) + δu∆(ρ(b))

where (α2 + β2)(γ2 + δ2) 6= 0. Here, ∆ stands for the usual derivative on the time
scale T, and σ and ρ are the jump operators

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t},

assuming that inf ∅ = supT, and sup ∅ = inf T. We refer the interested reader to
[1] for the properties of calculus and differential equations on time scales.

There exists a large and growing literature for eigenvalue problems in time scales,
see for example [4], [10], [11], [21]. The existence of a discrete set of eigenvalues
for problem (1.1) was proved in [2], and a variational characterization of them in
terms of a Rayleigh type quotient was given. Moreover, it is possible to work on
Sobolev spaces defined in [3], [28] recovering the usual variational setting on Hilbert
spaces (although the problem is not self-adjoint), obtaining several properties of the
eigenvalue problem that are well known when T = [a, b], such as the simplicity of
eigenfunctions, the increasing number of zeros of eigenfunctions (that is, uk has
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k nodal domains, or k + 1 generalized zeros x0 = a < x1 < . . . < xk = b where
not necessarily xi ∈ T), monotonicity with respect to the domain, and comparison
principles among several others, see the recent work [13].

Calculus on time scales was introduced by Hilger [20], and a large body of theory
unifying and generalizing the theories of difference and differential equations was
developed by Agarwal, Anderson, Bohner, Guseinov, Henderson, Peterson among
others, see [7], [8] and the references therein.

However, we can expect that the strong differences between the discrete and the
continuous calculus, together with other pathological behaviors, must appear some-
where in the theory, depending perhaps on finer details associated to topological
properties of T.

In this work we focus on the dimension of T considered as a fractal set. Let us
observe that there are several notions of dimension of sets, introduced by Hausdorff,
Minkowski and Bouligand among others, with associated measures or contents.
In the last decades, they were incorporated into the theory of fractal sets (see
[16], [24]), and now they are widely used to classify the complexity of closed sets
T ⊂ [a, b]. Hence, it is natural to ask if they are related to differential equations
defined on time scales T.

Let us note that the eigenvalue problem (1.1) for difference equations (that is,
when T is a finite set) has only finite eigenvalues, and infinitely many when T = [a, b]
(see also examples 3.15 and 3.17 in [13]). Then, by defining the spectral counting
function N(λ,T) = #{k : λk ≤ λ} and after computing its asymptotic expansion
as λ goes to infinity, it is well known that we have for those particular cases the
same asymptotic expansion for N(λ,T):

N(λ,T) = cλd(T)/2 + O(λd(∂T)/2),

where the parameters involved in the formula reveal some geometric properties of
T. That is, d(T) is the (topological) dimension of the time scale (which is 0 for finite
points, and 1 for T = [a, b]; d(∂T) is the dimension of the boundary of T, which
is 0 in both cases; and c is a positive constant depending only on d and |T|d, the
d−dimensional measure of the time scale (the cardinal measure of T for d = 0, the
Lebesgue measure of T for d = 1), see for example [12]. Moreover, 2 is the order of
the operator (for problems involving the one dimensional p-laplacian, −(|u′|p−2u′)′,
it is replaced by p, see [17], [18]). This formula was obtained first by H. Weyl, and it
was generalized for the laplacian operator ∆ on domains Ω ⊂ RN . For the case of an
open set Ω with irregular boundary ∂Ω it is known that the Minkowski dimension
d(∂Ω) appears on the bounds of the remainder term R(λ, Ω) = N(λ,Ω) − cλN/2.
This fact has been firstly observed in [9] and proved in [23] (see also the references
therein).

We conjecture that a similar formula holds in the context of time scales, which
in certain sense correspond to a transition from the discrete to the continuous case.
Following the classical and beautiful work of Kac [22], we are asking if we can hear
the dimension of the time scale T. This work is the first step towards its proof,
and we will show that there exists an upper bound for the eigenvalue counting
function depending on topological properties of T, namely its fractal Minkowski or
box dimension d and its Minkowski content Md(T) (see Section §2 for the definitions
and auxiliary tools).

Our main result is the following:
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Theorem 1.1. Let d ∈ (0, 1] be the Minkowski dimension of T, and let M∗
d (T) < ∞

be the upper Minkowski content of T. Let {λn}n be the sequence of eigenvalues of
problem (1.1) with Dirichlet or Neumann boundary conditions. Then, there exists
a positive constant C depending only on M∗

d (T) such that

N(λ,T) ≤ Cλd/2.

Indeed, Theorem 1.1 is valid for different boundary conditions like (1.2). We will
write ND(λ,T) or NN (λ,T) whenever we need to stress that they are the eigenvalue
counting functions of problem (1.1) with Dirichlet or Neumann boundary condition
respectively.

Usually, it is difficult to obtain an upper bound for N(λ), since it is equivalent
to obtain lower bounds of eigenvalues. However, we have the following Lyapunov
inequality obtained in [19]

Theorem 1.2 (Theorem 1.1 of [19]). Suppose that q > 0 and
[∫ σ2(b)

a

∆t

] ∫ σ(b)

a

q(t)∆t ≤ 4.

Then, u∆∆ + q(t)uσ = 0 is disconjugate on [a, σ2(b)].

The Lyapunov inequality is an useful tool in eigenvalue problems, see for example
[14] [25], [26]; for time scales was proved in [6], although generalized zeros were not
considered there, see also [5]. Clearly, replacing q by any eigenvalue λk, we obtain
the bound

(1.3)
4

(
∫ σ2(b)

a
∆t)(

∫ σ(b)

a
∆t)

≤ λk,

since the equation is not disconjugate (the associated eigenfunction has at least two
generalized zeros). We will use a slightly different version as a lower bound of the
fifth eigenvalue of a Neumann problem, namely

4
(b− a)2

≤ λ5

Clearly, this bound is far from being optimal, since it is the Lyapunov inequality
when T = [a, b] and gives a lower bound for the first Dirichlet eigenvalue. Sur-
prisingly, this ’bad’ approximation (1.3) will be enough for our purposes, and it is
our main tool in order to prove Theorem 1.1 together with a generalization of the
Dirichlet-Neumann bracketing of Courant [12]:

Theorem 1.3. Let T be a time scale in [a, b], and let us consider T1 = T ∩ [a, c]
and T2 = T ∩ [σ(c), b] for any c ∈ (a, b). Then,

ND(λ,T1 ∪ T2) ≤ ND(λ,T) ≤ NN (λ,T) ≤ NN (λ,T1 ∪ T2).

Moreover,
N(λ,T1 ∪ T2) ≈ N(λ,T1) + N(λ,T2).

We will sketch its proof in Section §2.
Let us note that in Theorem 1.1 we have excluded the case d = 0. When T

is a finite set of points, we have finitely many eigenvalues, and the limiting cases
of the previous theorems suggest that whenever we increase the number of points,
new eigenvalues enter from infinity, which is compatible with the fact that the
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eigenvalues of a finite difference approximation of a differential equation approach
the lowest eigenvalues of the continuous problem. However, when T is not finite
but still d(T) = 0, we may have a sequence of eigenvalues {λn} going to infinity
faster than any power of n. We can expect a nonclassical asymptotic behavior in
this situation, and further work will be needed in order to settle completely this
case.

Let us remember the o− notation, f(λ) = o(g(λ)) means that f/g → 0 when
λ →∞. We have the following weaker results:

Theorem 1.4. Let d = 0 be the Minkowski dimension of T. Then, for all δ > 0
we have

N(λ) = o(λδ/2)

when λ →∞.

Moreover, another special case occurs when the upper Minkowski content of T
is not finite. In this case we have:

Theorem 1.5. Let d ∈ (0, 1) be the Minkowski dimension of T, and M∗
d (T) = ∞.

Then, for all δ > 0 we have
N(λ) = o(λd/2+δ)

when λ →∞.

Finally, for certain self similar fractals, like the ternary Cantor set C, it is possible
to find two-side estimates for N(λ, C) and the eigenvalues. We will show that in
this case we have, for any ε > 0 arbitrarily small,

c1λ
2 ln(3)/ ln(2)−ε ≤ N(λ, C) ≤ c2λ

2 ln(3)/ ln(2),

where the constants c1 and c2 depend only on d = ln(2)/ ln(3) and the first Dirichlet
eigenvalue of C. This example can be easily generalized to other self similar sets.

The paper is organized as follows. In Section §2 we will introduce the necessary
definitions and some auxiliary results, and we will prove Theorem 1.3. In Section
§3 we will prove Theorems 1.1 and 1.5. Section §4 is devoted to an example of
two-side estimates for self similar fractal sets.

2. Preliminary results

2.1. Minkowski dimension and content. Given A ⊂ R, we denote the tubular
neighborhood of radius ε as Aε, i. e.,

Aε = {x ∈ R : dist(x,A) ≤ ε},
and |A|1 its Lebesgue measure.

We define the Minkowski dimension of T as

d = dim(T ) = inf{δ ≥ 0 : lim
ε→0+

ε−(1−δ)|Tε|1 = 0}.

We define the Minkowski content of T as the limit (whenever it exists):

(2.1) M(T, d) = lim
ε→0+

ε−(1−d)|Tε|1,

and in that case, we will say that T is d-Minkowski measurable (despite the fact
that the Minkowski content is not a measure, since it is not σ-additive).
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When T is not Minkowsi measurable we can still define M∗(T, d) (resp., M∗(T, d)),
the d−dimensional upper (resp., lower) Minkowski content, replacing the limit in
(2.1) by an upper (resp., lower) limit.

Sometimes it is convenient to use an equivalent characterization of the Minkowski
dimension in terms of coverings:

Proposition 2.1. Let K(T, ε) be the minimal number of disjoint intervals of length
ε which are needed to cover T. Then,

d = dim(T) = inf
{

δ ≥ 0 : lim sup
ε→0+

εδK(T, ε) = 0
}

,

and the upper Minkowski content is

M∗
d (T) = lim sup

ε→0+
εdK(T, ε).

Namely, in order to compute the Minkowski content of a set, it is enough to
cover a set with boxes of diameter ε and to count how many of them intersect the
set. The Minkowski dimension is obtained in this context as

d = dim(T) = lim
ε→0+

ln(K(T, ε))
ln(1/ε)

,

whenever the limit exists. This characterization is very useful from a computational
point of view, and the name of box dimension follows from it. We refer the reader
to [16] for the proof and other properties of the Minkowski dimension and content,
see also [15] for some criteria about Minkowski measurability.

2.2. Auxiliary Results. The results of this subsection are gathered from [2] and
[3]; we include it without proofs for the sake of completeness.

Given a time scale T and any interval [a, b] with a, b ∈ T, we will call J = [a, b]∩T,
and J0 = [a, b) ∩ T. Also, Jkj

is defined as

Jkj

= [a, ρj(b)] ∩ T.

We will say that u belongs to the Sobolev space W 1,2
∆ (J) if and only if u ∈ L2

∆(J0)
and there exists g : J1 → R such that g ∈ L2

∆(J0) and
∫

J0
(u · ϕ∆)(s)∆s = −

∫

J0
(g · ϕσ)(s)∆s

for all ϕ ∈ C1
0,rd(J

1) where

C1
0,rd(J

1) = {f : J → R : f ∈ C1
rd(J

1), f(a) = 0 = f(b)}.
We will need also the Sobolev space W 1,2

0,∆(J), defined as the completion of
C1

0,rd(J
1) in W 1,2

∆ (J) with the norm ‖.‖W 1,2
∆ (J) given by

‖u‖W 1,2
∆ (J) = ‖u‖L2

∆
+ ‖u∆‖L2

∆
.

Concerning the existence of eigenvalues of problem (1.1), we have the following
theorem (see also [13]):

Theorem 2.2 (Theorem 1 in [2]). The eigenvalues of problem (1.1) may be ar-
ranged as −∞ < λ1 < λ2 < λ3 < . . ., and the eigenfunction corresponding to λk+1

has exactly k generalized zeros in the open interval (a, b).
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We define the Rayleigh quotient

R(u) = −
∫ ρ(b)

a
u∆∆uσ ∆t

∫ ρ(b)

a
|uσ|2 ∆t

,

and let us remember that the Dirichlet eigenvalues are obtained as follows:

λk+1 = min
u∈W 1,2

0 ([a,b]),u⊥{ϕ1,...ϕk}
R(u)

where ϕ1, . . . ϕk are the first k eigenfunctions (see Theorem 2 in [2], Theorem 3.10
in [13]).

The Neumann problem can be studied in a similar way, considering now the space
W 1,2([a, b]). As usual, we may introduce intermediate spaces to handle different
boundary conditions (1.2), although we will need only these two spaces.

2.3. Dirichlet Neumann Bracketing. This section is devoted to the proof of
the so called Dirichlet-Neumann bracketing method in Theorem 1.3.

Given a time scale T in [a, b], we consider T1 = T ∩ [a, c] and T2 = T ∩ [σ(c), b]
for any c ∈ (a, b) ∩ T. When c is right scattered, we have σ(c) = c.

We may consider the Sobolev spaces W 1,2
∆ ([a, c]), W 1,2

∆ ([σ(c), b]), and let us note
that we have a continuous restriction operator

P : W 1,2
∆ ([a, b]) → W 1,2

∆ ([a, c])⊕W 1,2
∆ ([σ(c), b]),

namely,
P (u) = (u|[a,c], u|[σ(c),b]).

On the other hand, given (u1, u2) ∈ W 1,2
0,∆([a, c]) ⊕W 1,2

0,∆([σ(c), b]), we have the
extension operator

E : W 1,2
0,∆([a, c])⊕W 1,2

0,∆([σ(c), b]) → W 1,2
0,∆([a, b]),

which is well defined since u1(c) = 0 = u2(σ(c)).
Both operators, P and E define strict inclusions, and enable us to write

W 1,2
0,∆([a, c])⊕W 1,2

0,∆([σ(c), b]) ⊂ W 1,2
0,∆([a, b]) ⊂

⊂ W 1,2
∆ ([a, b]) ⊂ W 1,2

∆ ([a, c])⊕W 1,2
∆ ([σ(c), b]).

Then, it is clear that by minimizing the Rayleigh quotient on each space from the
left to the right, the first eigenvalue not increases. Indeed, this is also true for all the
eigenvalues, and the kth eigenvalue of the problem in W 1,2

0,∆([a, c])⊕W 1,2
0,∆([σ(c), b])

is greater than kth eigenvalue in W 1,2
0,∆([a, b]), and so on. This fact follows by an

equivalent characterization of eigenvalues, namely

λk = inf
Lk⊂W

sup
u∈Lk

R(u)

where Lk runs over all the k-dimensional subspaces of a given space W . We omit
the proof of this fact, which is the same as in the continuous case.

Hence, we can prove Theorem 1.3 for the Dirichlet (resp., Neumann) eigenvalue
problem in W 1,2

0,∆([a, c])⊕W 1,2
0,∆([σ(c), b]) (resp., W 1,2

∆ ([a, c])⊕W 1,2
∆ ([σ(c), b])) as in

Proposition 2.4 of [18], since a simple argument with test functions shows that the
eigenvalues correspond to the ones of the same equation in each interval separately.

So, we have
N(λ,T) ≈ N(λ,T1) + N(λ,T2),
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and
ND(λ,T1 ∪ T2) ≤ ND(λ,T) ≤ NN (λ,T) ≤ NN (λ,T1 ∪ T2),

and the Theorem is proved.

Remark 2.3. There exist an interpretation of this result in terms of the Sturm-
Liouville oscillation theory (and an alternative proof). For a fixed λ, let λk be the
greatest eigenvalue lower or equal than λ. Since the kth eigenfunction has k − 1
generalized zeros, and given a partition of T as before, we will have j and k − j
zeros in each subinterval (perhaps one of the generalized zeros belongs to the gap
between c and σ(c), but we can disregard it when k -and λ- goes to infinity). Hence,
counting j zeros in T1 and k− j in T2 is closely related to the existence of j (resp.,
k − j) eigenvalues on T1 (resp., T2) lower than λ. For a detailed analysis of this
argument for a singular ordinary differential equation on [0,∞) see [27].

Remark 2.4. Let us note that this reduces our problem to estimate the eigenvalues
on disjoint subintervals of T. Moreover, we can divide T in any finite number of
subintervals and the same result follows by induction.

3. Proof of the Main Theorems

In this section we will prove Theorems 1.1, 1.4 and 1.5.

3.1. Proof of Theorem 1.1. For simplicity, we will divide the proof in several
parts. Our first task is to find a lower bound for the fifth Neumann eigenvalue.

Proposition 3.1. Let λ5 be the the fifth Neumann eigenvalue of problem (1.1)
on [a, b] ∩ T, i.e., satisfying the boundary conditions (1.2) with α = γ = 0 and
β = δ = 1. Then,

λ5 >
4

(b− a)2
.

Proof. Let ϕ5 be a Neumann eigenfunction corresponding to λ5. We know that ϕ5

has four generalized zeros on the open interval (a, b) from Theorem 2.2.
Hence, we will consider the following cases:
• b is left dense: we choose any point b̂ ∈ T between the fourth generalized

zero and b.
• b is left scattered: we consider now the point b1 = ρ(b), and we have again

two cases:
– b1 is left dense: we choose any point b̂ ∈ T between the third gener-

alized zero and b1 (let us observe that the fourth generalized zero can
be b1).

– b1 is left scattered: we consider now the point b2 = ρ(b1), and we have
again two cases:

∗ b2 is left dense: we choose any point b̂ ∈ T between the second
generalized zero and b2.

∗ b2 is left scattered: we choose b̂ = ρ(b2).

Hence, we always have that ϕ5 satisfies ϕ∆∆
5 +λ5ϕ

σ
5 = 0 on [a, b̂], and σ2(b̂) ≤ b.

From Theorem 1.2, we know that
[∫ σ2(b̂)

a

∆t

] ∫ σ(b̂)

a

λ5∆t ≤ 4.
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implies that ϕ∆∆
5 +λ5ϕ

σ
5 = 0 is disconjugate on [a, σ2(b̂)]. However, by the previous

construction we have at least two generalized zeros on (a, b̂), and ϕ5 cannot be
disconjugate on this interval. Hence, we have[∫ σ2(b̂)

a

∆t

] ∫ σ(b̂)

a

λ5∆t > 4.

Since σ2(b̂) ≤ b, we have the desired inequality, and the proof is complete. ¤

Remark 3.2. Let us note that we need at least five points on [a, b] ∩ T. However,
with four or less points we cannot have more than four eigenvalues, since in this
case the problem is reduced to a discrete one and they correspond to the ones of a
matrix at most in R4×4.

Our next result gives an upper bound for the number of intervals covering T
given a sufficiently small length ε.

Proposition 3.3. Let d ∈ (0, 1] be the Minkowski dimension of T, and M∗
d (T) < ∞

be its upper Minkowski content of T. Let K(T, ε) be the number of disjoint intervals
of length ε which are needed to cover T. Then, given δ > 0, there exists a positive
ε0 such that, for any ε < ε0,

K(T, ε) ≤ ε−d(M∗
d (T) + δ).

The proof follows immediately from the characterization of the Minkowski di-
mension and content given in Proposition 2.1.

Now we are ready to prove our main theorem.

Proof of Theorem 1.1. From the previous proposition, fix ε0 such that

K(T, ε) ≤ ε−d(M∗
d (T) + 1)

for any covering with intervals of length ε < ε0.
Next, choose any value of λ satisfying 2/λ1/2 < ε0, and calling ε = 2/λ1/2, let

us cover [a, b] ∩ T with intervals of length ε:

I1 = [a, a + ε];

I2 = [σ(a + ε), σ(a + ε) + ε];
I3 = [σ(σ(a + ε) + ε), ...]; ...

Hence, we have a family {Ij}1≤j≤K(T,ε) and by Proposition 3.3, K(T, ε) is
bounded by above by ε−d(M∗

d (T) + 1).
Now, by using the covering {Ij}1≤j≤K(T,ε), we can use the Dirichlet Neuman

bracketing given in Theorem 1.3. We have

N(λ,T) ≤
∑

1≤j≤K(T,ε)

NN (λ, Ij ∩ T).

We bound the number of Neumann eigenvalues in each time scale Ij ∩T by using
Proposition 3.1. Let us call a = inf{t ∈ Ij ∩ T}, and b = sup{t ∈ Ij ∩ T}. If
Ij ∩ T has three points or less it is clear that NN (λ, Ij ∩ T) ≤ 4, since the fifth
eigenfunction has four generalized zeros. If Ij ∩ T has more than three points, the
fifth Neumann eigenvalue is greater than λ (since the equation is disconjugate in
[a, σ2(b̂)], and σ2(b̂) ≤ b). In both cases, we obtain

NN (λ, Ij ∩ T) ≤ 4
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for 1 ≤ j ≤ K(T, ε). That is,

N(λ,T) ≤ 4K(T, ε).

Since K(T, ε) ≤ ε−d(M∗
d (T) + 1) = 2−dλd/2(M∗

d (T) + 1), we obtain the upper
bound

N(λ,T) ≤ (M∗
d (T) + 1)22−dλd/2,

and the Theorem is proved. ¤
Corollary 3.4. Let T be a time scale as before. The eigenvalue counting function
N(λ,T) of problem (1.1) with boundary conditions (1.2) satisfies

N(λ,T) ≤ Cλd/2.

Proof. Let us observe that any intermediate space V 1,2
∆ of functions satisfying the

boundary conditions (1.1) is a subspace of W 1,2
∆ , and we can apply the Dirichlet

Neumann bracketing exactly as before. ¤
Corollary 3.5. Let T be a time scale as before. Then,

cn2/d ≤ λn,

where c is a positive constant.

Proof. It follows immediately from the fact that n = N(λn,T) ≤ Cλ
d/2
n . ¤

Remark 3.6. Let us note that the constant M∗
d (T) + 1 can be refined to M∗

d (T),
taking δ arbitrarily small. Also, when T is Minkowski measurable, we can replace
the upper content by the content Md(T), following the ideas below in the proofs of
Theorems 1.4 and 1.5.

Remark 3.7. In other words, we can hear the Minkowski dimension of T from this
upper bound for N(λ,T). The order of growth of N(λ,T) is known to be optimal
for d = 1, and we will show in Section §4 below that the same is true for self similar
Cantor sets. However, we cannot hear the Minkowski content due to the presence
of the factor 2d−2, which it is known that is not the correct one for d = 1.

3.2. Proof of Theorem 1.4. We wish to show that, given any δ > 0, we have

lim
λ→∞

N(λ,T)
λδ/2

= 0,

that is, we wish to show that for any given positive small constant c, there exists
λc such that

N(λ,T)
λδ/2

≤ c

for λ ≥ λc.
Hence, let us fix an arbitrarily small value c. Since the Minkowski dimension of

T is zero, and

d = dim(T) = inf
{

δ ≥ 0 : lim sup
ε→0+

εδK(T, ε) = 0
}

,

where ε is the length of the intervals which cover T, given δ > 0 there exists a
critical length ε0 such that εδK(T, ε) < c/4 for any ε < ε0.

Now, we determine λ0 in much the same way as in Theorem 1.1. We choose as
λ0 the value 4ε−2

0 . So, for any λ > λ0, by using a covering with intervals of length
ε = 2/λ1/2 < ε0, we have at most four eigenvalues in each interval.



10 P. AMSTER, P. DE NAPOLI, AND J. P. PINASCO

Therefore,

N(λ,T) ≤
∑

1≤j≤K(T,ε)

NN (λ, Ij ∩ T) ≤ 4K(T, ε) ≤ cε−δ ≤ c2−dλδ/2,

which gives
N(λ,T)

λδ/2
≤ c2−dλδ/2

λδ/2
= c2−d < c

and the proof is finished.

3.3. Proof of Theorem 1.5. In order to prove this theorem, we only need to note
that if d is the Minkowski dimension of T, for all δ > 0 we have

lim sup
ε→0+

εd+δK(T, ε) = 0,

and the proof runs exactly as the previous one.

4. An Example of Two-Side Estimates

Let C be the ternary Cantor set, i.e., the invariant set on [0, 1] of the transforma-
tions f1(x) = x/3, f2(x) = x/3 + 2/3. Its Minkowski dimension is d = ln(2)/ ln(3).

Let us call µ = λ1 the first Dirichlet eigenvalue of problem (1.1) when T = C, and
ϕ the corresponding eigenfunction. Clearly, the second eigenvalue can be bounded
above by 32µ, since the function

ψ(x) =
{

ϕ(3x) x ∈ f1(C)
−ϕ(3x) x ∈ f2(C)

belongs to W 1,2
0 (C) and is an admissible function for the variational characterization

of λ2.
By Theorem 1.1, we have N(λ, C) ≤ Cλd/2. However, we will derive this upper

bound again in a simpler way. Our main objective is to find a similar bound from
below for N(λ, C).
Theorem 4.1. Given ε > 0, there exist λ0 and positive constants c1, c2 such that

c2λ
d/2−ε ≤ N(λ, C) ≤ c1λ

d/2

for any λ ≥ λ0.

Proof. Given ε > 0, choose a number K0 ∈ N big enough such that

ln(2)
ln(3)

− 2ε ≤ ln(2K)
ln(3 + 3K)

≤ ln(2K)
ln(3K)

=
ln(2)
ln(3)

for any K ≥ K0.
Now, fix a value of λ and K such that µ32K ≤ λ ≤ µ32(K+1) with K ≥ K0; and

let us cover C with 2K disjoint intervals of length 3−K .
We observe that the intersection of any of these intervals with C can be obtained

by applying K times the functions f1, f2 to C. In particular, each of them is a
translation of the scaled set

3−KC = f
(K)
1 (C) = f1 ◦ ... ◦ f1(C) (K times).

From the Dirichlet Neumann bracketing we obtain the following estimates:

2KN(λ, f
(K)
1 (C)) ≤ N(λ, C) ≤ 2K+1N(λ, f

(K+1)
1 (C))



EIGENVALUE DISTRIBUTION ON TIME SCALES 11

Let us observe that µ32K is the first eigenvalue on f
(K)
1 (C). Since µ32K ≤ λ ≤

µ32(K+1), we have

N(λ, f
(K+1)
1 (C)) ≤ 1 ≤ N(λ, f

(K)
1 (C)),

that is,
2K ≤ N(λ, C) ≤ 2K+1

By the characterization of Minkowski dimension in terms of coverings,

ln(2)
ln(3)

= dim(C) = lim
ε→0+

ln(K(C, ε))
ln(1/ε)

,

and given ε, K0 we have

ln(2)
ln(3)

− 2ε ≤ ln(2K−1)
ln(3K)

≤ ln(2K)
ln(3K)

=
ln(2)
ln(3)

for K ≥ K0.
By using that

3K ≤ (λ/µ)1/2 ≤ 3K+1

we obtain
ln(3K) ≤ ln(λ/µ)1/2 ≤ ln(3) + ln(3K)

ln(2K)
ln(3K)

≥ ln(2K)
ln(λ/µ)1/2

≥ ln(2K)
ln(3) + ln(3K)

and then
ln(2)
ln(3)

≥ ln(2K)
ln(λ/µ)1/2

≥ ln(2)
ln(3)

− 2ε.

Since d = ln(2)/ ln(3), we have the following inequality:

ln(λ/µ)d/2 ≥ ln(2K) ≥ ln(λ/µ)d/2−ε,

and finally,
(λ/µ)d/2 ≥ 2K ≥ (λ/µ)d/2−ε,

which implies, for N(λ),

1
2

(
λ

µ

)d/2−ε

≤ N(λ, C) ≤
(

λ

µ

)d/2

and so completes the proof. ¤

Remark 4.2. Let us note that the following inequality

0 < c ≤ lim inf
n→∞

λn

n2 ln(3)/ ln(2)
≤ lim sup

n→∞
λn

n2 ln(3)/ ln(2)−δ
≤ C < ∞

holds, where δ depends only on ε, since

1
2

(
λn

µ

)d/2−ε

≤ N(λn, C) = n ≤
(

λn

µ

)d/2

.

Remark 4.3. Let us observe that this proof does not give the exact order of growth
of N(λ), since we can have a nonclassical asymptotic behavior like λd/2/ ln(λ).
However, it is possible to read off the fractal dimension of C from the asymptotic
expansion of N(λ).
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Remark 4.4. This example can be generalized to other Cantor sets Cm,n defined as
the complement on [0,m.n(n−m)−1] of ∪kΩk, where Ωk consist of mk intervals of
lengths n1−k where m < n.
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