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Abstract. In this note we show the existence of at least three nontrivial so-

lutions to the following quasilinear elliptic equation −∆pu+ |u|p−2u = f(x, u)

in a smooth bounded domain Ω of RN with nonlinear boundary conditions

|∇u|p−2 ∂u
∂ν

= g(x, u) on ∂Ω. The proof is based on variational arguments.

1. Introduction.

Let us consider the following nonlinear elliptic problem:

(P)

{
−∆pu + |u|p−2u = f(x, u) in Ω
|∇u|p−2 ∂u

∂ν = g(x, u) on ∂Ω,

where Ω is a bounded smooth domain in RN , ∆pu = div(|∇u|p−2∇u) is the
p−laplacian and ∂/∂ν is the outer unit normal derivative.

Problems like (P) appears naturally in several branches of pure and applied
mathematics, such as the study of optimal constants for the Sobolev trace embed-
ding (see [5, 10, 12, 11]); the theory of quasiregular and quasiconformal mappings in
Riemannian manifolds with boundary (see [7, 16]), non-Newtonian fluids, reaction
diffusion problems, flow through porus media, nonlinear elasticity, glaciology, etc.
(see [1, 2, 3, 6]).

The purpose of this note, is to prove the existence of at least three nontrivial
solutions for (P) under adequate assumptions on the sources terms f and g. This
result extends previous work by the author [8, 9].

Here, no oddness condition is imposed in f or g and a positive, a negative and
a sign-changing solution are found. The proof relies on the Lusternik–Schnirelman
method for non-compact manifolds (see [14]).

For a related result with Dirichlet boundary conditions, see [15] and more re-
cently [4, 17]. The approach in this note follows the one in [15].

Throughout this work, by (weak) solutions of (P) we understand critical points
of the associated energy functional acting on the Sobolev space W 1,p(Ω):

(1) Φ(v) =
1
p

∫
Ω

|∇v|p + |v|p dx−
∫

Ω

F (x, v) dx−
∫

∂Ω

G(x, v) dS,

Key words and phrases. p−laplace equations, nonlinear boundary conditions, variational meth-
ods.

2000 Mathematics Subject Classification. 35J65, 35J20.
Supported by Universidad de Buenos Aires under grant TX066, by ANPCyT PICT No.

03-05009 and 03-10608, Fundacion Antorchas Project 13900-5 and CONICET (Argentina). J.
Fernández Bonder is a member of CONICET.

1
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where F (x, u) =
∫ u

0
f(x, z) dz, G(x, u) =

∫ u

0
g(x, z) dz and dS is the surface mea-

sure.
We will denote

(2) F(v) =
∫

Ω

F (x, v) dx and G(v) =
∫

∂Ω

G(x, v) dS,

so the functional Φ can be rewritten as

Φ(v) =
1
p
‖v‖p

W 1,p(Ω) −F(v)− G(v).

2. Assumptions and statement of the results.

The precise assumptions on the source terms f and g are as follows:
(F1) f : Ω×R → R, is a measurable function with respect to the first argument

and continuously differentiable with respect to the second argument for
almost every x ∈ Ω. Moreover, f(x, 0) = 0 for every x ∈ Ω.

(F2) There exist constants p < q < p∗ = Np/(N − p), s > p∗/(p∗ − q), t =
sq/(2 + (q − 2)s) > p∗/(p∗ − 2) and functions a ∈ Ls(Ω), b ∈ Lt(Ω), such
that for x ∈ Ω, u, v ∈ R,

|fu(x, u)| ≤ a(x)|u|q−2 + b(x),

|(fu(x, u)− fu(x, v))u| ≤ (a(x)(|u|q−2 + |v|q−2) + b(x))|u− v|.

(F3) There exist constants c1 ∈ (0, 1/(p− 1)), c2 > p, 0 < c3 < c4, such that for
any u ∈ Lq(Ω)

c3‖u‖q
Lq(Ω) ≤ c2

∫
Ω

F (x, u) dx ≤
∫

Ω

f(x, u)u dx ≤

c1

∫
Ω

fu(x, u)u2 dx ≤ c4‖u‖q
Lq(Ω).

(G1) g : ∂Ω×R → R is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every y ∈ ∂Ω. Moreover, g(y, 0) = 0 for every y ∈ ∂Ω.

(G2) There exist constants p < r < p∗ = (N − 1)p/(N − p), σ > p∗/(p∗ − r),
τ = σr/(2+(r−2)σ) > p∗/(p∗−2) and functions α ∈ Lσ(∂Ω), β ∈ Lτ (∂Ω),
such that for y ∈ ∂Ω, u, v ∈ R,

|gu(y, u)| ≤ α(y)|u|r−2 + β(y),

|(gu(y, u)− gu(y, v))u| ≤ (α(y)(|u|r−2 + |v|r−2) + β(y))|u− v|.

(G3) There exist constants k1 ∈ (0, 1/(p − 1)), k2 > p, 0 < k3 < k4, such that
for any u ∈ Lr(∂Ω)

k3‖u‖r
Lr(∂Ω) ≤ k2

∫
∂Ω

G(x, u) dS ≤
∫

∂Ω

g(x, u)u dS ≤

k1

∫
∂Ω

gu(x, u)u2 dx ≤ k4‖u‖r
Lr(∂Ω).

Remark 1. Assumptions (F1)–(F3) implies, since the immersion W 1,p(Ω) ↪→ Lq(Ω)
with 1 < q < p∗ is compact, that F is C1 with compact derivative. Analo-
gously, (G1)–(G3) implies the same facts for G by the compactness of the immersion
W 1,p(Ω) ↪→ Lr(∂Ω) for 1 < r < p∗.
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So the main result of the paper reads:

Theorem 1. Under assumptions (F1)–(F3), (G1)–(G3), there exist three different,
nontrivial, (weak) solutions of problem (P). Moreover these solutions are, one
positive, one negative and the other one has non-constant sign.

3. Proof of Theorem 1.

The proof uses the same approach as in [15]. That is, we will construct three
disjoint sets Ki 6= ∅ not containing 0 such that Φ has a critical point in Ki. These
sets will be subsets of smooth manifolds Mi ⊂ W 1,p(Ω) that will be constructed by
imposing a sign restriction and a normalizing condition.

In fact, let

M1 = {u ∈ W 1,p(Ω) |
∫

∂Ω
u+ dS > 0 and

‖u+‖p
W 1,p(Ω) = 〈F ′(u), u+〉+ 〈G′(u), u+〉},

M2 = {u ∈ W 1,p(Ω) |
∫

∂Ω
u− dS > 0 and

‖u−‖p
W 1,p(Ω) = 〈F ′(u), u−〉+ 〈G′(u), u−〉},

M3 = M1 ∩M2,

where u+ = max{u, 0}, u− = max{−u, 0} are the positive and negative parts of u,
and 〈·, ·〉 is the duality pairing of W 1,p(Ω).

Finally we define

K1 = {u ∈ M1 | u ≥ 0},
K2 = {u ∈ M2 | u ≤ 0},
K3 = M3.

For the proof of the Theorem, we need the following Lemmas.

Lemma 1. There exist cj > 0 such that, for every u ∈ Ki, i = 1, 2, 3,

‖u‖p
W 1,p(Ω) ≤ c1

(∫
Ω

f(x, u)u dx +
∫

∂Ω

g(x, u)u dS

)
≤ c2Φ(u) ≤ c3‖u‖p

W 1,p(Ω).

Proof. As u ∈ Ki, we have that

‖u‖p
W 1,p(Ω) =

∫
Ω

f(x, u)u dx +
∫

∂Ω

g(x, u)u dS.

This proves the first inequality.
Now, by (F3) and (G3)∫

Ω

F (x, u) dx ≤ 1
k2

∫
Ω

f(x, u)u dx,

∫
∂Ω

G(x, u) dS ≤ 1
c2

∫
∂Ω

g(x, u)u dS.

So, for C = max{ 1
k2

; 1
c2
} < 1

p , we have

Φ(u) ≤ (
1
p
− C)‖u‖p

W 1,p(Ω).

This proves the third inequality.
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To prove the middle inequality we proceed as follows:

Φ(u) =
1
p
‖u‖p

W 1,p(Ω) −
∫

Ω

F (x, u) dx−
∫

∂Ω

G(x, u) dS

=
1
p

(∫
Ω

f(x, u)u dx +
∫

∂Ω

g(x, u)u dS

)
−

(∫
Ω

F (x, u) dx +
∫

∂Ω

G(x, u) dS

)
≥ (

1
p
− C)

(∫
Ω

f(x, u)u dx +
∫

∂Ω

g(x, u)u dS

)
.

This finishes the proof. �

Lemma 2. There exists c > 0 such that

‖u+‖W 1,p(Ω) ≥ c for u ∈ K1,

‖u−‖W 1,p(Ω) ≥ c for u ∈ K2 and

‖u+‖W 1,p(Ω), ‖u−‖W 1,p(Ω) ≥ c for u ∈ K3.

Proof. By the definition of Ki, by (F3) and (G3), we have that

‖u±‖p
W 1,p(Ω) =

∫
Ω

f(x, u)u± dx +
∫

∂Ω

g(x, u)u± dS ≤ c(‖u±‖q
Lq(Ω) + ‖u±‖r

Lr(∂Ω)).

Now the proof follows by the Sobolev immersion Theorem and by the Sobolev trace
Theorem, as p < q, r. �

Lemma 3. There exists c > 0 such that Φ(u) ≥ c‖u‖p
W 1,p(Ω) for every u ∈ W 1,p(Ω)

such that ‖u‖W 1,p(Ω) ≤ c.

Proof. By (F3), (G3) and the Sobolev immersions we have

Φ(u) =
1
p
‖u‖p

W 1,p(Ω) −F(u)− G(u) ≥ 1
p
‖u‖p

W 1,p(Ω) − c(‖u‖q
Lq(Ω) + ‖u‖r

Lr(∂Ω))

≥ 1
p
‖u‖p

W 1,p(Ω) − c(‖u‖q
W 1,p(Ω) + ‖u‖r

W 1,p(Ω)) ≥ c‖u‖p
W 1,p(Ω),

if ‖u‖W 1,p(Ω) is small enough, as p < q, r. �

The following lemma describes the properties of the manifolds Mi.

Lemma 4. Mi is a C1,1 sub-manifold of W 1,p(Ω) of co-dimension 1 (i = 1, 2), 2
(i = 3) respectively. The sets Ki are complete. Moreover, for every u ∈ Mi we have
the direct decomposition

TuW 1,p(Ω) = TuMi ⊕ span{u+, u−},
where TuM is the tangent space at u of the Banach manifold M . Finally, the
projection onto the first component in this decomposition is uniformly continuous
on bounded sets of Mi.

Proof. Let us denote

M̄1 =
{

u ∈ W 1,p(Ω) |
∫

∂Ω

u+ dS > 0
}

M̄2 =
{

u ∈ W 1,p(Ω) |
∫

∂Ω

u− dS > 0
}

M̄3 = M̄1 ∩ M̄2.

Observe that Mi ⊂ M̄i.
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By the Sobolev trace Theorem, the set M̄i is open in W 1,p(Ω), therefore it is
enough to prove that Mi is a smooth sub-manifold of M̄i. In order to do this, we
will construct a C1,1 function ϕi : M̄i → Rd with d = 1 (i = 1, 2), d = 2 (i = 3)
respectively and Mi will be the inverse image of a regular value of ϕi.

In fact, we define: For u ∈ M̄1,

ϕ1(u) = ‖u+‖p
W 1,p(Ω) − 〈F ′(u), u+〉 − 〈G′(u), u+〉.

For u ∈ M̄2,

ϕ2(u) = ‖u−‖p
W 1,p(Ω) − 〈F ′(u), u−〉 − 〈G′(u), u−〉.

For u ∈ M̄3,
ϕ3(u) = (k1(u), k2(u)).

Obviously, we have Mi = ϕ−1
i (0). We need to show that 0 is a regular value for ϕi.

To this end we compute, for u ∈ M1,

〈∇ϕ1(u), u+〉 =p‖u+‖p
W 1,p(Ω) −

∫
Ω

fu(x, u)u2
+ + f(x, u)u+ dx

−
∫

∂Ω

gu(x, u)u2
+ + g(x, u)u+ dS

=(p− 1)
∫

Ω

f(x, u)u+ dx−
∫

Ω

fu(x, u)u2
+ dx

+ (p− 1)
∫

∂Ω

g(x, u)u+ dS −
∫

∂Ω

gu(x, u)u2
+ dS.

By (F3) and (G3) the last term is bounded by

(p− 1− c−1
1 )

∫
Ω

f(x, u)u+ dx + (p− 1− k−1
1 )

∫
∂Ω

g(x, u)u+ dS.

Recall that c1, k1 < 1/(p− 1). Now, by Lemma 1, this is bounded by

−c‖u+‖p
W 1,p(Ω)

which is strictly negative by Lemma 2. Therefore, M1 is a smooth sub-manifold of
W 1,p(Ω). The exact same argument applies to M2.

Since trivially
〈∇ϕ1(u), u−〉 = 〈∇ϕ2(u), u+〉 = 0

for u ∈ M3, the same conclusion holds for M3.
To see that Ki is complete, let uk be a Cauchy sequence in Ki, then uk → u in

W 1,p(Ω). Moreover, (uk)± → u± in W 1,p(Ω). Now it is easy to see, by Lemma 2
and by continuity that u ∈ Ki.

Finally, by the first part of the proof we have the decomposition

TuW 1,p(Ω) = TuMi ⊕ span{u+, u−}.
Now let v ∈ TuW 1,p(Ω) be a unit tangential vector, then v = v1 + v2 where vi are
given by

v2 = (∇ϕi(u)|span{u+,u−})
−1〈∇ϕi(u), v〉 ∈ span{u+, u−}, v1 = v − v2 ∈ TuMi.

From these formulas and from the estimates given in the first part of the proof, the
uniform continuity follows. �

Now, we need to check the Palais-Smale condition for the functional Φ restricted
to the manifold Mi.
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Lemma 5. The functional Φ|Ki satisfies the Palais-Smale condition.

Proof. Let {uk} ⊂ Ki be a Palais-Smale sequence, that is Φ(uk) is uniformly
bounded and ∇Φ|Ki(uk) → 0 strongly. We need to show that there exists a subse-
quence ukj that converges strongly in Ki.

Let vj ∈ Tuj
W 1,p(Ω) be a unit tangential vector such that

〈∇Φ(uj), vj〉 = ‖∇Φ(uj)‖(W 1,p(Ω))′ .

Now, by Lemma 4, vj = wj + zj with wj ∈ Tuj Mi and zj ∈ span{(uj)+, (uj)−}.
Since Φ(uj) is uniformly bounded, by Lemma 1, uj is uniformly bounded in

W 1,p(Ω) and hence wj is uniformly bounded in W 1,p(Ω). Therefore

‖Φ(uj)‖(W 1,p(Ω))′ = 〈∇Φ(uj), vj〉 = 〈∇Φ|Ki(uj), vj〉 → 0.

As uj is bounded in W 1,p(Ω), there exists u ∈ W 1,p(Ω) such that uj ⇀ u,
weakly in W 1,p(Ω). As it is well known that the unrestricted functional Φ satisfies
the Palais-Smale condition (cf. [9] and [13]), the lemma follows.

See [15] for the details. �

We now immediately obtain

Lemma 6. Let u ∈ Ki be a critical point of the restricted functional Φ|Ki . Then
u is also a critical point of the unrestricted functional Φ and hence a weak solution
to (P).

With all this preparatives, the proof of the Theorem follows easily.

Proof of Theorem 1. The proof now is a standard application of the Lusternik–
Schnirelman method for non-compact manifolds. See [14]. �
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