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Abstract. We investigate the uniqueness of limit solutions for a free boundary problem
in heat propagation that appears as a limit of a parabolic system that arises in flame
propagation.

1. Introduction

In this paper we consider the following problem arising in combustion theory

(1.1)

{
∆uε − uε

t = Y εfε(u
ε) in D,

∆Y ε − Y ε
t = Y εfε(u

ε) in D,

where D ⊂ RN+1.

This model appears in combustion theory in the analysis of the propagation of curved
flames. It is derived in the framework of the theory of equidiffusional premixed flames
analyzed in the relevant limit of high activation energy for Lewis number 1. In this
application, Y ε represents the fraction of some reactant (and hence it is assumed to be
nonnegative), and uε is minus the temperature (more precisely, uε = λ(Tf − T ε) where
Tf is the flame temperature and λ is a normalization factor). Observe that the term
Y εfε(u

ε) acts as an absorption term in the equation (1.1). Since T ε = Tf − (uε/λ), it is in
fact a reaction term for the temperature. In the flame model, such a term represents the
effect of the exothermic chemical reaction and f has accordingly a number of properties:
it is a nonnegative Lipschitz continuous function which is positive in an interval (−∞, ε)
and vanishes otherwise (i.e., reaction occurs only when T > Tf − ε

λ
). The parameter ε

is essentially the inverse of the activation energy of the chemical reaction. For the sake
of simplicity we will assume that fε(s) = 1

ε2f( s
ε
), where f is a nonnegative, Lipschitz

continuous function with support in (−∞, 1].

For the derivation of the model, we cite [1].
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Here we are interested in high activation energy limits (i.e. ε → 0). These limits, are
currently the subject of active investigation, specially in the case uε = Y ε. This is a
natural assumption in the case of travelling waves.

In a previous paper [5] we have studied this problem in the case in which the initial
values for uε and Y ε – both converging to the same function u0 – satisfy the condition

(1.2)
Y ε

0 (x)− uε
0(x)

ε
→ w0(x) uniformly in RN

with w0 > −1.

Problem (1.1) reduces to a single equation, namely

(Pε) ∆uε − uε
t = (uε + wε)fε(u

ε),

where the function wε(x, t) is the solution of the heat equation with initial datum Y ε
0 (x)−

uε
0(x). By (1.2) there exists the limit

(1.3) lim
ε→0

wε(x, t)

ε
= w0(x, t)

and w0(x, t) is the solution of the heat equation with initial datum w0(x).

In this way, at least formally, the reaction term converges to a delta function and a free
boundary problem appears. In fact, we have proved in [5] that every sequence of uniformly
bounded solutions to (1.1), {uεn}, with εn → 0 has a subsequence {uεnk} converging to a
limit function u which is a solution of the following free boundary problem

(P )

{
∆u− ut = 0 in {u > 0}

|∇u+| =
√

2M(x, t) on ∂{u > 0}

where M(x, t) =
∫ 1

−w0(x,t)

(
s+ w0(x, t)

)
f(s)ds.

We see that the free boundary condition strongly depends on the approximation uε
0,

Y ε
0 of the initial datum u0. In particular, the limit function u is different for different

approximations of the initial datum u0.

It is therefore natural to wonder whether the only condition that determines the limit
function u is condition (1.2).

The purpose of this paper is to prove that this is indeed the case, at least under some
monotonicity assumption on the initial value u0. This monotonicity assumption is similar
to that used to prove uniqueness of the limit for the case uε = Y ε in [9].

In fact, we follow here some of the ideas of [9] which are based on the fact that any
limit function is a supersolution to (P ). This is still true in our case. Unfortunately
the simple construction in [9] of supersolutions of (Pε) that approximate a strict classical
supersolution of (P ), when wε = 0, does not work in the general case unless one asks for
a lot of complementary conditions on the reaction function f .

Therefore, we follow here the construction done in [7]. The proof that this construction
works in based on blow up of the constructed functions. This technique was already seen
to work very well for (Pε) – under the condition (1.2) – in [5].
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Our result can be summarized as saying that, under suitable assumptions on the domain
and on the initial datum u0, there exists at most one limit solution to the free boundary
problem (P ) with nonvanishing gradient near its free boundary, as long as the approximate
initial data – converging uniformly to u0 with supports that converge to the support of u0

– satisfy (1.2).

Moreover, under the same geometric assumptions, if there exists a classical solution to
(P ), this is the only limit of solutions to (Pε) with initial data satisfying the conditions
above. In particular, it is the only classical solution to (P ).

As already stated, in the case uε = Y ε, uniqueness results for limit solutions under
geometric hypotheses similar to the ones made here can be found in [9]. Also in [7] the
authors study the uniqueness and agreement between different concepts of solutions of
problem (P ) (again in the case uε = Y ε) under the assumption of the existence of a
classical solution and under different geometric assumptions. See also [8] for a similar
result in the two-phase case.

Notation. Throughout the paper N will denote the spatial dimension. In addition, the
following notation will be used:

For any x0 ∈ RN , t0 ∈ R and τ > 0, Bτ (x0) := {x ∈ RN/|x − x0| < τ} and
Bτ (x0, t0) := {(x, t) ∈ RN+1/|x− x0|2 + |t− t0|2 < τ 2}.

When necessary, we will denote points in RN by x = (x1, x
′), with x′ ∈ RN−1. Given a

function v, we will denote v+ = max(v, 0).

The symbols ∆ and ∇ will denote the corresponding operators in the space variables;
the symbol ∂p applied to a domain will denote parabolic boundary.

Finally, we will say that u is supercaloric if ∆u−ut ≤ 0, and u is subcaloric if ∆u−ut ≥
0.

Outline of the paper. An outline of the contents is as follows. In Section 2 we give
precise definitions of classical sub- and supersolutions and prove a comparison result for
problem (P ) (Lemma 2.1). In Section 3 we state some auxiliary results. In Section 4
we prove that a strict classical supersolution to problem (P ) is the uniform limit of a
family of supersolutions to problem (Pε) (Theorem 4.1) and as a consequence we obtain
the boundedness of the support for limit solutions in the geometry under consideration
(Proposition 4.1). Finally, in Section 5 we prove our main result (Theorem 5.1). We
discuss in a final section (Section 6) the results proved in the paper as well as other
possible geometries that can be considered.

2. Preliminaries

Following [9] we will define what we will understand by a classical supersolution of
problem (P ). Note that the meaning of classical here differes from the usual one since
we are not assuming that the function be C1 up to the free boundary or that the free
boundary be C1.



4 J. FERNÁNDEZ BONDER AND N. WOLANSKI

Definition 2.1. A continuous nonnegative function u in QT = RN × [0, T ], T > 0, is
called a classical supersolution of (P ) if u ∈ C1({u > 0}) and

(i) ∆u− ut ≤ 0 in Ω = {u > 0};
(ii) lim supΩ3(y,s)→(x,t) |∇u(y, s)| ≤

√
2M(x, t) for every (x, t) ∈ ∂Ω ∩QT ;

(iii) u(·, 0) ≥ u0.

Respectively, u is a classical subsolution of (P ) if conditions (i), (ii) and (iii) are satisfied
with reversed inequalities and lim inf instead of lim sup in (ii).

A function u is a classical solution of (P ) if it is both a classical subsolution and a

classical supersolution of (P ), u ∈ C1({u > 0}) and the free boundary ∂{u > 0} ∩QT is
a C1 surface.

Next, a classical supersolution u of (P ) is a strict classical supersolution of (P ) if there
is a δ > 0 such that the stronger inequalities

(ii’) lim supΩ3(y,s)→(x,t) |∇u(y, s)| ≤
√

2M(x, t)− δ for every (x, t) ∈ ∂Ω ∩QT ;
(iii’) u(·, 0) ≥ u0 + δ on Ω0 = {u0 > 0}

hold. Analogously a strict classical subsolution is defined.

As a consequence of the results in [5], one can check that every limit solution u =
limj→∞ uεj of (P ) is a classical supersolution in the sense of Definition 2.1. In fact,

Proposition 2.1. Let uεj be solutions to (Pεj
) – with wεj satisfying (1.3) and w0 > −1

– such that uεj → u uniformly on compact sets and εj → 0. Assume that the initial
datum u0 is Lipschitz continuous and that the approximations of the initial datum verify
|uε

0(x)|, |∇uε
0(x)| ≤ C and uε

0 ∈ C1({uε
0 > 0}). Then u is a classical supersolution of (P ).

Proof. We have to verify conditions (i)-(iii) of Definition 2.1.

From our assumptions on the initial datum u0, by Proposition 5.2.1 of [6], we have that
uε → u uniformly on compact sets of QT so that u is continuous up to t = 0 and (iii)
holds.

Now, (i) is proved in [5].

Finally, (ii) is a straightforward modification of Theorem 6.1 of [2] using Lemmas 2.1,
2.2 and 2.3 of [5] instead of Lemma 3.2 and Propositions 5.2 and 5.3 of [2] respectively. �

Let us suppose that the initial datum u0 of problem (P ) is starshaped with respect to
a point x0, that we always assume to be 0, in the following sense: For every λ ∈ (0, 1)
and x ∈ RN ,

(2.1) u0(λx) ≥ u0(x), λΩ0 ⊂⊂ Ω0,

where Ω0 = {u0 > 0}.
Also, assume that

(2.2) w0(λx, 0) ≤ w0(x, 0) if x ∈ RN , 0 < λ < 1.
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Let u be a classical supersolution of (P ). Let λ and λ′ be two real numbers with
0 < λ < λ′ < 1. Define

(2.3) uλ(x, t) =
1

λ′
u(λx, λ2t)

in QT/λ2 . The rescaling is taken so that uλ satisfies the heat equation in

(2.4) Ωλ = {(x, t) : (λx, λ2t) ∈ Ω}.
Moreover, the fact that 0 < λ < λ′ < 1 makes uλ a strict classical supersolution of (P ).

In fact, let us first see that

M(λx, λ2t) ≤M(x, t) if 0 < λ < 1.

This is a consequence of the fact that the function

a −→
∫ 1

−a

(s+ a)f(s) ds

is nondecreasing and

(2.5) w0(λx, λ
2t) ≤ w0(x, t) if 0 < λ < 1.

In fact, the function wλ(x, t) = w0(λx, λ
2t) is caloric and wλ(x, 0) ≤ w0(x, 0) if 0 < λ < 1

by hypothesis. Thus, by the comparison principle, wλ(x, t) ≤ w0(x, t) in RN × (0, T ).

Now, let (x0, t0) ∈ ∂{uλ > 0}. Then,

lim sup
Ωλ3(x,t)→(x0,t0)

|∇uλ(x, t)| = lim sup
Ω3(λx,λ2t)→(λx0,λ2t0)

| λ
λ′
∇u(λx, λ2t)|

≤ λ

λ′

√
2M(λx0, λ2t0) ≤

√
2M(x0, t0)−

(
1− λ

λ′

)√
2M0,

where 0 < M0 < M(x, t) in RN × (0, T ).

On the other hand, since λΩ0 ⊂⊂ Ω0, there holds that

u0(λx) ≥ γ > 0 if x ∈ Ω0.

Thus, for x ∈ Ω0,

uλ(x, 0) =
1

λ′
u0(λx) = u0(λx) +

( 1

λ′
− 1

)
u0(λx)

≥ u0(x) +
( 1

λ′
− 1

)
γ.

The following comparison lemma for problem (P ) can be proved as Lemma 2.4 in [9].
We omit the proof.

Lemma 2.1. Let u0 satisfy (2.1) and w0 satisfy (2.2). Then every classical subsolution
of (P ) with bounded support, is smaller than every classical supersolution of (P ). i.e. if
u′ is a classical subsolution such that Ω′ is bounded and u is a classical supersolution then

Ω′ ⊂ Ω and u′ ≤ u,
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where Ω′ = {u′ > 0} and Ω = {u > 0}.

3. Auxiliary results

This section contains results on the following problem:

(P0) ∆u− ut = (u+ ω0)f(u),

where the function f is as in Section 1 and ω0 is a constant, ω0 > −1. The results will
be used in the next sections where (P0) appears as a blow-up limit. The proofs are very
similar to those of Lemmas 4.1, 4.3 and 4.4 in [7]. We leave the details to the reader.

Lemma 3.1. Let a, b ≥ 0 and let ψ be the classical solution to

ψss = (ψ + ω0)f(ψ) for s > 0,

ψ(0) = a, ψs(0) = −
√

2b.
(3.1)

Let B(τ) =
∫ τ

−ω0
(ρ+ ω0)f(ρ) dρ.

If b = 0 and a ∈ {−ω0} ∪ [1,+∞), then ψ ≡ a.(3.2)

If b = 0 and a ∈ (−ω0, 1), then lims→+∞ ψ(s) = +∞.(3.3)

If b ∈
(
0, B(a)

)
, then lims→+∞ ψ(s) = +∞.(3.4)

If 0 < b = B(a), then ψs < 0 and lims→+∞ ψ(s) = −ω0.(3.5)

If b ∈
(
B(a), +∞

)
, then ψs < 0 and lims→+∞ ψ(s) = −∞.(3.6)

Lemma 3.2. Let B(τ) be as in the previous Lemma and let Rγ =
{
(x, t) ∈ RN+1 /x1 >

0 , −∞ < t ≤ γ
}
, 0 ≤ θ < 1 + ω0 and let U ∈ C2+α,1+α

2 (Rγ) be such that

∆U − Ut = (U + ω0)f(U) in Rγ,

U = 1− θ on {x1 = 0},
−ω0 ≤U ≤ 1− θ in Rγ.

1) If θ = 0, then |∇U | ≤
√

2B(1) on {x1 = 0}.

2) If 0 < θ < 1 + ω0 and 0 < σ < B(1) are such that
∫ 1−θ

−ω0
(ρ+ ω0)f(ρ) dρ = B(1)− σ,

then |∇U | =
√

2(B(1)− σ) on {x1 = 0}.

Finally, we state a compactness result.

Lemma 3.3. Let εj, γεj
and τεj

be sequences such that εj > 0, εj → 0, γεj
> 0, γεj

→ γ,
with 0 ≤ γ ≤ +∞, τεj

> 0, τεj
→ τ with 0 ≤ τ ≤ +∞, and such that τ < +∞ implies that

γ = +∞. Assume that wεj/εj converge to w0 uniformly in compact sets of RN × [0, T ].
Let ρ > 0 and

Aεj
=

{
(x, t) / |x| < ρ

εj

, −min(τεj
,
ρ2

ε2
j

) < t < min(γεj
,
ρ2

ε2
j

)

}
.
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Assume that 0 ≤ θ < 1 + w0(x0, t0) and let ūεj be weak solutions to

∆ūεj − ū
εj

t =

(
ūεj +

wεj(εjx+ xεj
, ε2

j t+ tεj
)

εj

)
f(ūεj) in {x1 > h̄εj

(x′, t)} ∩ Aεj
,

ūεj = 1− θ on {x1 = h̄εj
(x′, t)} ∩ Aεj

,

−
wεj(εjx+ xεj

, ε2
j t+ tεj

)

εj

≤ ūεj ≤ 1− θ in {x1 ≥ h̄εj
(x′, t)} ∩ Aεj

,

where (xεj
, tεj

) → (x0, t0), with ūεj ∈ C({x1 ≥ h̄εj
(x′, t)} ∩ Aεj

), and ∇ūεj ∈ L2. Here

h̄εj
are continuous functions such that h̄εj

(0, 0) = 0 with h̄εj
→ 0 uniformly on compact

subsets of RN−1 × (−τ, γ). Moreover, we assume that ‖h̄εj
‖C1(K) + ‖∇x′h̄εj

‖
Cα, α

2 (K)
are

uniformly bounded, for every compact set K ⊂ RN−1 × (−τ, γ).
Then, there exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2

(
{x1 ≥ 0, γ > t > −τ}

)
,

ūεj → ū uniformly on compact subsets of {x1 > 0, γ > t > −τ},
∆ū− ūt = (ū+ w0(x0, t0))f(ū) in {x1 > 0, γ > t > −τ},
ū = 1− θ on {x1 = 0, γ > t > −τ},

−w0(x0, t0) ≤ ū ≤ 1− θ in {x1 ≥ 0, γ > t > −τ}.

If γ < +∞, we require, in addition, that

‖h̄εj
(x′, t+ γεj

− γ)‖C1(K) + ‖∇x′h̄εj
(x′, t+ γεj

− γ)‖
Cα, α

2 (K)

be uniformly bounded for every compact set K ⊂ RN−1 × (−∞, γ]. And we deduce that

u ∈ C2+α,1+α
2

(
{x1 ≥ 0, t ≤ γ}

)
.

If τ < +∞, we let

Bεj
=

{
x / |x| < ρ

εj

, x1 > h̄εj
(x′,−τεj

)

}
,

and we require, in addition, that for every R > 0,

‖ūεj(x,−τεj
)‖Cα(Bεj∩BR(0)) ≤ CR,

and that there exists r > 0 such that

‖ūεj(x,−τεj
)‖C1+α(Bεj∩Br(0)) ≤ Cr.

Moreover, we assume that ‖h̄εj
(x′, t− τεj

+ τ)‖C1(K) + ‖∇x′h̄εj
(x′, t− τεj

+ τ)‖
Cα, α

2 (K)
are

uniformly bounded for every compact set K ⊂ RN−1 × [−τ,+∞).

Then, there holds that

ū ∈ Cα, α
2

(
{x1 ≥ 0, t ≥ −τ}

)
, ∇u ∈ C

(
{0 ≤ x1 < r, t ≥ −τ}

)
,

ūεj(x,−τεj
) → ū(x,−τ) uniformly on compact subsets of {x1 > 0}.
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In any case (τ, γ be infinite or finite)

|∇ūεj(0, 0)| → |∇ū(0, 0)|.

4. Approximation result

In this section we prove that, under certain assumptions, a classical supersolution to
problem (P ) is the uniform limit of a family of supersolutions to problem (Pε) (Theorem
4.1), and we prove an analogous result for subsolutions (Theorem 4.2). Also, we prove that
for compactly supported initial data, limit solutions have bounded support (Proposition
4.1).

The following construction follows the lines of Theorem 5.2 in [7]. In our case we have
to be more careful with the construction of the initial data.

Theorem 4.1. Let ũ be a classical supersolution to (P ) in QT with ũ ∈ C1({ũ > 0}) and
such that {ũ > 0} is bounded. Assume, in addition, that there exist δ0, s0 > 0 such that

|∇ũ+| ≤
√

2M(x, t)− δ0 on Q ∩ ∂{ũ > 0},
|∇ũ| > δ0 in Q ∩ {0 < ũ < s0}.

Let wε be a solution of the heat equation in RN × (0, T ) such that wε(x,t)
ε

→ w0(x, t)
uniformly in RN × [0, T ] with w0 ∈ C(RN × [0, T ]) and w0 ≥ −1+ δ1 for a certain positive
constant δ1.

Then, there exists a family uε ∈ C(QT ), with ∇uε ∈ L2
loc(QT ), of weak supersolutions

to (Pε) in QT , such that, as ε→ 0, uε → ũ uniformly in QT .

Proof. Step I. Construction of the family uε. Let 0 < θ < δ1 be such that∫ 1

1−θ

(s+W )f(s) ds =
δ0
8
,

where W is a suitable uniform bound of ‖wε/ε‖L∞({ũ>0}). For every ε > 0 small, we define
the domain Dε = {ũ < (1− θ)ε} ⊂ QT .

Let zε be the bounded solution to

∆zε − zε
t = (zε + wε)fε(z

ε) in Dε,

with boundary data

zε(x, t) =

{
(1− θ)ε on ∂Dε ∩ t > 0,

zε
0(x) in Dε ∩ {t = 0}.

In order to give the initial data zε
0, we let ψε(s, x) be the solution to (3.1) with

a = 1− θ, b =

∫ 1−θ

−wε(x,0)/ε

(s+
wε(x, 0)

ε
)f(s) ds, ω0 =

wε(x, 0)

ε
.
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Assume first that |∇ũ| is smooth. Then we let

ϕε(ξ, x) = ψε
( 1− θ − ξ

|∇ũ(x, 0)|
, x

)
,

and we define

zε
0(x) = εϕε

(1

ε
ũ(x, 0), x

)
.

If ũ is not regular enough, we can replace |∇ũ(x, 0)| by a smooth approximation Fε(x)
so that the initial datum zε

0 is C1+α. We leave the details to the reader.

Finally, we define the family uε as follows:

uε =

{
ũ in {ũ ≥ (1− θ)ε},
zε in Dε.

Step II. Passage to the limit. If (x, 0) ∈ Dε, we have 0 ≤ 1
ε
ũ(x, 0) ≤ 1 − θ. Since,

from Lemma 3.1, we know that −wε(x, 0)/ε ≤ ψ(s, x) ≤ 1 − θ for s ≥ 0, it follows that
−wε(x, 0) ≤ zε(x, 0) ≤ (1− θ)ε. Since fε(s) ≥ 0, constant functions larger than −wε(x, t)
are supersolutions to (Pε). Therefore, (1 − θ)ε is a supersolution if ε < ε1 and we may
apply the comparison principle for bounded super and subsolutions of (Pε) to conclude
that −wε ≤ zε ≤ (1− θ)ε.

Hence,
sup
QT

|uε − ũ| = sup
Dε

|zε − ũ| ≤ Cε

and therefore, the convergence of the family vε follows.

Step III. Let us show that there exists ε0 > 0 such that the functions uε are supersolutions
to (Pε) for ε < ε0.

If uε > (1− θ)ε, then uε = ũ, which by hypothesis is supercaloric. Since fε(s) ≥ 0 and
(1− θ)ε ≥ −wε if ε < ε1, it follows that uε are supersolutions to (Pε) here.

If uε < (1 − θ)ε, then we are in Dε and therefore, by construction, uε are solutions to
(Pε).

That is, the uε’s are continuous functions, and they are piecewise supersolutions to
(Pε). In order to see that uε are globally supersolutions to (Pε), it suffices to see that the
jumps of the gradients (which occur at smooth surfaces), have the right sign.

To this effect, we will show that there exists ε0 > 0 such that

(4.1) |∇uε| ≥
√

2M(x, t)− δ0/2 on {ũ = (1− θ)ε}, for ε < ε0.

Assume that (4.1) does not hold. Then, for every j ∈ N, there exist εj > 0 and
(xεj

, tεj
) ∈ Q, with

εj → 0 and (xεj
, tεj

) → (x0, t0) ∈ ∂{ũ > 0} ∩ {ũ = 0},
such that

(4.2) uεj(xεj
, tεj

) = (1− θ)εj and |∇uεj(xεj
, tεj

)| <
√

2M(xεj
, tεj

)− δ0/2.
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From now on we will drop the subscript j when referring to the sequences defined above
and ε→ 0 will mean j →∞.

We can assume (performing a rotation in the space variables if necessary) that there
exists a family gε of smooth functions such that, in a neighborhood of (xε, tε),

{uε = (1− θ)ε} = {(x, t) / x1 − xε1 = gε(x
′ − xε

′, t− tε)},
{uε < (1− θ)ε} = {(x, t) / x1 − xε1 > gε(x

′ − xε
′, t− tε)},

(4.3)

where there holds that

gε(0, 0) = 0, |∇x′gε(0, 0)| → 0, ε→ 0.

We can assume that (4.3) holds in
(
Bρ(xε) × (tε − ρ2, tε + ρ2)

)
∩ {0 ≤ t ≤ T} for some

ρ > 0.

Let us now define

ūε(x, t) =
1

ε
uε(xε + εx, tε + ε2t), ḡε(x

′, t) =
1

ε
gε(εx

′, ε2t),

and let

τε =
tε
ε2

, γε =
T − tε
ε2

.

We have, for a subsequence,
τε → τ , γε → γ

where 0 ≤ τ, γ ≤ +∞ and τ and γ cannot be both finite.

We now let

Aε =

{
(x, t) / |x| < ρ

ε
, −min(τε,

ρ2

ε2
) < t < min(γε,

ρ2

ε2
)

}
.

Then, the functions ūε are weak solutions to

∆ūε − ūε
t =

(
ūε +

wε(xε + εx, tε + ε2t)

ε

)
f(ūε) in {x1 > ḡε(x

′, t)} ∩ Aε,

ūε = 1− θ on {x1 = ḡε(x
′, t)} ∩ Aε,

−w
ε(xε + εx, tε + ε2t)

ε
≤ ūε ≤ 1− θ in {x1 ≥ ḡε(x

′, t)} ∩ Aε.

Note that we are under the hypotheses of Lemma 3.3. Then, there exists a function ū
such that, for a subsequence,

ū ∈ C2+α,1+α
2

(
{x1 ≥ 0, −τ < t < γ}

)
,

ūε → ū uniformly on compact subsets of {x1 > 0, −τ < t < γ},
∆ū− ūt = (ū+ w0(x0, t0))f(ū) in {x1 > 0, −τ < t < γ},
ū = 1− θ on {x1 = 0, −τ < t < γ},

−w0(x0, t0) ≤ ū ≤ 1− θ in {x1 ≥ 0, −τ < t < γ}.

We will divide the remainder of the proof into two cases, depending on whether τ = +∞
or τ < +∞.

Case I. Assume τ = +∞.
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In this case, Lemma 3.3 also gives

|∇ūε(0, 0)| → |∇ū(0, 0)|.

On the other hand, ū satisfies the hypotheses of Lemma 3.2 and therefore,

|∇ū| ≥
√

2M(x0, t0)− δ0/4 on {x1 = 0},
which yields

|∇ūε(0, 0)| ≥
√

2M(x0, t0)− 3δ0/8,

for ε small. But this gives

|∇uε(xε, tε)| ≥
√

2M(xε, tε)− δ0/2,

for ε small. This contradicts (4.2) and completes the proof in case τ = +∞.

Case II. Assume τ < +∞. (In this case γ = +∞.)

There holds that ūε(x,−τε) = 1
ε
uε(xε + εx, 0), then

(4.4) ūε(x,−τε) = ϕε
(1

ε
ũ(xε + εx, 0), xε + εx

)
.

Here we want to apply the result of Lemma 3.3 corresponding to τ < +∞. In fact, we
can see that there exist C, r > 0 such that ‖ūε(·,−τε)‖C1+α(Br(0)) ≤ C.

Now Lemma 3.3 gives, for a subsequence,

ū ∈ Cα, α
2

(
{x1 ≥ 0, t ≥ −τ}

)
,

ūε(x,−τε) → ū(x,−τ) uniformly on compact subsets of {x1 > 0}.

Therefore, we get that (recall that in the case we are considering t0 = 0),

ū(x,−τ) = ϕ̄
(
1− θ − |∇ũ+(x0, t0)|x1, x0

)
.

where ϕ̄(s, x) = ψ
( 1− θ − s

|∇ũ(x, 0)|
, x

)
and ψ(s, x) is the solution of (3.1) with

a = 1− θ, b =

∫ 1−θ

−w0(x,0)

(s+ w0(x, 0))f(s) ds, ω0 = w0(x, 0).

Thus,

ū(x,−τ) = ψ(x1, x0).

Since the function ψ(x1, x0) is a stationary solution to equation (P0), bounded for
x1 ≥ 0, and ū = ψ on the parabolic boundary of the domain

{
x1 > 0, t > −τ

}
, we

conclude that

ū(x, t) = ψ(x1, x0) in
{
x1 ≥ 0, t ≥ −τ

}
.

It follows from Lemma 3.1 and the choice of θ that

1

2
|∇ū(0, 0)|2 =

1

2

(
ψs(0, x0)

)2
=

∫ 1−θ

−w0(x0,t0)

(s+ w0(x0, t0))f(s) ds ≥M(x0, t0)−
δ0
8
.
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This is,

|∇ū| ≥
√

2M(x0, t0)− δ0/4 on {x1 = 0, t ≥ −τ}.
But Lemma 3.3 gives

|∇ūε(0, 0)| → |∇ū(0, 0)|,
which yields

|∇ūε(0, 0)| ≥
√

2M(x0, t0)− 3δ0/8,

for ε small. Then,

|∇uε(xε, tε)| ≥
√

2M(xε, tε)− δ0/2,

for ε small. This contradicts (4.2) and completes the proof in case τ < +∞. �

Remark 4.1. Observe that from the construction of uε done in the previous proof, it
follows that

uε ≡ ũ in {ũ > (1− θ)ε}.

Theorem 4.2. Let ũ be a classical subsolution to (P ) in QT with ũ ∈ C1({ũ > 0}) such
that {ũ > 0} is bounded. Assume, in addition, that there exist δ0 > 0 such that

|∇ũ+| ≥
√

2M(x, t) + δ0 on Q ∩ ∂{ũ > 0}.

Let wε be a solution of the heat equation in RN × (0, T ) such that wε(x,t)
ε

→ w0(x, t)
uniformly in RN × [0, T ]. And assume, moreover that w0 ∈ C(RN × [0, T ]) and w0(x, t) ≥
−1 + δ1 for a certain positive constant δ1.

Then, there exists a family uε ∈ C(QT ), with ∇uε ∈ L2
loc(QT ), of weak subsolutions to

(Pε) in QT , such that, as ε→ 0, uε → ũ uniformly in QT .

Proof. The proof is analogous to Theorem 4.1. See [7] for a similar result in the case
wε = 0. �

Finally, we end this Section by showing that, for compactly supported initial data, the
support of a limit solution of problem (P ) is bounded.

Proposition 4.1. Let u0 ∈ C(RN) with compact support. Let uε
0 converge uniformly

to u0 with supports converging to the support of u0 and let wε be a solution of the heat

equation in RN×(0, T ) such that wε(x,t)
ε

→ w0(x, t) uniformly in RN× [0, T ]. And assume,
moreover that w0 ∈ C(RN × [0, T ]) and w0(x, t) ≥ −1 + δ1 for a certain positive constant
δ1. Finally, let uε be the solution to (Pε) with function wε and initial condition uε

0.

Let u = limuεj . Then {u > 0} is bounded. Moreover, u vanishes in finite time.

Proof. Let −1 < ω0 < wε(x, t)/ε. Then it is easy to check that

(4.5) Mω0 =

∫ 1

−ω0

(s+ ω0)f(s) ds < M(x, t) =

∫ 1

−w0(x,t)

(s+ w0(x, t))f(s) ds.

Let us now consider the following self-similar function

V (x, t;T ) = (T − t)1/2h(|x|(T − t)−1/2),
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where h = h(r) is a solution of

h′′ +

(
N − 1

r
+

1

2
r

)
h′ +

1

2
h = 0, 0 < r < R,

h′(0) = 0, h(r) > 0, 0 ≤ r < R,

h(R) = 0, h′(R) = −
√

2Mω0 .

(4.6)

It is proved in [4], Proposition 1.1, that there exists a unique R > 0 and a unique h
solution of (4.6).

Moreover, it can be checked that if one picks T sufficiently large, then

V (x, 0;T ) ≥ u0 + 1 in {u0 > 0},

and so V (x, t;T ) is a strict classical supersolution of (P ) with bounded support and
positive gradient near its free boundary.

Now, let uεj be solutions to (Pεj
) – with initial data u

εj

0 converging unifomly to u0 such

that support u
εj

0 → support u0 – such that u = limuεj .

By Theorem 4.1, there exists a family vεj of supersolutions of (Pεj
) such that vεj →

V uniformly on compact sets, and vεj(x, 0) ≥ uεj(x, 0). Therefore, by the comparison
principle, we obtain uεj ≤ vεj and passing to the limit u(x, t) ≤ V (x, t;T ), and the result
follows. �

5. Uniqueness of the limit solution

In this section we arrive at the main point of the article: we prove that, under certain
assumptions, there exists a unique limit solution to the initial and boundary value problem
associated to (P ) as long as condition (1.2) is satisfied.

Let us begin with the following Proposition that is the key ingredient in the proof of
our main result.

Proposition 5.1. Let ũ be a strict classical supersolution to (P ) with bounded support
in RN × (0, T ) such that there exists s0 > 0 so that |∇ũ| > 0 in {0 < ũ < s0} and let
wε/ε be solutions to the heat equation in RN × (0, T ) converging to w0 uniformly with
w0 ∈ C(RN × [0, T ]) and w0 ≥ −1 + δ1 for a certain positive constant δ1.

Let uε be solutions to (Pε) with function wε and initial condition uε
0, where uε

0 are
uniform approximations of u0 with support uε

0 → support u0. Then

lim sup
ε→0+

uε(x, t) ≤ ũ(x, t)

for every (x, t) ∈ QT .

Proof. Let ũ be a strict classical supersolution of (P ). Let us first, define the following
regularization

u(x, t) = (ũ(x, t+ h)− η)+,
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for h, η > 0 small. So that u is a strict classical supersolution of (P ) with C1 free boundary,

C1({u > 0}) and |∇u| > δ0 > 0 in a neighborhood of its free boundary. So, by Theorem
4.1, there exists vε supersolution of (Pε) such that vε → u uniformly in QT−h.

Now, using the comparison principle, we conclude that uε ≤ vε in QT−h, and the
Proposition now follows letting first ε→ 0+ and then h, η → 0+. �

Finally, we arrive at the main point of the paper: The uniqueness of limit solutions of
(P ).

Theorem 5.1. Let the initial datum u0 be Lipschitz, with compact support and satisfy
the condition (2.1). Then there exists at most one limit solution such that its gradient
does not vanish near its free boundary as long as the function wε in problem (Pε) satisfies
condition (1.3).

More precisely, let u
εj

0 , ũ
εk
0 be uniformly Lipschitz continuous in RN with uniformly

bounded Lipschitz norms and εj, εk → 0. Assume that u
εj

0 ∈ C1({uεj

0 > 0}), ũεk
0 ∈

C1({ũεk
0 > 0}), uεj

0 , ũ
εk
0 → u0 uniformly and support u

εj

0 , support ũεk
0 → support u0.

Let wεj/εj and w̃εk/εk be solutions of the heat equation converging to the same func-
tion w0 ∈ C(QT ), uniformly bounded from below by −1+δ1 for a certain positive constant
δ1. Also, assume that w0 satisfies the monotonicity condition (2.2).

Let uεj (resp. ũεk) be the solution to (Pεj
) with function wεj and initial datum u

εj

0

(resp. solution to (Pεk
) with function w̃εk and initial datum ũεk

0 ). Let u = limuεj and
ũ = lim ũεk . If there exists s0 > 0 such that |∇ũ| > 0 in {0 < ũ < s0}.

Then, u ≤ ũ.

Proof. Since ũ is a classical supersolution of (P ), ũ ∈ C1({ũ > 0}) and, by Propositon
4.1, its support is bounded, the function ũλ as defined in (2.3) satisfies the hypotheses of
Proposition 5.1 in QT/λ2 ⊃ QT . So by letting λ→ 1− we arrive at

(5.1) u(x, t) ≤ ũ(x, t).

This finishes the proof.

�

Theorem 5.2. Let the initial datum u0 be as in Theorem 5.1. Assume that there exists
a classical solution v to (P ) with initial datum u0 and let u

εj

0 be uniformly Lipschitz

continuous in RN with εj → 0, such that u
εj

0 ∈ C1({uεj

0 > 0}), uεj

0 → u0 uniformly and
support u

εj

0 → support u0. Assume wεj/εj is a solution of the heat equation converging to
w0 uniformly with w0 ∈ C(RN × [0, T ]) and w0 ≥ −1 + δ1 in RN × (0, T ) for a certain
δ1 > 0. Also, assume that w0 satisfies the monotonicity condition (2.2).

Let uεj be the solution to (Pεj
) with function wεj and initial datum u

εj

0 and let u =
limuεj . Then, u = v.

In particular, there exists at most one classical solution to (P ).
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Proof. Since u is a classical supersolution to (P ) and v is a classical subsolution, Lemma
2.1 applies and we get that v ≤ u.

On the other hand, if we define vλ as in (2.3), with 0 < λ < λ′ < 1, we have that vλ

satisfies the hypotheses of Proposition 5.1. Thus, there exists a family vεj of supersolu-
tions to (Pεj

) with function wεj such that, for a subsequence, vεj → v with initial data
converging uniformly to u0. So by the comparison principle

u = limuεj ≤ lim vεj = v.

This finishes the proof. �

6. Conclusions

In this paper we have proved that the limits of sequences of solutions to (Pε) with differ-
ent constitutive functions wε and initial data uε

0 coincide – as long as certain monotonicity
assumptions are made – if the limit of wε/ε and of uε

0 are prescribed.

The monotonicity assumptions are necessary to provide strict classical supersolutions
as close as we want to any classical supersolution. This kind of condition was also used
with the same purpose – in the case in which wε = 0 – in [9] and [7]. In the latter, a
different geometry was considered namely, the domain was a cylinder, Neumann boundary
conditions were given on the boundary of the cylinder and monotonicity in the direction
of the cylinder axis was assumed. In [7] it was proved that, if a classical solution exists
and wε = 0, then it is equal to any limit of solutions to (Pε).

In our case, this is with wε 6= 0 satisfying (1.3) and nondecreasing in the direction of
the cylinder axis, the uniqueness result in the presence of a classical solution still holds.

The cylindrical geometry has the advantage of giving the condition of nonvanishing
gradient in the positivity set of any limit solution. Since in dimension 2 one can prove
that limit solutions are classical supersolutions up to the fixed boundary, the uniqueness
of limit solutions follows in this case without further assumptions.
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