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Abstract. In this work we study the homogenization problem for (nonlinear)

eigenvalues of quasilinear elliptic operators. We prove convergence of the first
and second eigenvalues and, in the case where the operator is independent of ε,

convergence of the full (variational) spectrum together with an explicit order

of convergence in k and in ε.

1. Introduction

In this paper we study the asymptotic behavior (as ε→ 0) of the eigenvalues of
the following problems

(1.1)

{
−div(aε(x,∇uε)) = λερε|uε|p−2uε in Ω

uε = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain, ε is a positive real number, and λε is the
eigenvalue parameter.

The weight functions ρε(x) are assumed to be positive and uniformly bounded
away from zero and infinity and the family of operators aε(x, ξ) have precise hy-
potheses that are stated below, but the prototypical example is

(1.2) −div(aε(x,∇uε)) = −div(Aε(x)|∇uε|p−2∇uε),

with 1 < p < +∞, and Aε(x) is a family of uniformly elliptic matrices (both in
x ∈ Ω and in ε > 0).

The study of this type of problems have a long history due to its relevance in dif-
ferent fields of applications. The problem of finding the asymptotic behavior of the
eigenvalues of (1.1) is an important part of what is called Homogenization Theory.
Homogenization Theory is applied in composite materials in which the physical pa-
rameters such as conductivity and elasticity are oscillating. Homogenization Theory
try to get a good approximation of the macroscopic behavior of the heterogeneous
material by letting the parameter ε→ 0. The main references for the homogeniza-
tion theory of periodic structures are the books by Bensoussan-Lions-Papanicolaou
[6], Sanchez–Palencia [26], Olĕınik-Shamaev-Yosifian [24] among others.

In the linear setting (i.e., aε(x, ξ) as in (1.2) with p = 2) this problem is well
understood. It is known that, up to a subsequence, there exists a limit operator
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ah(x, ξ) = Ah(x)ξ and a limit function ρ̄ such that the spectrum of (1.1) converges
to that of the limit problem.

(1.3)

{
−div(ah(x,∇u)) = λρ̄|u|p−2u in Ω

u = 0 on ∂Ω,

In the important case of periodic homogenization, i.e. when ρε(x) = ρ(x/ε) and
Aε(x) = A(x/ε) where ρ(x) and A(x) are Q−periodic functions, Q being the unit
cube in RN , the limit problem can be fully characterized and so the entire sequence
ε→ 0 is convergent. See [20, 21].

In the general nonlinear setting, recently Baffico, Conca and Donato [5], relying
on the G−convergence results of Chiadó Piat, Dal Maso and Defranceschi [11] for
monotone operators, study the convergence problem of the principal eigenvalue of
(1.1). The concept of G−convergence of linear elliptic second order operators was
introduced by Spagnolo in [27]. See Section 2 for the precise definitions.

Up to our knowledge, no further investigation was made in the quasilinear non-
uniformly elliptic case. One of the reasons why in [5] only the principal eigenvalue
was studied is that, as long as we know, no results are available for higher order
eigenvalues of (1.1).

The principal eigenvalue of (1.1) was studied by Kawohl, Lucia and Prashanth in
[18] where, among other things, they prove its existence together with the simplicity
and the positivity of the associated eigenfunction.

In order to continue with this investigation, in Section 3, we extend some results
for higher order eigenvalues that are well known in the p−Laplacian case, to (1.1).
Namely, the isolation of the principal eigenvalue, the existence of a sequence of
(variational) eigenvalues growing to +∞ and a variational characterization of the
second eigenvalue.

Using the results of Section 3, in Section 4 we give a new simpler proof of
the convergence of the principal eigenvalues of (1.1) to the principal eigenvalue
of the limit problem (1.3). Moreover we can prove the convergence of the second
eigenvalues of (1.1) to the second eigenvalue of (1.3). These two results rely on a
more general one that says that the limit of any sequence of eigenvalues of (1.1) is
an eigenvalue of (1.3). Although this result was already proved in [5], we provide
here a simplified proof of this fact.

Convergence of eigenvalues in the multidimensional linear case was studied in
1976 by Boccardo and Marcellini [7] for general bounded matrices. Kesavan [20]
studied the problem in an periodic frame.

Now, we turn our attention to the order of convergence of the eigenvalues.
Clearly, the question of order of convergence cannot be treated with the previous
generality. To this end, we restrict ourselves to the problems

(1.4)

{
−div(a(x,∇uε)∇uε) = λερε|uε|p−2uε in Ω

uε = 0 on ∂Ω,

where the family of weight functions ρε are given in terms of a single bounded
Q−periodic function ρ in the form ρε(x) := ρ(x/ε), Q being the unit cube of RN .
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The limit problem is then given by

(1.5)

{
−div(a(x,∇u)∇u) = λρ̄|u|p−2u in Ω

u = 0 on ∂Ω,

where ρ̄ is the average of ρ in Q.

The first result in this problem, for the linear case, can be found in Chapter III,
section 2 of [24]. By estimating the eigenvalues of the inverse operator, which is
compact, and using tools from functional analysis in Hilbert spaces, they deduce
that

|λεk − λk| ≤
Cλεk(λk)2

1− λkβεk
ε

1
2 .

Here, C is a positive constant, and βkε satisfies

0 ≤ βkε < λ−1
k ,

and

lim
ε→0

βkε = 0

for each k ≥ 1.

The problem, again in the linear setting and in dimension N = 1, with a = 1, was
recently studied by Castro and Zuazua in [9, 10]. In those articles the authors, using
the so-called WKB method which relays on asymptotic expansions of the solutions
of the problem, and the explicit knowledge of the eigenfunctions and eigenvalues of
the constant coefficient limit problem, proved

|λεk − λk| ≤ Ck4ε

and they also presented a variety of results on correctors for the eigenfunction
approximation. Let us mention that their method needs higher regularity on the
weight ρ, which must belong at least to C2(Ω) and that the bound holds for k ∼ ε−1.

More recently, Kenig, Lin and Shen [19] studied the linear problem in any di-
mension (allowing an ε dependance in the diffusion matrix of the elliptic operator)
and proved that for Lipschitz domains Ω one has

|λεk − λk| ≤ Cε| log(ε)| 12 +σ

for any σ > 0, C depending on k and σ.

Moreover, the authors show that if the domain Ω is more regular (C1,1 is enough)
they can get rid of the logarithmic term in the above estimate. However, no explicit
dependance of C on k is obtained in that work.

In this paper, in Section 5, we analyze the order of convergence of eigenvalues of
(1.4) to the ones of (1.5) and prove that,

|λεk − λk| ≤ Ck
2p
N ε

with C independent of k and ε. In this result, by λεk and λk we refer to the
variational eigenvalues of problems (1.4) and (1.5) respectively.

Some remarks are in order:
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(1) Classical estimates on the eigenvalues of second order, N -dimensional prob-

lems, show that λk and λεk behaves like ck
2
N , with c depending only on the

coefficients of the operator and N . Hence, the order of growth of the right-
hand side in the estimate of [24] is

λεk(λk)2ε
1
2

1− λkβεk
∼ k

6
N ε

1
2

1− λkβεk
≥ k 6

N ε
1
2 .

Moreover, the constant involved in their bound are unknown.
(2) If we specialize our result to the one dimensional linear case, we recover

the estimate obtained in [10]. Moreover, we are considering more general
weights ρ since very low regularity is needed and the estimate is valid for
any k. On the other hand, no corrector results are presented here.

(3) In our result very low regularity on the domain Ω is assumed in this work.
We only required the validity of the Hardy inequality (see [23])∫

Ω

|u|p

dp
≤ C

∫
Ω

|∇u|p,

where d(x) = dist(x, ∂Ω) and u ∈ W 1,p
0 (Ω). For instance, Lipschitz regu-

larity will do. So we get an improvement of the result in [19]. However, we
recall that the result in [19] allows for a dependence in ε on the operator.
Nevertheless, our result includes nonlinear eigenvalue problems, such as the
p−Laplacian eigenvalues.

Organization of the paper. The rest of the paper is organized as follows: In Sec-
tion 2, we collect some preliminary results on monotone operators that are needed
in order to deal with (1.1) and also we recall the definition and some properties of
G−convergence. In Section 3 we study the eigenvalue problem (1.1) for a fixed ε
and prove the isolation of the first eigenvalue together with a variational charac-
terization of the second eigenvalue (Theorems 3.4 and 3.5 respectively). In Section
4 we study the convergence of the eigenvalues of (1.1) and show that the first and
second eigenvalues converges to the ones of the limit problem (1.3) (Theorems 4.4
and 4.6 respectively). Finally, in Section 5, we address the problem of the rate of
convergence of the eigenvalues, the main result being Theorem 5.6.

2. Preliminary results

In this section we review some results gathered from the literature, enabling us
to clearly state our results and making the paper self-contained.

2.1. Monotone operators. We consider A : W 1,p
0 (Ω)→W−1,p′(Ω) given by

Au := −div(a(x,∇u)),

where a : Ω × RN → RN satisfies, for every ξ ∈ RN and a.e. x ∈ Ω, the following
conditions:

(H0) measurability: a(·, ·) is a Carathéodory function, i.e. a(x, ·) is continuous
a.e. x ∈ Ω, and a(·, ξ) is measurable for every ξ ∈ RN .

(H1) monotonicity: 0 ≤ (a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2).
(H2) coercivity: α|ξ|p ≤ a(x, ξ)ξ.
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(H3) continuity: a(x, ξ) ≤ β|ξ|p−1.
(H4) p−homogeneity: a(x, tξ) = tp−1a(x, ξ) for every t > 0.
(H5) oddness: a(x,−ξ) = −a(x, ξ).

Let us introduce Ψ(x, ξ1, ξ2) = a(x, ξ1)ξ1 + a(x, ξ2)ξ2 for all ξ1, ξ2 ∈ RN , and all
x ∈ Ω; and let δ = min{p/2, (p− 1)}.

(H6) equi-continuity:

|a(x, ξ1)− a(x, ξ2)| ≤ cΨ(x, ξ1, ξ2)(p−1−δ)/p(a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2)δ/p

(H7) cyclical monotonicity:
∑k
i=1 a(x, ξi)(ξi+1 − ξi) ≤ 0, for all k ≥ 1, and

ξ1, . . . , ξk+1, with ξ1 = ξk+1.
(H8) strict monotonicity: let γ = max(2, p), then

α|ξ1 − ξ2|γΨ(x, ξ1, ξ2)1−(γ/p) ≤ (a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2).

See [5], Section 3.4 where a detailed discussion on the relation and implications
of every condition (H0)–(H8) is given.

In particular, under these conditions, we have the following Proposition:

Proposition 2.1 ([5], Lemma 3.3). Given a(x, ξ) satisfying (H0)–(H8) there exists
a unique Carathéodory function Φ which is even, p−homogeneous strictly convex
and differentiable in the variable ξ satisfying

(2.1) α|ξ|p ≤ Φ(x, ξ) ≤ β|ξ|p

for all ξ ∈ RN a.e. x ∈ Ω such that

∇ξΦ(x, ξ) = pa(x, ξ)

and normalized such that Φ(x, 0) = 0.

2.2. Definition of G-convergence.

Definition 2.2. We say that the family of operators Aεu := −div(aε(x,∇u)) G-

converges to Au := −div(a(x,∇u)) if for every f ∈ W−1,p′(Ω) and for every fε
strongly convergent to f in W−1,p′(Ω), the solutions uε of the problem{

−div(aε(x,∇uε)) = fε in Ω

uε = 0 on ∂Ω

satisfy the following conditions

uε ⇀ u weakly in W 1,p
0 (Ω),

aε(x,∇uε) ⇀ a(x,∇u) weakly in (Lp(Ω))N ,

where u is the solution to the equation{
−div(a(x,∇u)) = f in Ω

u = 0 on ∂Ω.

For instance, in the linear periodic case, the family −div(A(x/ε)∇u) G-converges
to a limit operator −div(A∗∇u) where A∗ is a constant matrix which can be char-
acterized in terms of A and certain auxiliary functions. See for example [12].

It is shown in [5] that properties (H0)–(H8) are stable under G−convergence, i.e.
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Theorem 2.3 ([5], Theorem 2.3). If Aεu := −div(aε(x,∇u)) G−converges to
Au := −div(a(x,∇u)) and aε(x, ξ) satisfies (H0)–(H8), then a(x, ξ) also satisfies
(H0)–(H8).

In the periodic case, i.e. when aε(x, ξ) = a(x/ε, ξ), and a(·, ξ) is Q−periodic for
every ξ ∈ RN , one has that Aε G−converges to the homogenized operator Ah given
by Ahu = −div(ah(∇u)), where ah : RN → RN can be characterized by

(2.2) ah(ξ) = lim
s→∞

1

sN

∫
Qs(zs)

a(x,∇χξs + ξ)dx

where ξ ∈ RN , Qs(zs) is the cube of side length s centered at zs for any family
{zs}s>0 in RN , and χξs is the solution of the following auxiliary problem

(2.3)

{
−div(a(x,∇χξs + ξ)) = 0 in Qs(zs)

χξs ∈W
1,p
0 (Qs(z)),

see [8] for the proof.

In the general case, one has the following compactness result due to [11]

Proposition 2.4 ([11], Theorem 4.1). Assume that aε(x, ξ) satisfies (H1)–(H3)
then, up to a subsequence, Aε G−converges to a maximal monotone operator A
whose coefficient a(x, ξ) also satisfies (H1)–(H3)

3. Properties of the eigenvalues and eigenfunctions

This section is devoted to the study of the following (nonlinear) eigenvalue prob-
lem

(3.1)

{
−div(a(x,∇u)) = λρ|u|p−2u in Ω

u = 0 on ∂Ω

where a(x, ξ) verifies (H0)–(H8) and

(3.2) 0 < ρ− ≤ ρ(x) ≤ ρ+ <∞ a.e. in Ω.

The purpose of the section is to extend to (3.1) the results that are well-known for
the p−Laplacian case, i.e. the existence of a sequence of variational eigenvalues,
the simplicity and isolation of the first eigenvalue, etc.

The methods in the proofs here very much resembles the ones used for the
p−Laplacian and we refer the reader to the articles [2, 3, 4, 17, 22].

We denote by

Σ := {λ ∈ R : there exists u ∈W 1,p
0 , nontrivial solution to (3.1)},

the spectrum of (3.1). It is immediate to check that Σ ⊂ (0,+∞) and that it is
closed.

By means of the critical point theory of Ljusternik–Schnirelmann it is straight
forward to see that we can obtain a discrete sequence of variational eigenvalues
{λk}k∈N tending to +∞ (see [11]). We denote by Σvar the sequence of variational
eigenvalues.



EIGENVALUE HOMOGENIZATION 7

The question of whether Σvar = Σ or not is only known to hold in the liner
setting and also for the p−Laplacian in one space dimension. It is an open problem
in any other situation. See [13]. See also [14] where this fact is proved for (3.1) in
one space dimension.

The kth–variational eigenvalue is given by

λk = inf
C∈Γk

sup
v∈C

∫
Ω

Φ(x,∇v)∫
Ω
ρ|v|p

where Φ(x, ξ) is the potential function given in Proposition 2.1,

Γk = {C ⊂W 1,p
0 (Ω) : C compact, C = −C, γ(C) ≥ k}

and γ(C) is the Kranoselskii genus, see [25] for the definition and properties of γ.

The following maximum principle for quasilinear operators was proved in [18]
and it will be most useful in the sequel.

Theorem 3.1 ([18], Proposition 3.2). Assume that u ∈W 1,p
loc (Ω) satisfies∫

Ω

a(x,∇u)∇φ+ ρ|u|p−2uφ ≥ 0, ∀φ ∈ C∞0 (Ω), φ ≥ 0.

Consider its zero set

Z := {x ∈ Ω: ũ(x) = 0},
where ũ is the p−quasi continuous representative of u.

Then, either Capp(Z) = 0 or u = 0.

The positivity of the first eigenfunction together with the simplicity of the first
eigenvalue was proved in [18].

Theorem 3.2 ([18], Section 6.2). Let u1 be an eigenfunction corresponding to λ1,
then u1 does not changes sign on Ω. Also, the first eigenvalue is simple, that is,
any other eigenfunction u associated to λ1 is a multiple of u1.

Next, we show that the first eigenvalue λ1 is isolated in Σ. The key step in the
proof of the isolation is the next result:

Proposition 3.3. Let λ ∈ Σ and let w be an eigenfunction corresponding to λ 6= λ1.
Then, w changes sign on Ω, that is u+ 6= 0 and u− 6= 0. Moreover, there exists a
positive constant C independent of w and λ such that

|Ω+| ≥ Cλ−γ , |Ω−| ≥ Cλ−γ ,
where Ω± denotes de positivity and the negativity set of w respectively, γ is a positive
parameter, and C depends on N, p, ρ+ and the coercivity constant α in (H2). Here,
γ = (N − p)/p if p < N , γ = 1 if p = N , and γ = (p−N)/N if p > N .

Proof. Let w be an eigenfunction corresponding to λ 6= λ1 and let u be an eigen-
function corresponding to λ1.

Assume that w does not changes sign on Ω. We can assume that w ≥ 0 and
u ≥ 0 in Ω. For each k ∈ N, let us truncate u as follows:

uk(x) := min{u(x), k}
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and for each ε > 0 we consider the function upk/(w + ε)p−1 ∈W 1,p
0 (Ω). We get

(3.3)

∫
Ω

a(x,∇u)∇u−a(x,∇w)∇
( upk

(w + ε)p−1

)
=

∫
Ω

λ1ρu
p−λρwp−1 upk

(w + ε)p−1

We claim that the integral in the left hand side in (3.3) is non-negative. Indeed, let
Φ be the potential function given by Proposition 2.1. Then, as Φ is p−homogeneous
in the second variable we have (see [18], p.19, 5.15)

a(x,∇u)∇u− a(x,∇w)∇
( upk

(w + ε)p−1

)
=

p
{

Φ(x,∇u) + (p− 1)Φ(x,
uk

w + ε
∇w)− a(x,

uk
w + ε

∇w)∇uk
}
.

(3.4)

By using the property that ξ 7→ Φ(x, ξ) is convex, we easily deduce that (3.4) is
nonnegative. Therefore, coming back to (3.3) we get∫

Ω

λ1ρu
p − λρwp−1 upk

(w + ε)p−1
≥ 0.(3.5)

Since by the strong maximum principle for quasilinear operators (Theorem 3.1) the
set {w̃ = 0}, where w̃ is the p−quasi continuous representative of w, is of measure
zero then (3.5) is equivalent to

(3.6)

∫
{w>0}

λ1ρu
p − λρwp−1 upk

(w + ε)p−1
≥ 0.

Now, letting ε→ 0 and k →∞ in (3.6), we get

(λ1 − λ)

∫
Ω

ρ|u|p ≥ 0

which is a contradiction. Therefore w changes sign on Ω.

The second part of the proof follows almost exactly as in the p−Laplacian case.
Let us suppose first that p < N . In fact, as w changes sign, we can use w+ as a
test function in the equation satisfied by w to obtain∫

Ω

a(x,∇w)∇w+ = λ

∫
Ω

ρ|w|p−2ww+

= λ

∫
Ω+

ρ|w|p

≤ λρ+

∫
Ω+

|w|p

≤ λρ+‖w+‖p
Lp∗ (Ω)

|Ω+|p/(N−p)

≤ λρ+Kp|Ω+|p/(N−p)
∫

Ω

|∇w+|p,

where Kp is the optimal constant in the Sobolev-Poincaré inequality.

Now, by (H2), it follows that∫
Ω

a(x,∇w)∇w+ ≥ α
∫

Ω

|∇w+|p.
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Combining these two inequalities, we obtain

|Ω+| ≥
( α

Kpλρ+

)(N−p)/p
.

The estimate for |Ω−| follows in the same way.

The remaining cases are similar: p = N follows by using the Sobolev’s inclusion

W 1,N
0 (Ω) ⊂ LN (Ω), and the case p > N follows from Morrey’s inequality. �

Now we are ready to prove the isolation of λ1.

Theorem 3.4. The first eigenvalue λ1 is isolated. That is, there exists δ > 0 such
that (λ1, λ1 + δ) ∩ Σ = ∅.

Proof. Assume by contradiction that there exists a sequence λj ∈ Σ such that
λj → λ1 as j →∞. Let uj be the associated eigenfunctions normalized such that∫

Ω

ρ|uj |p = 1.

By (H2) it follows that the sequence {uj}j∈N is bounded in W 1,p
0 (Ω) so, passing to

a subsequence if necessary, there exists u ∈W 1,p
0 (Ω) such that

uj ⇀ u weakly in W 1,p
0 (Ω)

uj → u strongly in Lp(Ω)

Now, as the functional

v 7→
∫

Ω

Φ(x,∇v)

is weakly sequentially lower semicontinuous (see [5]), it follows that u is an eigen-
function associated to λ1.

Now, by Theorem 3.2, we can assume that u ≥ 0 and by Proposition 3.3 we have
|{u = 0}| > 0. But this is a contradiction to the strong maximum principle in [18],
Theorem 3.1. �

As a consequence of Theorem 3.4 it makes sense to define the second eigenvalue
Λ2 as the infimum of the eigenvalues greater than λ1. Next, we show that this
second eigenvalue Λ2 coincides with the second variational eigenvalue λ2. This
result is known to hold for the p−Laplacian (see [3]) and we extended here for the
general case (3.1).

Theorem 3.5. Let λ2 be the second variational eigenvalue, and let Λ2 be defined
as

Λ2 = inf{λ > λ1 : λ ∈ Σ}.
Then

λ2 = Λ2.

Proof. The proof of this Theorem follows closely the one in [15] where the analogous
result for the Steklov problem for the p−Laplacian is analyzed.

Let us call

µ = inf

{∫
Ω

Φ(x,∇u) : ‖ρu‖pLp(Ω) = 1 and |Ω±| > cλ2

}
,
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where cλ2
:= Cλ−γ2 and C, γ are given by Proposition 3.3.

If we take u2 an eigenfunction of (3.1) associated with Λ2 such that ‖ρu‖pLp(Ω) =

1, by Theorem 3.3, we have that u2 is admissible in the variational characterization
of µ. It follows that µ ≤ Λ2. The proof will follows if we show that µ ≥ λ2. The
inverse of µ can be written as

1

µ
= sup

{∫
Ω

ρ|u|p :

∫
Ω

Φ(x,∇u) = 1 and |Ω±| > cλ2

}
.

The supremum is attained by a function w ∈ W 1,p
0 (Ω) such that

∫
Ω

Φ(x,∇w) = 1

and |Ω±| > cλ2
. As w+ and w− are not identically zero, if we consider the set

C = span{w+, w−} ∩ {u ∈W 1,p
0 (Ω): ‖u‖W 1,p

0 (Ω) = 1},

then γ(C) = 2. Hence, we obtain

(3.7)
1

λ2
≥ inf
u∈C

∫
Ω

ρ|u|p

but, as w+ and w− have disjoint support, it follows that the infimum (3.7) can be
computed by minimizing the two variable function

G(a, b) := |a|p
∫

Ω

ρ|w+|p + |b|p
∫

Ω

ρ|w−|p

with the restriction

H(a, b) := |a|p
∫

Ω

Φ(x,∇w+) + |b|p
∫

Ω

Φ(x,∇w−) = 1.

Now, an easy computation shows that

1

λ2
≥ min

{ ∫
Ω
ρ|w+|p∫

Ω
Φ(x,∇w+)

,

∫
Ω
ρ|w−|p∫

Ω
Φ(x,∇w−)

}
.

We can assume that the minimum in the above inequality is realized with w+.
Then, for t > −1 the fuction w+tw+ is admissible in the variational characterization
of µ, hence if we denote

Q(t) :=

∫
Ω
ρ|w + tw+|p∫

Ω
Φ(x,∇w + t∇w+)

,

we get

0 = Q′(0) = p

∫
Ω

ρ|w|p−2ww+ − p

µ

∫
Ω

a(x,∇w)∇w+,

therefore ∫
Ω
ρ|w+|p∫

Ω
Φ(x,∇w+)

=
1

µ

and the result follows. �
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4. Convergence of eigenvalues

In this section we analyze the convergence of the spectrum Σε of (1.1) to the
spectrum Σh of the homogenized limit problem (1.3)

In the linear case, it is known (see [1]) that the G-convergence of the opera-
tors implies the convergence of their spectra in the sense that the kth–variational
eigenvalue λεk converges to the kth–variational eigenvalue of the limit problem.

We want to study the convergence of the spectrum in the non-linear case. We
begin with a general result for bounded sequences of eigenvalues. This result was
already proved in [5] but we include here a simpler proof for the reader’s conve-
nience.

Theorem 4.1. Let Ω ⊂ RN be bounded. Let λε ∈ Σε be a sequence of eigenvalues
of the problems (1.1) with {uε}ε>0 associated normalized eigenfunctions.

Assume that the sequence of eigenvalues is convergent

lim
ε→0+

λε = λ.

Then, λ ∈ Σh and there exists a sequence εj → 0+ such that

uεj ⇀ u weakly in W 1,p
0 (Ω)

with u a normalized eigenfunction associated to λ.

Remark 4.2. In most applications, we take the sequence λε to be the sequence of
the kth–variational eigenvalue of (1.1). In this case, it is not difficult to check that
the sequence {λεk}ε>0 is bounded and so, up to a subsequence, convergent.

In fact, by using the variational characterization of λεk, (2.1) and our assumptions
on ρ we have that

α

ρ+

∫
Ω
|∇v|p∫

Ω
|v|p

≤
∫

Ω
Φε(x,∇v)∫
Ω
ρε|v|p

≤ β

ρ−

∫
Ω
|∇v|p∫

Ω
|v|p

,

therefore
α

ρ+
µk ≤ λεk ≤

β

ρ−
µk

where µk is the kth variational eigenvalue of the p−Laplacian.

Proof. As λε is bounded and uε is normalized, by (H2) it follows that the sequence

{uε}ε>0 is bounded in W 1,p
0 (Ω).

Therefore, up to some sequence εj → 0, we have that

uεj ⇀ u weakly in W 1,p
0 (Ω)

uεj → u strongly in Lp(Ω).
(4.1)

with u also normalized.

We define the sequence of functions fε := λερε|uε|p−2uε. By using the fact that
ρε ⇀ ρ̄ *-weakly in L∞(Ω) together with (4.1) it follows that

fεj ⇀ f := λρ̄|u|p−2u weakly in Lp(Ω)

and therefore
fεj → f strongly in W−1,p′(Ω).
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By Proposition 2.4 we deduce that uεj converges weakly in W 1,p
0 (Ω) to the unique

solution v of the homogenized problem{
−div(ah(x,∇v)) = λρ̄|u|p−2u in Ω

v = 0 on ∂Ω.

By uniqueness of the limit, v = u is a normalized eigenfunction of the homogenized
problem. �

Remark 4.3. In the case where the sequence λε is the sequence of the kth–variational
eigenvalues of (1.1) it would be desirable to prove that it converges to the kth–
variational eigenvalue of the homogenized problem (1.3) (see Remark 4.2).

Unfortunately, we are able to prove this fact only for the first and second varia-
tional eigenvalues in the general setting.

In the one dimensional case, one can be more precise and this fact holds true.
See [14].

In section 5, we address this problem in the more specific situation of aε(x, ξ) =
a(x, ξ) and ρε(x) = ρ(x/ε) and prove that this fact also holds true and, moreover,
we provide with an estimate for the error term |λεk − λk|.

4.1. Convergence of the first and second eigenvalue. The first eigenvalue of
(1.1) is the infimum of the Rayleigh quotient

λε1 = inf
v∈W 1,p

0 (Ω)

∫
Ω

Φε(x,∇v)∫
Ω
ρε|v|p

.

In the following result we prove the convergence of λε1 when ε tends to zero.

Theorem 4.4. Let be λε1 the first eigenvalue of (1.1) and λ1 the first eigenvalue
of the limit problem (1.3), then

lim
ε→0

λε1 = λ1.

Moreover, if uε1 and u1 are the (normalized) nonnegative eigenfunctions of (1.1)
and (1.3) associated to λε1 and λ1 respectively, then

uε1 ⇀ u1 weakly in W 1,p
0 (Ω).

Remark 4.5. In [5] using the theory of convergence of monotone operators the
authors obtain the conclusions of Theorem 4.4. We propose here a simple proof of
this result which exploits the fact that the first eigenfunction has constant sign.

Proof. Let uε1 be the nonnegative normalized eigenfunction associated to λε1, the
uniqueness of uε1 follows from Theorem 3.2.

By Theorem 4.1, up to some sequence, uε1 converges weakly in W 1,p
0 (Ω) to u, an

eigenfunction of the homogenized eigenvalue problem associated to λ = limε→0 λ
ε
1.

But then, u is a nonnegative normalized eigenfunction of the homogenized prob-
lem (1.3) and so u = u1. Therefore λ = λ1 and the uniqueness imply that the
whole sequences λε1 and uε1 are convergent. �
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Now we turn our attention to the second eigenvalue. For this purpose we use the
fact that eigenfunctions associated to the second variational eigenvalue of problems
(1.1) and (1.3) have, at least, two nodal domains (cf. Proposition 3.3).

Theorem 4.6. Let λε2 be the second eigenvalue of (1.1) and λ2 be the second
eigenvalue of the homogenized problem (1.3). Then

lim
ε→0

λε2 = λ2

Proof. Let u2 be a normalized eigenfunction associated to λ2 and let Ω± be the
positivity and the negativity sets of u2 respectively.

We denote by uε± the first eigenfunction of (1.1) in Ω± respectively. Extending
uε± to Ω by 0, these function have disjoint supports and therefore they are linearly

independent in W 1,p
0 (Ω).

Let S be the unit sphere in W 1,p
0 (Ω) and we define the set Cε2 as

Cε2 := span{uε+, uε−} ∩ S.

Clearly Cε2 is compact, symmetric and γ(Cε2) = 2. Hence,

λε2 = inf
C∈Γ2

sup
v∈C

∫
Ω

Φε(x,∇v)∫
Ω
ρε|v|p

≤ sup
v∈Cε2

∫
Ω

Φε(x,∇v)∫
Ω
ρε|v|p

As Cε2 is compact, the supremum is achieved for some vε ∈ Cε2 which can be
written as

vε = aεu
ε
+ + bεu

ε
−

with aε, bε ∈ R such that |aε|p + |bε|p = 1. Since the functions uε+ and uε− have
disjoint supports, we obtain, using the p−homogeneity of Φε (see Proposition 2.1),

λε2 ≤
∫

Ω
Φε(x,∇vε)∫
Ω
ρε|vε|p

=
|aε|p

∫
Ω+ Φε(x,∇uε+) + |bε|p

∫
Ω−

Φε(x,∇uε−)∫
Ω
ρε|vε|p

Using the definition of uε±, the above inequality can be rewritten as

(4.2) λε2 ≤
|aε|pλε1,+

∫
Ω+ ρε|uε+|p + |bε|pλε1,−

∫
Ω−

ρε|uε−|p∫
Ω
ρε|vε|p

≤ max{λε1,+, λε1,−}

where λε1,± is the first eigenvalue of (1.1) in the nodal domain Ω± respectively.

Now, using Theorem 4.4, we have that λε1,± → λ1,± respectively, where λ1,±
are the first eigenvalues of (1.3) in the domains Ω± respectively. Moreover, we
observe that these eigenvalues λ1,± are both equal to the second eigenvalue λ2 in
Ω, therefore from (4.2), we get

λε2 ≤ λ2 + δ

for δ arbitrarily small and ε tending to zero. So,

(4.3) lim sup
ε→0

λε2 ≤ λ2

On the other hand, suppose that limε→0 λ
ε
2 = λ where λ ∈ Σh. We claim that

λ > λ1.

In fact, we have that uε2 ⇀ u in W 1,p
0 (Ω) where u is a normalized eigenfunction

associated to λ. As the measure of the positivity and negativity sets of uε2 are
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bounded below uniformly in ε > 0 (see Proposition 3.3), we have that either u
changes sign or |{u = 0}| > 0. In any case, this implies our claim.

Then, as λ > λ1 it must be λ ≥ λ2. Then

(4.4) λ2 ≤ λ = lim
ε→0

λε2

Combining (4.3) and (4.4) we obtain the desired result. �

5. Rates of convergence

In this section we consider the eigenvalue problem in which the operator is in-
dependent on ε and the dependance on ε only appears in an oscillating weight
ρε.

We will prove that in this case the kth–variational eigenvalue of problem (1.4)
converges to the kth–variational eigenvalue of the limit problem (1.5).

Moreover, our goal is to estimate the rate of convergence between the eigenvalues.
That is, we want to find explicit bounds for the error |λεk − λk|.

We begin this section by proving some auxiliary results that are essential in the
remaining of the paper.

We first prove a couple of lemmas in order to prove Theorem 5.5 which is a
generalization for p 6= 2 of Oleinik’s Lemma [24].

Lemma 5.1. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary and, for
δ > 0, let Gδ be a tubular neighborhood of ∂Ω, i.e. Gδ = {x ∈ Ω: dist(x, ∂Ω) < δ}.

Then
‖v‖pLp(Gδ)

≤ CH,p(Ω)δp‖∇v‖pLp(Ω),

for every v ∈ W 1,p
0 (Ω), where CH,p(Ω) is the best constant in the Hardy inequality

(see [23])

(5.1)

∫
Ω

|v|p

dp
≤ CH,p(Ω)

∫
Ω

|∇u|p

and d(x) = dist(x, ∂Ω).

Proof. The proof follows by noticing that if x ∈ Gδ, then d(x) ≤ δ, so, by (5.1) we
get ∫

Gδ

|v|p =

∫
Gδ

|v|p

dp
dp ≤ δp

∫
Ω

|v|p

dp
≤ CH,p(Ω)δp

∫
Ω

|∇u|p.

The proof is now complete. �

Remark 5.2. Observe that the only requirement on the regularity of ∂Ω is the
validity of Hardy’s inequality (5.1). Therefore, much less than Lipschitz will do.
We refer the reader to the book of Maz’ja [23].

Now we need an easy Lemma that computes the Poincaré constant on the cube
of side ε in terms of the Poincaré constant of the unit cube. Although this result
is well known and its proof follows directly by a change of variables, we choose to
include it for the sake of completeness.
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Lemma 5.3. Let Q be the unit cube in RN and let cq be the Poincaré constant in
the unit cube in Lq, q ≥ 1, i.e.

‖u− (u)Q‖Lq(Q) ≤ cq‖∇u‖Lq(Q), for every u ∈W 1,q(Q),

where (u)Q is the average of u in Q. Then, for every u ∈W 1,q(Qε) we have

‖u− (u)Qε‖Lq(Qε) ≤ cqε‖∇u‖Lq(Qε),
where Qε = εQ.

Proof. Let u ∈ W 1,q(Qε). We can assume that (u)Qε = 0. Now, if we denote
uε(y) = u(εy), we have that uε ∈W 1,q(Q) and by the change of variables formula,
we get ∫

Qε

|u|q =

∫
Q

|uε|qεN ≤ cqqεN
∫
Q

|∇uε|q = cqqε
q

∫
Qε

|∇u|q.

The proof is now complete. �

The next Lemma is the final ingredient in the estimate of Theorem 5.5.

Lemma 5.4. Let Ω ⊂ RN be a bounded domain and denote by Q the unit cube in
RN . Let g ∈ L∞(RN ) be a Q-periodic function such that ḡ = 0. Then the inequality∣∣∣∣∫

Ω1

g(xε )v

∣∣∣∣ ≤ ‖g‖L∞(RN )c1ε‖∇v‖L1(Ω)

holds for every v ∈W 1,1
0 (Ω), where c1 is the Poincaré constant given in Lemma 5.3

and Ω1 ⊂ Ω is given by

Ω1 =
⋃
Qz,ε, Qz,ε := ε(z +Q) ⊂ Ω, z ∈ ZN .

Proof. Denote by Iε the set of all z ∈ ZN such that Qz,ε := ε(z +Q) ⊂ Ω. Let us
consider the function v̄ε given by the formula

v̄ε(x) =
1

εN

∫
Qz,ε

v(y)dy

for x ∈ Qz,ε. Then we have∫
Ω1

gεv =

∫
Ω1

gε(v − v̄ε) +

∫
Ω1

gεv̄ε.(5.2)

Now, by Lema 5.3 we get

‖v − v̄ε‖L1(Ω1) =
∑
z∈Iε

∫
Qz,ε

|v − v̄ε|dx

≤ c1ε
∑
z∈Iz,ε

∫
Qz,ε

|∇v(x)|dx

≤ c1ε‖∇u‖L1(Ω).

(5.3)

Finally, since ḡ = 0 and since g is Q−periodic, we get

(5.4)

∫
Ω1

gεv̄ε =
∑
z∈Iε

v̄ε |Qz,ε
∫
Qz,ε

gε = 0.
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Now, combining (5.3) and (5.4) we can bound (5.2) by∣∣∣ ∫
Ω1

gεv
∣∣∣ ≤ ‖g‖L∞(RN )c1ε‖∇v‖L1(Ω).

This finishes the proof. �

The next Theorem is essential to estimate the rate of convergence of the eigenval-
ues since it allows us to replace an integral involving a rapidly oscillating function
with one that involves its average in the unit cube.

Theorem 5.5. Let g ∈ L∞(RN ) be a Q−periodic function such that 0 < g− ≤ g ≤
g+ <∞. Then,∣∣∣ ∫

Ω

(gε(x)− ḡ)|u|p
∣∣∣ ≤ ‖g − ḡ‖L∞(RN )ε‖∇u‖pLp(Ω)

[ p

µp−1
1

c1 + CH,p(Ω)Np/2εp−1
]

≤ Cε‖∇u‖pLp(Ω),

for every u ∈ W 1,p
0 (Ω). The constant CH,p(Ω) is the best constant in Hardy’s

inequaity (5.1), c1 is the optimal constant in Poincaré’s inequality in L1(Q) and
µ1 is the first eigenvalue of the p−Laplacian in Ω.

Proof. Let ε > 0 be fixed, and let Ω1 be the set defined in Lemma 5.4.

Denote by G := Ω \Ω1 and observe that G ⊂ G√Nε. In fact, with the notations
of Lemma 5.4, if x ∈ G then there exists a cube Q = Qz,ε such that x ∈ Q and

Q ∩ ∂Ω 6= ∅. Therefore, dist(x, ∂Ω) ≤ diam(Q) =
√
Nε.

Now, denote by h = g − ḡ and so, by Lemma 5.1,

(5.5)
∣∣∣ ∫
G

hε|u|p
∣∣∣ ≤ CH,p(Ω)‖h‖L∞(RN )(

√
Nε)p‖∇u‖pLp(Ω).

Now, to bound the integral in Ω1 we use Lemma 5.4 to obtain

(5.6)
∣∣∣ ∫

Ω1

hε|u|p
∣∣∣ ≤ ‖h‖L∞(RN )c1ε‖∇(|u|p)‖L1(Ω).

An easy computation shows that

(5.7) ‖∇(|u|p)‖L1(Ω) ≤ p‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω) ≤

p

µp−1
1

‖∇u‖pLp(Ω).

Finally, combining (5.5), (5.6) and (5.7) we obtain the desired result. �

Now we are ready to prove the main result of this section.

Theorem 5.6. Let λεk be the kth–variational eigenvalue associated to equation (1.4)
and let be λk be the kth–variational eigenvalue associated to the limit problem (1.5).
Then there exists a constant C > 0 independent of the parameters ε and k such
that

|λk − λεk| ≤ Ck
2p
N ε.
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Proof. Let δ > 0 and let Gkδ ⊂ W 1,p
0 (Ω) be a compact, symmetric set of genus k

such that

λk = inf
G∈Γk

sup
u∈G

∫
Ω

Φ(x,∇u)

ρ̄
∫

Ω
|u|p

= sup
u∈Gkδ

∫
Ω

Φ(x,∇u)

ρ̄
∫

Ω
|u|p

+O(δ).

We use now the set Gkδ , which is admissible in the variational characterization
of the kth–eigenvalue of (1.4), in order to found a bound for it as follows,

λεk ≤ sup
u∈Gkδ

∫
Ω

Φ(x,∇u)∫
Ω
ρε|u|p

= sup
u∈Gkδ

∫
Ω

Φ(x,∇u)

ρ̄
∫

Ω
|u|p

ρ̄
∫

Ω
|u|p∫

Ω
ρε|u|p

.(5.8)

To bound λεk we look for bounds of the two quotients in (5.8). For every function
u ∈ Gkδ we have that∫

Ω
Φ(x,∇u)

ρ̄
∫

Ω
|u|p

≤ sup
v∈Gkδ

∫
Ω

Φ(x,∇v)

ρ̄
∫

Ω
|v|p

= λk +O(δ).(5.9)

Since u ∈ Gkδ ⊂W
1,p
0 (Ω), by Theorem 5.5 we obtain that

ρ̄
∫

Ω
|u|p∫

Ω
ρε|u|p

≤ 1 + Cε
‖∇u‖pLp(Ω)∫

Ω
ρε|u|p

.(5.10)

Now, by (3.2), (2.1) together with (5.9), we have

‖∇u‖pLp(Ω)∫
Ω
ρε|u|p

≤ ρ̄

ρ−

‖∇u‖pLp(Ω)∫
Ω
ρ̄|u|p

≤ ρ̄

ρ−
1

α

∫
Ω

Φ(x,∇u)∫
Ω
ρ̄|u|p

≤ ρ̄

ρ−
1

α
(λk +O(δ)).

(5.11)

Then combining (5.8), (5.9), (5.10) and (5.11) we find that

λεk ≤ (λk +O(δ)) (1 + Cε(λk +O(δ))) .

Letting δ → 0 we get

λεk − λk ≤ Cελ2
k.(5.12)

In a similar way, interchanging the roles of λk and λεk, we obtain

λk − λεk ≤ Cε(λεk)2.(5.13)

So, from (5.12) and (5.13), we arrive at

|λεk − λk| ≤ Cεmax{λk, λεk}2.

In order to complete the proof of the Theorem, we need an estimate on λk
and λεk. But this follows by comparison with the kth–variational eigenvalue of the
p−Laplacian, µk and the bound on µk proved in [16].
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In fact, from (2.1) we have

α

ρ̄

∫
Ω
|∇u|p∫

Ω
|u|p

≤
∫

Ω
Φ(x,∇u)∫
Ω
ρ̄|u|p

≤ β

ρ̄

∫
Ω
|∇u|p∫

Ω
|u|p

,

α

ρ+

∫
Ω
|∇u|p∫

Ω
|u|p

≤
∫

Ω
Φ(x,∇u)∫
Ω
ρε|u|p

≤ β

ρ−

∫
Ω
|∇u|p∫

Ω
|u|p

,

from where it follows that
α

ρ̄
µk ≤ λk ≤

β

ρ̄
µk,

α

ρ+
µk ≤ λεk ≤

β

ρ−
µk.

Now, in [16], it is shown that

µk ≤ Ckp/N

and so the proof is complete. �

Remark 5.7. As we mentioned in the introduction, in the linear case and in one
space dimension Castro and Zuazua [10] prove that, for k < Cε−1,

|λεk − λk| ≤ Ck4ε.

If we specialize our result to this case, we get the same bound. The advantage of
our method is that very low regularity on ρ is needed (only L∞). However, the
method in [10], making use of the linearity of the problem, gives precise information
about the behavior of the eigenfunctions uεk.

Remark 5.8. In [19], Kenig, Lin and Shen studied the linear case in any space
dimension (allowing a periodic oscillation diffusion matrix) and prove the bound

|λεk − λk| ≤ Cε| log ε|1+σ.

for some σ > 0 and C depending on σ and k (The authors can get rid off the
logarithmic term assuming more regularity on Ω). If we specialize our result to
this case, we cannot treat an ε dependance on the operator, but we get an explicit
dependance on k on the estimate and assuming very low regularity on Ω (Lipschitz
is more than enough) we get a better dependance on ε.
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1. Grégoire Allaire, Shape optimization by the homogenization method, Applied Mathematical
Sciences, vol. 146, Springer-Verlag, New York, 2002. MR 1859696 (2002h:49001)

2. A. Anane, O. Chakrone, and M. Moussa, Spectrum of one dimensional p-Laplacian operator
with indefinite weight, Electron. J. Qual. Theory Differ. Equ. (2002), No. 17, 11. MR 1942086

(2004b:34044)
3. A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear partial

differential equations (Fès, 1994), Pitman Res. Notes Math. Ser., vol. 343, Longman, Harlow,
1996, pp. 1–9. MR 1417265 (97k:35190)
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399–432. MR 1186684 (94d:35014)

9. C. Castro and E. Zuazua, High frequency asymptotic analysis of a string with rapidly oscillat-

ing density, European J. Appl. Math. 11 (2000), no. 6, 595–622. MR 1811309 (2001k:34093)
10. Carlos Castro and Enrique Zuazua, Low frequency asymptotic analysis of a string with

rapidly oscillating density, SIAM J. Appl. Math. 60 (2000), no. 4, 1205–1233 (electronic).
MR 1760033 (2001h:34117)
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