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Abstract 

In this work we present a model of style emergence based on 
consensus models. Given a set of agents, each one with its own 
style modeled by some real number between 0 and 10, we define a 
network of relationships; two agents are connected when the 
distance of their styles is lower than certain fixed value. Only 
connected agents can interact, although the influence is not based 
on the present values of their styles but on the values they had 
some time ago, that is, their history or tradition. The system 
reaches several non-interacting genres or style clusters, and this 
dynamic yields more styles than the ones obtained without the 
influence delay.  (Keywords: flocking, evolution, networks, musi-
cal styles). 

 

Introduction 
 

In the second half of the 19
th

 century several new popular 

music genres emerged across the Americas, like Blues in the 

south of United States, Candombe  in Uruguay and Argentina, 
Habanera in Cuba, Samba in Brazil, or Tango in Argentina, to 

mention only a few. All of them display a mixture of character-

istics from European and African music. As E. Sábato said 

[13], 

 

It may be painful that history is always novel and therefore in-

variably confusing and inclined to mixtures. But that is what 

makes it so exciting. The self-identity is to be found in Logic or 

Mathematics: nobody can request History to produce something 

as pure (and also boring) as a cone or a sine wave. The inevita-

ble part of the hybridity is always fruitful: enough to think of 

the Gothic style, and the black music in the United States. 

 

Several works analyzed the influence of different musical 

traditions when they interact, and the apparition of new genres, 

see for example the article of Vega [19] about the origins of 

Tango, the one of Schuller [14] on the origins of jazz, the one 

of Tully [18] about Blues, or the work of Szwed and Marks 
[16] analyzing the transformation of the European dances due 

to Afro-american influences.  

 

In this work, we simulate the evolution of genres in a system 

of interacting agents. Each agent represents a different style, 

symbolized by a real number in the interval [0,10]. For exam-
ple, a style may correspond in our model to a single musical 

feature such as the relative frequency of patterns of three con-

secutive notes determining two specific intervals among all 

such three notes patterns in the music, which has been used to 

distinguish Baroque from Classical and Romantic styles by 

Rodriguez Zivic et al. in [12].  

 
In this way, we are considering a single characteristic of musi-

cal genres. Of course, this is an oversimplification, although 

high-dimensional models can be considered with similar re-

sults.   

 

We assume that the styles come from different origins, assign-
ing the initial values at random. Note that each agent-style may 

correspond to the practice of a group of musicians and, con-

versely, a single musician may cultivate distinct styles. During 

some transient time, the agents modify slightly their values, 

which can be understood as a consequence of lack of instru-

ments, individual explorations, new influences –or weakening 
of their old influences–.  

 

Moreover, we construct a network structure among the agents, 

and we shall say that two agents are connected whenever the 

difference between their styles is less than some threshold 

value. This restriction accounts for the fact that only those 
features of African and European music that were significantly 

similar took part in the hybridization process that gave origin 

to genres such as jazz or tango. For instance, in the case of 

jazz, the more complex polyrhythmic patterns of African mu-

sic did not survive, and only the simplest polyrhythms inter-

acted with European regular rhythmic schemas to generate the 
syncopated style of early jazz [14]. In the multidimensional 

case, musical measures of similarity, combining various 

rhythmic, melodic, harmonic and timbre parameters may be 

used to determine the threshold of connectedness, see [1]. 

 

Observe that this restriction arose also as a consequence of the 
local character of interactions, and the fact that, in most cases, 

only musicians playing in the same geographical area could  

interact and transfer their knowledge and traditions, see for 

example [8]. Today, mass media, internet and different com-

munication tools enable the musicians to connect across large 

geographical distances, and several works where the networks 
of musicians and genres were modeled by using on-line stores, 

collaborations among musicians, and preferences of people, 

see [4], [7], [11].   However, the interplay of musicians in 

America during the 19
th
 century was strongly dependent on 

their physical interaction, due to the lack of sheet music and 

recording devices among non-reading musicians from popular 
sectors, see [3], [15].  

 

Finally, a crucial aspect in the interactions in this model is the 

existence of temporal delays. Delays reflect the fact that, when 

musicians interact, they interchange some characteristics not 

just of their present style but also of their past styles and their  
musical traditions.  

 

The evolution of styles is similar to opinion dynamic models 

with a continuum of opinions [6], [17], and flocking models 

[5], [20]. Each agent replaces its own style with a weighted 

average of the styles of their neighbors. The system evolves 
until some equilibrium is reached, with all the agents concen-

trated on few genres. However, the number of different genres 

in the final state is greater than the number of genres with the 

same initial conditions and a non-delayed dynamics.   

 



Figure 1. Histogram of the number of final genres. 
 
 
 
 

We wish to stress that delayed interactions were studied in 

flocking and swarming models (see for example [2], [10]), 

since the coordination of robots for exploration must consider 

the communication delay. However, in flocking models we 

have an additional repulsive interaction, since the birds, fishes 
or robots try to avoid collisions. So, the effect observed here is 

new, and it could be of interest in other models.  

 

On the other hand, the introduction of the temporal delay 

makes no sense in opinion dynamic models. In fact, nobody 

will try to reach a consensus over an opinion that he had had in 
the past, only the current opinions are of interest. We wish to 

mention the beautiful paper Motsch and Tadmor [9], where the 

effect of heterophilia was introduced in opinion models, name-

ly, an agent gives more weight to opinions that are far away 

from its own opinion inside the region of influence. In this 

case, the system stabilizes with fewer clusters than in the con-
stant weight case, which is the opposite phenomenon than the 

one described here.  

 

The model 
 

We consider here a discrete model. We start with N = {1,…, n}  

agents, each one of them with initial value xi(0), a real number 
in some interval [a,b] for i=1:N.  We fix an integer d, and 

allow the agents to vary their value at random during d steps. 

Hence, each one has a random trajectory xi(k) for k=1:d (with 

small variance, not allowing the agents to travel more a dis-

tance r in mean). Moreover, each agent has a randomly as-

signed delay di < d which can be allowed to vary with time at 
random.  

 

Given the mean distance r > 0 of the initial excursions, we 

have an evolving network of connected agents, with connectiv-

ity matrix A(k), where   

 
Aij(k) = Aji(k) = 1    if  |xi(k)-xj(k)| < r, 

 

and zero otherwise. The degree ci of the node corresponding to 

agent i is equal to the number of agents satisfying that their 

values are at distance less than r. This matrix will change at 

each step of the dynamic. We assume that the number of 
agents is large enough in order to have a connected network. A 

different choice, usual in the flocking literature, consists in 

taking a fixed number m of neighbors, the closest ones (in this 

case it must be decided if long-range interactions are allowed, 

or a minimum distance r is also imposed).   

We use the variable k as before to index the temporal steps, 
and for each step k > d, we update the values of each agent 

according to the following rule: 

 

xi(k+1)= xi(k) +∑ j ≠ i cij g(xj, xi, dj, di) f(|xi(k)-xj(k)|) 

 

where f(s) = 1 if |s| < r, and zero otherwise, and g defines the 
dynamic. Several alternative dynamics are possible: the delay 

can be applied to agent i (who compares the actual value of 

agent j with his own value at time k-di), or to agent j, (who 

shares its value xj(k-dj) with agent i).  It can be assigned at 

random in each step, or it can depend on each couple of agents 

i and j. In the case of non-delayed dynamics we take di = 0 for 
i=1:N. 

The parameter cij is the intensity of the coupling between 

agents i and j. Here, we choose cij = N
-1

 as in [20], however, 

the present one is a non-linear system, and we cannot apply 

directly their results. Another frequent choice is cij  = ci
-1

, the 

inverse of the degree of the node corresponding to agent i.  

The system evolves until some stationary state is reached. We 

recall that, for non-delayed dynamics, this result was proved  
in [6], and that the number of final genres cannot be predicted 

even in this case. Moreover, the trajectories xi(k) can display 

an oscillatory behavior in the presence of temporal delays, at 

least for some particular cases; so we must rely on the numeri-

cal simulations.  

 
In the next section we discuss the parameters and the results of 

the numerical simulations.       

 

  
Simulations  
 
We performed 5000 simulations of each model, with N = 90 

agents, a random uniform distribution of  the initial values xi(0) 

in [0,10], d = 80 steps, and distance r = 1. After a random 

update of the agent’s values in those steps, an individual delay 

di < d was assigned to each agent.     

 
It remains to choose a function g governing the dynamical 

system. In our simulations we used four different functions g,  

 

1. ND: (no delay)            g = xj(k)-xi(k) 

2. RD: (random delay)   g = xj(k-dj(k))-xi(k) 

3. Dj:  (agent’s j delay)  g = xj(k-dj)-xi(k) 
4. Di:  (agent’s i delay)  g  = xj(k-di)-xi(k) 

 

In model 2.RD, the delay dj(k) was randomly changed at each 

step for each player, in contrast to models 3.Dj and 4.Di where 

the delay was randomly initialized and held constant through 

the iterations. 
 

The behavior of the four models was different, in Figure 1 we 

show the histogram with 5000 realizations of each model. 

Clearly the number of styles in delayed models when the simu-

lations stop is greater than in the case of no delay.  Moreover, 

the mean, median and mode of each model are given in Table 
1, and show less genres for delayed dynamic than in the other 

cases. 

 

Starting all of the models with the same initial condition in the  



Fig. 3. Evolution of styles. Left panel: delayed dynamic. Right 
panel: non delayed dynamic.  

Fig. 3. Snapshots of the network evolution. 

Fig. 2. Boxplot of the number of genres per model type.  

  
 

Table 1. Means, medians and modes for each of the models 

 

 1.ND 2.RD 3.Dj 4.Di 

Mean 4.49 5.02 4.88 5.03 

Median 4 5 5 5 

Mode 4 5 5 5 

 

first 80 steps, in a single realization each model can generate 

more styles than the other ones. However, the performance of 
the non-delayed model is clearly different, giving more genres 

only in a small percentage of cases.  

 

We compared statically the yielded number of genres of each 

run. Specifically, we compare means using a t-test, and medi-

ans using the Wilcoxon rank-sum test. Results show the mean 
and median number of genres yielded by the 1.ND model is 

less than the delayed versions. Also, the 2.RD model yields 

significant less genres than the 3.Di and 4.Dj. Lastly, there is a 

marginally significant difference between 3.Dj and 4.Di. See 

the boxplot in Figure 2. 

 
Comparison between the delayed models 2.RD and 3.Dj shows 

that both give the same number of styles on 3354 simulations 

(67.08%),  2.RD gives more styles in 1156 (23.12%), and 3.Dj 

gives more styles in 490 (9.8%). 

 

In Figure 3 we show the trajectories of each agent, in the right 
hand side we observe a realization of the evolution of the sys-

tem with the non-delayed dynamic; in the left hand side we 

have a realization of model 4.D. 

 

Let us consider now the evolution of the network of agents. 

The dynamic produces local consensus, disconnecting the  
network in several groups, and each one tends to be fully con-

nected. We show a few stages of this process in Figure 4 (the 

values in axis y are randomly chosen to split the agents). 

 

Observe that, when a given group of agents {xi} i ɛ I satisfy 

that all the distances between them are lower than r, and no 
one interacts with the remaining agents N \ I in some temporal 

interval [T, T+d], they will remain isolated forever.  

 



 

Their values will change due to the reciprocal influences, and 

they will remain bounded between the values 

 

   m = min { xi(k) : i ɛ I, k ɛ [T, T+d]}, 
   M = max{ xi(k) : i ɛ I, k ɛ [T, T+d]}. 

 

We can observe that, for one of those agents, the update of its 

value is given by 

 

xi(k+1)= xi(k) + N
-1

  ∑ j ɛ I, j ≠ i  [xj(k-dj)-xi(k)] 
           =  xi(k) + N

-1
  ∑ j ɛ I, j ≠ i xj(k-dj) - N

-1
  ∑ j ɛ I, j ≠ I  xi(k) 

           =  N
-1

 [(N –|I|+1) xi(k) + ∑ j ɛ I, j ≠ I   xj(k-dj) ], 

 

and then we have 

 

xi(k+1) ≥  N
-1

 [(N –|I|+1) m + ∑ i ɛ I, j ≠ I   m ] = m 
xi(k+1) ≤  N

-1
 [(N –|I|+1) M + ∑ i ɛ I, j ≠ I   M ] = M. 

We are not specifying the exact delayed dynamic since the 

result is valid for all of them whenever the delays belong to 

[0,d].  

 

A technical argument enable us to show that in the following d 
temporal steps, the value xi will be strictly greater than m 

(resp., less than M), unless all the values involved in the com-

putation are equal to m (resp., M). In particular, we deduce that  

the values of agent i must be all equal to m (M) in [T+d, T+2d], 

and the convergence is proved by using an induction argument 

similar to the one in [2].  
 

So, whenever a complete graph (i.e, a fully connected compo-

nent of the network) appears, it will remain completely con-

nected forever and the values of those agents tend to be closer. 

In Figure 3 we show some steps of the network evolution. 

 

Conclusions  
 
We have presented a simple model of musical genres evolution 

with temporal delays, based on continuous opinion models. 

Each agent represents a style, and we may consider that closer 

styles will contain some common musicians, influencing (and 

influenced by) other musicians in those styles.  

 
In the process of the emergence of African-American musical 

genres, African musicians were forcibly removed from their 

native geographic and cultural environments; in this context, it 

is reasonable to assume that they experienced a certain stylistic 

drift due to isolation from their cultures of origin, along with 

the observable fact [14] that interactions in their new locations 
were based on the elements of their musical traditions (rhythm, 

melodic and harmonic features, instruments, techniques), 

which were transferred or mixed with those of other musicians. 

Later, the temporal delay appears as an individual search on 

their own history. 

 
We have shown the existence of several local consensus, well 

defined or mature styles, appearing as a mix of different initial 

styles. This result is obtained also with non-delayed dynamics, 

although in this case a lower number of genres are obtained.   
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