ASYMPTOTIC BEHAVIOR OF THE BEST SOBOLEV TRACE CONSTANT IN EXPANDING AND CONTRACTING DOMAINS

Julián Fernández Bonder
Departamento de Matemática, FCEyN, UBA
(1428) Buenos Aires, Argentina
Julio D. Rossi
Departamento de Matemática, FCEyN, UBA
(1428) Buenos Aires, Argentina
(Communicated by Manuel del Pino)

Abstract

We study the asymptotic behavior for the best constant and extremals of the Sobolev trace embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ on expanding and contracting domains. We find that the behavior strongly depends on p and q. For contracting domains we prove that the behavior of the best Sobolev trace constant depends on the sign of $q N-p N+p$ while for expanding domains it depends on the sign of $q-p$. We also give some results regarding the behavior of the extremals, for contracting domains we prove that they converge to a constant when rescaled in a suitable way and for expanding domains we observe when a concentration phenomena takes place.

1. Introduction. Let Ω be a smooth bounded domain in $\mathbb{R}^{N}, N \geq 2$. Of importance in the study of boundary value problems for differential operators in Ω are the Sobolev trace inequalities. For any $1<p<N$, and $1<q \leq p^{*}=p(N-1) /(N-p)$ we have that $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ and hence the following inequality holds:

$$
S_{q}\|u\|_{L^{q}(\partial \Omega)}^{p} \leq\|u\|_{W^{1, p}(\Omega)}^{p}
$$

for all $u \in W^{1, p}(\Omega)$. This is known as the Sobolev trace embedding Theorem. The best constant for this embedding is the largest S_{q} such that the above inequality holds, that is,

$$
\begin{equation*}
S_{q}(\Omega)=\inf _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p}+|u|^{p} d x}{\left(\int_{\partial \Omega}|u|^{q} d \sigma\right)^{p / q}} . \tag{1}
\end{equation*}
$$

Moreover, if $1<q<p^{*}$ the embedding is compact and as a consequence we have the existence of extremals, i.e. functions where the infimum is attained, see

[^0][8]. These extremals are weak solutions of the following problem
\[

$$
\begin{cases}\Delta_{p} u=|u|^{p-2} u & \text { in } \Omega \tag{2}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda|u|^{q-2} u & \text { on } \partial \Omega\end{cases}
$$
\]

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian and $\frac{\partial}{\partial \nu}$ is the outer unit normal derivative.

Standard regularity theory and the strong maximum principle, [16], show that any extremal u belongs to the class $C_{\mathrm{loc}}^{1, \alpha}(\Omega) \cap C^{\alpha}(\bar{\Omega})$ and that is strictly one signed in Ω, so we can assume that $u>0$ in Ω. Let us fix p, q with $1<q<p^{*}$ and Ω a bounded smooth domain in \mathbb{R}^{N}, C^{1} is enough for our calculations. For $\mu>0$ we consider the family of domains

$$
\Omega_{\mu}=\mu \Omega=\{\mu x ; x \in \Omega\} .
$$

The purpose of this work is to describe the asymptotic behavior of the best Sobolev trace constants $S_{q}\left(\Omega_{\mu}\right)$ as $\mu \rightarrow 0+$ and $\mu \rightarrow+\infty$.

As a precedent, see [4] for a detailed analysis of the behavior of extremals and best Sobolev constants in expanding domains for $p=2$ and $q>2$. In that paper it is proved that the extremals develop a peak near the point where the curvature of the boundary attains a maximum. In [5] and [13] a related problem in the halfspace \mathbb{R}_{+}^{N} for the critical exponent is studied. See also [6], [7] for other geometric problems that leads to nonlinear boundary conditions.

Let us call u_{μ} an extremal corresponding to Ω_{μ}. Making a change of variables, we go back to the original domain Ω. If we define $v_{\mu}(x)=u_{\mu}(\mu x)$, we have that $v_{\mu} \in W^{1, p}(\Omega)$ and

$$
\begin{equation*}
S_{q}\left(\Omega_{\mu}\right)=\mu^{(N q-N p+p) / q} \frac{\int_{\Omega} \mu^{-p}\left|\nabla v_{\mu}\right|^{p}+\left|v_{\mu}\right|^{p} d x}{\left(\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma\right)^{p / q}} \tag{3}
\end{equation*}
$$

We can assume, and we do so, that the functions u_{μ} are chosen so that

$$
\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma=1
$$

We remark that the quantity (1) is not homogeneous under dilations or contractions of the domain. This is a remarkable difference with the study of the Sobolev embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$. First, we deal with the case $\mu \rightarrow 0+$. As we will see the behavior of the Sobolev constant and extremals is very different when the domain is contracted than when it is expanded. Our first result is the following:

Theorem 1.1. Let $1<q<p^{*}$, then

$$
\begin{equation*}
\lim _{\mu \rightarrow 0+} \frac{S_{q}\left(\Omega_{\mu}\right)}{\mu^{(N q-N p+p) / q}}=\frac{|\Omega|}{|\partial \Omega|^{p / q}} \tag{4}
\end{equation*}
$$

and if we scale the extremals u_{μ} to the original domain Ω as $v_{\mu}(x)=u_{\mu}(\mu x), x \in \Omega$, with $\left\|v_{\mu}\right\|_{L^{q}(\partial \Omega)}=1$, then v_{μ} is nearly constant in the sense that $v_{\mu} \rightarrow|\partial \Omega|^{-1 / q}$ in $W^{1, p}(\Omega)$.

Observe that the behavior of the Sobolev trace constant, strongly depends on p and q. If we call $\beta_{p q}=(N q-N p+p) / q$ then we have that, as $\mu \rightarrow 0+$,

$$
\begin{array}{ll}
S_{q} \rightarrow 0 & \text { if } \beta_{p q}>0, \\
S_{q} \rightarrow+\infty & \text { if } \beta_{p q}<0, \\
S_{q} \rightarrow C \neq 0 & \text { if } \beta_{p q}=0 .
\end{array}
$$

Let us remark that the influence of the geometry of the domain appears in (4).
In the special case $p=q$, problem (2) becomes a nonlinear eigenvalue problem. For $p=2$, this eigenvalue problem is known as the Steklov problem, [2]. In [8] it is proved, applying the Ljusternik-Schnirelman critical point Theory on C^{1} manifolds, that there exists a sequence of variational eigenvalues $\lambda_{k} \nearrow+\infty$ and it is easy to see that the first eigenvalue $\lambda_{1}(\Omega)$ verifies $\lambda_{1}(\Omega)=S_{p}(\Omega)$. So Theorem 1.1 shows a difference in the behavior of the first eigenvalue of (2) with respect to the domain with the behavior of the first eigenvalue of the following Dirichlet problem

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where it is a well known fact that λ_{1} increases as the domain decreases, see [1], [10].
The variational eigenvalues λ_{k} of (2) are characterized by

$$
\begin{equation*}
\frac{1}{\lambda_{k}}=\sup _{C \in C_{k}} \min _{u \in C} \frac{\|u\|_{L^{p}(\partial \Omega)}^{p}}{\|u\|_{W^{1, p}(\Omega)}^{p}} \tag{5}
\end{equation*}
$$

where $C_{k}=\left\{C \subset W^{1, p}(\Omega) ; C\right.$ is compact, symmetric and $\left.\gamma(C) \geq k\right\}$ and γ is the Krasnoselski genus (see [11]). It is shown in [9] that there exists a second eigenvalue for (2) and that it coincides with the second variational eigenvalue λ_{2}. Moreover, the following characterization of the second eigenvalue λ_{2} holds

$$
\begin{equation*}
\lambda_{2}=\inf _{u \in A}\left\{\int_{\Omega}|\nabla u|^{p}+|u|^{p} d x\right\}, \tag{6}
\end{equation*}
$$

where $A=\left\{u \in W^{1, p}(\Omega) ;\|u\|_{L^{p}(\partial \Omega)}=1\right.$ and $\left.\left|\partial \Omega^{ \pm}\right| \geq c\right\}, \partial \Omega^{+}=\{x \in \partial \Omega ; u(x)>$ $0\}$ and $\partial \Omega^{-}$is defined analogously. Concerning the eigenvalue problem, we have the following result.

Theorem 1.2. There exists a constant $\widetilde{\lambda}_{2}$ such that

$$
\lim _{\mu \rightarrow 0+} \mu^{p-1} \lambda_{2}\left(\Omega_{\mu}\right)=\widetilde{\lambda}_{2}
$$

This constant $\widetilde{\lambda}_{2}$ is the first nonzero eigenvalue of the following problem

$$
\begin{cases}\Delta_{p} u=0 & \text { in } \Omega \tag{7}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\tilde{\lambda}|u|^{p-2} u & \text { on } \partial \Omega .\end{cases}
$$

Moreover, if we take an eigenfunction $u_{2, \mu}$ associated to $\lambda_{2}\left(\Omega_{\mu}\right)$ and scale it to Ω as in Theorem 1.1, we obtain that $v_{2, \mu} \rightarrow \widetilde{v}_{2}$ in $W^{1, p}(\Omega)$, where \widetilde{v}_{2} is an eigenfunction of (7) associated to $\widetilde{\lambda}_{2}$. Also, every eigenvalue $\lambda_{2}\left(\Omega_{\mu}\right) \leq \lambda\left(\Omega_{\mu}\right) \leq \lambda_{k}\left(\Omega_{\mu}\right)$ of (2) (variational or not) behaves as $\lambda\left(\Omega_{\mu}\right) \sim \mu^{1-p}$ as $\mu \rightarrow 0+$. Finally, if $\mu_{j} \rightarrow 0$ and $\lambda_{j}=\lambda\left(\Omega_{\mu_{j}}\right)$ is a sequence of eigenvalues such that there exists λ with

$$
\lim _{j \rightarrow \infty} \mu_{j}^{p-1} \lambda_{j}=\lambda,
$$

let $\left(v_{j}\right)$ be the sequence of associated eigenfunctions rescaled as in Theorem 1.1, then $\left(v_{j}\right)$ has a convergent subsequence $\left(v_{j_{k}}\right)$ and a limit v, that is an eigenfunction of (7) with eigenvalue λ.

Observe that the first eigenvalue of (7) is zero with associated eigenfunction a constant. Hence Theorem 1.1 says that the first eigenvalue and the first eigenfunction of our problem (2) converges to the ones of (7). Theorem 1.2 says that $\lambda\left(\Omega_{\mu}\right) \rightarrow+\infty$ as $\mu \rightarrow 0+$ for the remaining eigenvalues and that problem (7) is a limit problem for (2) when $\mu \rightarrow 0+$. We believe that Theorem 1.2 is our main result.

Now, we deal with the case $\mu \rightarrow+\infty$. In this case we find, as before, that the behavior strongly depends on p and q. We prove,

Theorem 1.3. Let $\beta_{p q}=(q N-p N+p) / q$. It holds

1. If $1<q<p, \quad 0<c_{1} \mu^{\beta_{p q}-1} \leq S_{q}\left(\Omega_{\mu}\right) \leq c_{2} \mu^{\beta_{p q}-1}$.
2. If $p \leq q<p^{*}, \quad 0<c_{1} \leq S_{q}\left(\Omega_{\mu}\right) \leq c_{2}<\infty$.

For the lower bound in (2) in the case $p<q<p^{*}$ we have to assume that the corresponding extremals v_{μ} rescaled such that $\max _{\bar{\Omega}} v_{\mu}=1$ verify $\left|\nabla v_{\mu}\right| \leq C \mu$. Moreover, for all cases, we have that the corresponding extremals u_{μ} rescaled as in Theorem 1.1 concentrates at the boundary, in the sense that

$$
\begin{array}{ll}
\int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq C \mu^{-\beta_{p q}} \rightarrow 0 \quad \text { as } \mu \rightarrow+\infty, & \text { if } q \geq p \\
\int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq C \mu^{-1} \rightarrow 0 \quad \text { as } \mu \rightarrow+\infty, & \text { if } q<p
\end{array}
$$

with

$$
\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma=1
$$

As before the behavior of the Sobolev trace constant depends on p and q. We have that, as $\mu \rightarrow+\infty$,

$$
\begin{array}{ll}
S_{q} \rightarrow 0 & \text { if } \beta_{p q}-1<0, \text { i.e. } q<p \\
0<c_{1} \leq S_{q} \leq c_{2}<\infty & \text { if } \beta_{p q}-1 \geq 0, \text { i.e. } q \geq p
\end{array}
$$

The hypothesis $\left|\nabla v_{\mu}\right| \leq C \mu$ is a regularity assumption, see [15] for $C_{\mathrm{loc}}^{1, \alpha}$ regularity results. As a consequence of our arguments we have that the extremals do not develop a peak if $1<q<p$ as in this case we have that

$$
c_{1} \leq \int_{\partial \Omega}\left|v_{\mu}\right|^{p} d \sigma \leq c_{2}
$$

and

$$
\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma=1
$$

For $p=q$ it is proved in [12] that the first eigenvalue $\lambda_{1}\left(\Omega_{\mu}\right)=S_{p}\left(\Omega_{\mu}\right)$ is isolated and simple. As a consequence of this if Ω is a ball the extremal v_{μ} is radial and hence it does not develop a peak. Finally, for $q>p$ the extremals develop peaking concentration phenomena in the sense that, for every $a>0$,

$$
a^{p}\left|\partial \Omega \cap\left\{v_{\mu}>a\right\}\right| \rightarrow 0, \quad \text { as } \mu \rightarrow+\infty
$$

with $\max _{\bar{\Omega}} v_{\mu}=1$. This is in concordance with the results of [4] where for $p=2$, $q>2$ they find that the extremals concentrates, with the formation of a peak, near a point of the boundary where the curvature maximizes. We believe that for
$q>p$, extremals develop a single peak as in the case $p=2$. Nevertheless that kind of analysis needs some fine knowledge of the limit problem in \mathbb{R}_{+}^{N} that is not yet available for the p-Laplacian.

Let us give an idea of the proof of the lower bounds. In the case $p=q$ we can obtain the lower bound by an approximation procedure. We replace $W^{1, p}(\Omega)$ by an increasing sequence of subspaces in the minimization problem. Then we prove a convergence result and find a uniform bound from below for the approximating problems. We believe that this idea can be used in other contexts. For the case $q>p$ we use our assumption $\left|\nabla v_{\mu}\right| \leq C \mu$ to prove a reverse Hölder inequality for the extremals on the boundary that allows us to reduce to the case $p=q$.

Finally, for large μ, in the case $p=q$ we can prove that every eigenvalue is bounded.

ThEOREM 1.4. Let $\lambda_{1}\left(\Omega_{\mu}\right) \leq \lambda\left(\Omega_{\mu}\right) \leq \lambda_{k}\left(\Omega_{\mu}\right)$ be an eigenvalue of (2) in Ω_{μ} (variational or not). Then there exists two constants, $C_{1}, C_{2}>0$, independent of μ such that $0<C_{1} \leq \lambda\left(\Omega_{\mu}\right) \leq C_{2}<+\infty$, for every μ large.

The rest of the paper is organized as follows. In Section 2, we deal with the case $\mu \rightarrow 0$ and in Section 3, we study the case $\mu \rightarrow+\infty$. Throughout the paper, by C we mean a constant that may vary from line to line but remains independent of the relevant quantities.
2. Behavior as $\mu \rightarrow 0+$. In this section we focus on the case $\mu \rightarrow 0+$. First we prove Theorem 1.1 and then study the case where $q=p$ (the eigenvalue problem).

Let us begin with the following Lemma.
Lemma 2.1. Under the assumptions of Theorem 1.1, it follows that

$$
S_{q}\left(\Omega_{\mu}\right) \leq \mu^{(N q-N p+p) / q} \frac{|\Omega|}{|\partial \Omega|^{p / q}} .
$$

Proof. Let us recall that

$$
S_{q}\left(\Omega_{\mu}\right)=\inf _{u \in W^{1, p}\left(\Omega_{\mu}\right) \backslash\{0\}} \frac{\int_{\Omega_{\mu}}|\nabla u|^{p}+|u|^{p} d x}{\left(\int_{\partial \Omega_{\mu}}|u|^{q} d \sigma\right)^{p / q}}
$$

Then, taking $u \equiv 1$ it follows that

$$
S_{q}\left(\Omega_{\mu}\right) \leq \mu^{(N q-N p+p) / q} \frac{|\Omega|}{|\partial \Omega|^{p / q}},
$$

as we wanted to see.
This Lemma shows that the ratio $S_{q}\left(\Omega_{\mu}\right) / \mu^{(N q-N p+p) / q}$ is bounded. So a natural question will be to determine if it converges to some value. This is answered in Theorem 1.1 that we prove next.

Proof of Theorem 1.1. Let $u_{\mu} \in W^{1, p}\left(\Omega_{\mu}\right)$ be a extremal for $S_{q}\left(\Omega_{\mu}\right)$ and define $v_{\mu}(x)=u_{\mu}(\mu x)$, we have that $v_{\mu} \in W^{1, p}(\Omega)$. We can assume that the functions u_{μ} are chosen so that

$$
\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma=1
$$

Equation (3) and Lemma 2.1 give, for $\mu<1$,

$$
\left\|v_{\mu}\right\|_{W^{1, p}(\Omega)}^{p} \leq \int_{\Omega} \mu^{-p}\left|\nabla v_{\mu}\right|^{p}+\left|v_{\mu}\right|^{p} d x \leq \frac{|\Omega|}{|\partial \Omega|^{p / q}}
$$

so there exists a function $v \in W^{1, p}(\Omega)$ and a sequence $\mu_{j} \rightarrow 0+$ such that

$$
\begin{aligned}
& v_{\mu_{j}} \rightharpoonup v \quad \text { weakly in } W^{1, p}(\Omega) \\
& v_{\mu_{j}} \rightarrow v \quad \text { in } L^{p}(\Omega) \\
& v_{\mu_{j}} \rightarrow v \quad \text { in } L^{q}(\partial \Omega)
\end{aligned}
$$

Moreover,

$$
\int_{\Omega}\left|\nabla v_{\mu}\right|^{p} d x \leq \frac{|\Omega|}{|\partial \Omega|^{p / q}} \mu^{p}
$$

Hence $\nabla v_{\mu} \rightarrow 0$ in $L^{p}(\Omega)$. It follows that the limit v is a constant and must verify $\int_{\partial \Omega}|v|^{q}=1$, hence $v=$ constant $=|\partial \Omega|^{-1 / q}$ and so the full sequence v_{μ} converges weakly in $W^{1, p}(\Omega)$ to v. From our previous bounds we have

$$
v_{\mu} \rightarrow \frac{1}{|\partial \Omega|^{1 / q}} \text { in } L^{p}(\Omega) \quad \text { and } \quad \int_{\Omega}\left|\nabla v_{\mu}\right|^{p} d x \rightarrow 0
$$

Therefore, we have strong convergence, $v_{\mu} \rightarrow|\partial \Omega|^{-1 / q_{\text {in }}} W^{1, p}(\Omega)$. The proof is finished.

Now we turn our attention to the case $p=q$ which is a nonlinear eigenvalue problem. We recall that Theorem 1.1 says that $\lambda_{1}\left(\Omega_{\mu}\right)=S_{p}\left(\Omega_{\mu}\right) \sim \mu \rightarrow 0$. First we focus on the behavior of the second eigenvalue λ_{2}. For the proof of Theorem 1.2 we need the following Lemmas. We believe that these results have independent interest.
Lemma 2.2. Let $h \in L^{p^{\prime}}(\partial \Omega)$. Then, problem

$$
\begin{cases}\Delta_{p} w=0 & \text { in } \Omega \tag{8}\\ |\nabla w|^{p-2} \frac{\partial w}{\partial \nu}=h(x) & \text { on } \partial \Omega\end{cases}
$$

has a weak solution if and only if $\int_{\partial \Omega} h(x) d \sigma=0$. Moreover, the solution is unique up to an additive constant.

Proof. It is straightforward to check that if there exists a weak solution to (8) then $\int_{\partial \Omega} h(x) d \sigma=0$.

Now, let $X=\left\{w \in W^{1, p}(\Omega) ; \int_{\Omega} w d x=0\right\}$. By a standard compactness argument, one can verify that the following Poincare inequality holds,

$$
\begin{equation*}
\|w\|_{L^{p}(\Omega)} \leq C\|\nabla w\|_{L^{p}(\Omega)} \tag{9}
\end{equation*}
$$

for every $w \in X$ and some constant C. Let us now define

$$
\begin{equation*}
\Phi(w)=\int_{\Omega}|\nabla w|^{p} d x-\int_{\partial \Omega} h(x) w d \sigma \tag{10}
\end{equation*}
$$

Critical points of Φ in $W^{1, p}(\Omega)$ are weak solutions of (8). By (9), Φ is a strictly convex, bounded below functional on X, and so there exists a unique function $w \in$ X such that $\Phi^{\prime}(w)(v)=0$ for every $v \in X$. Now, using the fact that $\int_{\partial \Omega} h(x) d \sigma=$ 0 , it is easy to see that $\Phi^{\prime}(w)(v)=0$ for every $v \in W^{1, p}(\Omega)$ and the proof is now complete.

Now we find a variational characterization of the first non-zero eigenvalue of the limit problem (7).
Lemma 2.3. Let $\tilde{\lambda}_{2}$ be defined by

$$
\begin{equation*}
\tilde{\lambda}_{2}=\inf _{u \in Y-\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\partial \Omega}|u|^{p} d \sigma}, \tag{11}
\end{equation*}
$$

where $Y=\left\{u \in W^{1, p}(\Omega) ; \int_{\partial \Omega}|u|^{p-2} u d \sigma=0\right\}$. Then the infimum is attained.
Proof. Let u_{n} be a minimizing sequence with $\left\|u_{n}\right\|_{L^{p}(\partial \Omega)}=1$. By a compactness argument we can extract a subsequence, that we still call u_{n}, such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u & \text { weakly in } W^{1, p}(\Omega), \\
u_{n} \rightarrow u & \text { in } L^{p}(\Omega) \\
u_{n} \rightarrow u & \text { in } L^{p}(\partial \Omega) .
\end{array}
$$

Hence $u \in Y-\{0\},\|u\|_{L^{p}(\partial \Omega)}=1$. Moreover, we have that

$$
\int_{\Omega}|\nabla u|^{p} d x \leq \liminf \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=\tilde{\lambda}_{2} .
$$

Therefore u is a minimizer.
Now we are ready to deal with the proof of Theorem 1.2 which is the main result of the paper.

Proof of Theorem 1.2. We can assume that $0 \in \Omega$ and then we can take $u(x)=x_{1}$ in the characterization of λ_{2} given by (6) to obtain

$$
\lambda_{2}\left(\Omega_{\mu}\right) \leq \frac{\left|\Omega_{\mu}\right|+\int_{\Omega_{\mu}}\left|x_{1}\right|^{p} d x}{\int_{\partial \Omega_{\mu}}\left|x_{1}\right|^{p} d \sigma}=\mu^{1-p} \frac{|\Omega|+\mu^{p} \int_{\Omega}\left|y_{1}\right|^{p} d y}{\int_{\partial \Omega}\left|y_{1}\right|^{p} d \sigma} \leq C \mu^{1-p} .
$$

Hence if we consider $v_{2, \mu}$ any eigenfunction associated to $\lambda_{2}\left(\Omega_{\mu}\right)$ normalized with $\left\|v_{2, \mu}\right\|_{L^{p}(\partial \Omega)}=1$ we get

$$
C \mu^{1-p} \geq \lambda_{2}\left(\Omega_{\mu}\right)=\mu^{1-p}\left(\int_{\Omega}\left|\nabla v_{2, \mu}\right|^{p} d x+\mu^{p} \int_{\Omega}\left|v_{2, \mu}\right|^{p} d x\right)
$$

Therefore $\left\|\nabla v_{2, \mu}\right\|_{L^{p}(\Omega)} \leq C$. As we have that $\left\|v_{2, \mu}\right\|_{L^{p}(\partial \Omega)}=1$, it follows that $\left\|v_{2, \mu}\right\|_{W^{1, p}(\Omega)} \leq C$, hence we can extract a subsequence $\mu_{j} \rightarrow 0+$ such that

$$
\begin{aligned}
& v_{2, \mu_{j}} \rightharpoonup \tilde{v}_{2} \quad \text { weakly in } W^{1, p}(\Omega), \\
& v_{2, \mu_{j}} \rightarrow \tilde{v}_{2} \quad \text { in } L^{p}(\Omega), \\
& v_{2, \mu_{j}} \rightarrow \tilde{v}_{2} \quad \text { in } L^{p}(\partial \Omega) .
\end{aligned}
$$

Therefore we have that

$$
\int_{\partial \Omega}\left|\tilde{v}_{2}\right|^{p} d \sigma=1
$$

As it is proved in [9], $\left|\left\{v_{2, \mu_{j}}>0\right\} \cap \partial \Omega\right|,\left|\left\{v_{2, \mu_{j}}<0\right\} \cap \partial \Omega\right|>c$ independent of μ_{j}, then \tilde{v}_{2} changes sign. Hence, we get

$$
\int_{\Omega}\left|\nabla \tilde{v}_{2}\right|^{p} d x \neq 0 .
$$

Taking a subsequence, if necessary, we can assume that

$$
\frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}} \rightarrow \bar{\lambda} \quad \text { as } \mu \rightarrow 0+
$$

and, as

$$
\frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}}=\int_{\Omega}\left|\nabla v_{2, \mu}\right|^{p} d x+\mu^{p} \int_{\Omega}\left|v_{2, \mu}\right|^{p} d x
$$

passing to the limit

$$
0 \neq \int_{\Omega}\left|\nabla \tilde{v}_{2}\right|^{p} d x \leq \liminf \int_{\Omega}\left|\nabla v_{2, \mu}\right|^{p} d x=\bar{\lambda}
$$

hence we obtain that $\bar{\lambda} \neq 0$.
Taking $\varphi \equiv 1$ in the weak form of the equation satisfied by $v_{2, \mu}$ we get that

$$
\mu^{p} \int_{\Omega}\left|v_{2, \mu}\right|^{p-2} v_{2, \mu} d x=\frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}} \int_{\partial \Omega}\left|v_{2, \mu}\right|^{p-2} v_{2, \mu} d \sigma .
$$

Passing again to the limit we have that

$$
\tilde{v}_{2} \in Y=\left\{u \in W^{1, p}(\Omega) ; \int_{\partial \Omega}|u|^{p-2} u d \sigma=0\right\} .
$$

Let w be a function where the infimum (11) is attained with $\|w\|_{L^{p}(\partial \Omega)}=1$. As $w \in A$ (see (6)), we have

$$
\int_{\Omega}|\nabla w|^{p}+\mu^{p}|w|^{p} d x \geq \frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}}=\int_{\Omega}\left|\nabla v_{2, \mu}\right|^{p}+\mu^{p}\left|v_{2, \mu}\right|^{p} d x .
$$

Taking the limit as $\mu \rightarrow 0+$ we get

$$
\tilde{\lambda}_{2}=\int_{\Omega}|\nabla w|^{p} d x \geq \lim _{\mu \rightarrow 0} \frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}} \geq \int_{\Omega}\left|\nabla \tilde{v}_{2}\right|^{p} d x \geq \inf _{\|z\|_{L^{p}(\partial \Omega)}=1, z \in Y} \int_{\Omega}|\nabla z|^{p}=\tilde{\lambda}_{2} .
$$

Therefore

$$
\lim _{\mu \rightarrow 0} \frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}}=\tilde{\lambda}_{2}
$$

and

$$
\int_{\Omega}\left|\nabla v_{2, \mu}\right|^{p} d x \rightarrow \int_{\Omega}\left|\nabla \tilde{v}_{2}\right|^{p} d x
$$

from where it follows that $v_{2, \mu} \rightarrow \tilde{v}_{2}$ strongly in $W^{1, p}(\Omega)$. Once again, we pass to the limit as $\mu \rightarrow 0+$ in the weak formulation satisfied by $v_{2, \mu}$ to get that \tilde{v}_{2} is an eigenfunction associated to $\tilde{\lambda}_{2}$. By the characterization of $\tilde{\lambda}_{2}$ given in Lemma 11 we get that this is the first non-zero eigenvalue for problem (7).

Now we find the behavior of the remaining eigenvalues. Let $\lambda\left(\Omega_{\mu}\right)$ be an eigenvalue (variational or not). Then, as the variational eigenvalues $\lambda_{k}\left(\Omega_{\mu}\right)$ form an unbounded sequence, there exists k such that $\lambda_{2}\left(\Omega_{\mu}\right) \leq \lambda\left(\Omega_{\mu}\right) \leq \lambda_{k}\left(\Omega_{\mu}\right)$. Now, let $x_{1}, \ldots, x_{k} \in \partial \Omega$ and $r=r(k)$ be such that $\operatorname{dist}\left(x_{i}, x_{j}\right)>2 r$. Let $\phi \in C^{\infty}(\Omega)$ be a nonnegative function with support $B(0, r)$ and let $\phi_{j}(x)=\phi\left(x-x_{j}\right)$.

Now, let us define $S_{k}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k}\right\} \cap\left\{v \in W^{1, p}(\Omega) ;\|v\|_{W^{1, p}(\Omega)}=1\right\}$ and $S_{k, \mu}=\left\{v(x / \mu) ; v \in S_{k}\right\}$, then $\gamma\left(S_{k}\right)=\gamma\left(S_{k, \mu}\right)=k$. Hence

$$
\frac{1}{\lambda_{k}\left(\Omega_{\mu}\right)}=\sup _{\gamma(S) \geq k} \inf _{u \in S} \frac{\int_{\partial \Omega_{\mu}}|u|^{p} d \sigma}{\int_{\Omega_{\mu}}|\nabla u|^{p}+|u|^{p} d x} \geq \inf _{u \in S_{k, \mu}} \frac{\int_{\partial \Omega_{\mu}}|u|^{p} d \sigma}{\int_{\Omega_{\mu}}|\nabla u|^{p}+|u|^{p} d x} .
$$

Changing variables we get,

$$
\begin{equation*}
\frac{1}{\lambda_{k}\left(\Omega_{\mu}\right)} \geq \mu^{p-1} \inf _{v \in S_{k}} \frac{\int_{\partial \Omega}|v|^{p} d \sigma}{\int_{\Omega}|\nabla v|^{p}+\mu^{p}|v|^{p} d x} \tag{12}
\end{equation*}
$$

As ϕ_{i} have disjoint support,

$$
\|v\|_{L^{p}(\Omega)}^{p}=\left\|\sum_{i=1}^{k} a_{i} \phi_{i}\right\|_{L^{p}(\Omega)}^{p}=\sum_{i=1}^{k}\left|a_{i}\right|^{p}\left\|\phi_{i}\right\|_{L^{p}(\Omega)}^{p} \leq \sum_{i=1}^{k}\left|a_{i}\right|^{p}\|\phi\|_{L^{p}(B(0, r))}^{p}
$$

and

$$
\|\nabla v\|_{L^{p}(\Omega)}^{p}=\left\|\sum_{i=1}^{k} a_{i} \nabla \phi_{i}\right\|_{L^{p}(\Omega)}^{p}=\sum_{i=1}^{k}\left|a_{i}\right|^{p}\left\|\nabla \phi_{i}\right\|_{L^{p}(\Omega)}^{p} \leq \sum_{i=1}^{k}\left|a_{i}\right|^{p}\|\nabla \phi\|_{L^{p}(B(0, r))}^{p} .
$$

As the boundary of Ω is regular we have that there exists a constant C_{k} such that

$$
\|v\|_{L^{p}(\partial \Omega)}^{p}=\left\|\sum_{i=1}^{k} a_{i} \phi_{i}\right\|_{L^{p}(\partial \Omega)}^{p}=\sum_{i=1}^{k}\left|a_{i}\right|^{p}\left\|\phi_{i}\right\|_{L^{p}(\partial \Omega)}^{p} \geq C_{k} \sum_{i=1}^{k}\left|a_{i}\right|^{p} .
$$

Using these estimates in (12) we obtain

$$
0<c \leq \frac{\lambda_{2}\left(\Omega_{\mu}\right)}{\mu^{1-p}} \leq \frac{\lambda\left(\Omega_{\mu}\right)}{\mu^{1-p}} \leq \frac{\lambda_{k}\left(\Omega_{\mu}\right)}{\mu^{1-p}} \leq C_{k}<+\infty
$$

and the result follows.
Finally we study the convergence of the eigenvalues and eigenfunctions corresponding to the rest of the spectrum. By our hypotheses we have that

$$
\lim _{j \rightarrow \infty} \frac{\lambda_{j}}{\mu_{j}^{1-p}}=\lambda
$$

As v_{j} is bounded in $W^{1, p}(\Omega)$ we can extract a subsequence (that we still call v_{j}) such that

$$
\begin{aligned}
v_{j} & \rightharpoonup v \\
v_{j} \rightarrow v & \text { in } L^{p}(\Omega), \\
v_{j} \rightarrow v & \text { in } L^{p}(\partial \Omega) .
\end{aligned}
$$

Using that v_{j} are solutions of (2), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v_{j}\right|^{p-2} \nabla v_{j} \nabla \phi+\mu_{j}^{p}\left|v_{j}\right|^{p-2} v_{j} \phi d x=\frac{\lambda_{j}}{\mu_{j}^{1-p}} \int_{\partial \Omega}\left|v_{j}\right|^{p-2} v_{j} \phi d \sigma \tag{13}
\end{equation*}
$$

Taking $\phi \equiv 1$ we get

$$
\int_{\Omega} \mu_{j}^{p}\left|v_{j}\right|^{p-2} v_{j} d x=\frac{\lambda_{j}}{\mu_{j}^{1-p}} \int_{\partial \Omega}\left|v_{j}\right|^{p-2} v_{j} d \sigma
$$

The limit as $j \rightarrow \infty$ gives us

$$
0=\lambda \int_{\partial \Omega}|v|^{p-2} v d \sigma
$$

and, as $\lambda \neq 0$, we obtain that

$$
\begin{equation*}
0=\int_{\partial \Omega}|v|^{p-2} v d \sigma \tag{14}
\end{equation*}
$$

By Lemma 2.2 and (14), there exists a unique $w \in W^{1, p}(\Omega)$ with

$$
\int_{\partial \Omega}|w|^{p-2} w d \sigma=0
$$

that satisfies

$$
\begin{cases}\Delta_{p} w=0 & \text { in } \Omega \tag{15}\\ |\nabla w|^{p-2} \frac{\partial w}{\partial \nu}=\lambda|v|^{p-2} v & \text { on } \partial \Omega\end{cases}
$$

Combining (13), the variational formulation of (15) with $\phi=v_{j}-w$ and the fact that we are dealing with a strongly monotone operator (see [3]), we get

$$
\begin{aligned}
\alpha & \left\|\nabla v_{j}-\nabla w\right\|_{L^{p}(\Omega)}^{p} \leq \int_{\Omega}\left(\left|\nabla v_{j}\right|^{p-2} \nabla v_{j}-|\nabla w|^{p-2} \nabla w\right)\left(\nabla v_{j}-\nabla w\right) d x \\
= & -\mu_{j}^{p} \int_{\Omega}\left|v_{j}\right|^{p-2} v_{j}\left(v_{j}-w\right) d x+\frac{\lambda_{j}}{\mu_{j}^{1-p}} \int_{\partial \Omega}\left|v_{j}\right|^{p-2} v_{j}\left(v_{j}-w\right) d \sigma \\
& -\lambda \int_{\partial \Omega}|v|^{p-2} v\left(v_{j}-w\right) d \sigma \\
\leq & C \mu_{j}^{p}+\left(\frac{\lambda_{j}}{\mu_{j}^{1-p}}-\lambda\right) \int_{\partial \Omega}\left|v_{j}\right|^{p-2} v_{j}\left(v_{j}-w\right) d \sigma \\
& +\lambda \int_{\partial \Omega}\left(\left|v_{j}\right|^{p-2} v_{j}-|v|^{p-2} v\right)\left(v_{j}-w\right) d \sigma
\end{aligned}
$$

The first two terms go to zero as $j \rightarrow \infty$. Concerning the last one, we have that it is bounded by

$$
\begin{array}{ll}
\left(\left\|v_{j}\right\|_{L^{p}(\partial \Omega)}+\|v\|_{L^{p}(\partial \Omega)}\right)^{p-2}\left\|v_{j}-v\right\|_{L^{p}(\partial \Omega)}\left\|v_{j}-w\right\|_{L^{p}(\partial \Omega)} & \text { if } p \geq 2 \\
M\left\|v_{j}-v\right\|_{L^{p}(\partial \Omega)}^{p-1}\left\|v_{j}-w\right\|_{L^{p}(\partial \Omega)} & \text { if } p<2
\end{array}
$$

Therefore, taking the limit $j \rightarrow \infty$, we get $\nabla v_{j} \rightarrow \nabla w$ in $L^{p}(\Omega)$ and as $\nabla v_{j} \rightharpoonup \nabla v$ weakly in $L^{p}(\Omega)$ we conclude that $\nabla v=\nabla w$ and so $v=w$ and $v_{j} \rightarrow v$ strongly in $W^{1, p}(\Omega)$. Finally, taking limits in (13) we obtain that v is a weak solution of (7) as we wanted to prove.
3. Behavior as $\mu \rightarrow+\infty$. In this section we study the behavior of the Sobolev constant in expanding domains, that is when $\mu \rightarrow+\infty$. To clarify the exposition we divide the proof of Theorem 1.3 in several Lemmas. Let us begin by the upper bounds.

Lemma 3.1. Let $p=q$, then there exists a constant $C>0$ such that $S_{p}\left(\Omega_{\mu}\right)=$ $\lambda_{1}\left(\Omega_{\mu}\right) \leq C$, for every μ large.

Proof. We have $p=q$ and look for a bound on the first eigenvalue $\lambda_{1}\left(\Omega_{\mu}\right)$. Changing variables as before we have that

$$
\lambda_{1}\left(\Omega_{\mu}\right)=\inf _{v \in W^{1, p}(\Omega)} \frac{\mu\left(\int_{\Omega} \mu^{-p}|\nabla v|^{p}+|v|^{p} d x\right)}{\int_{\partial \Omega}|v|^{p} d \sigma} .
$$

We choose $v(x)$ such that $v=a=$ constant on $\partial \Omega$ and $v=0$ in $\Omega_{r}=\{x \in$ $\Omega ; \operatorname{dist}(x, \partial \Omega) \geq r\}$ with $|\nabla v| \leq C / r$. We fix a such that

$$
\int_{\partial \Omega}|v|^{p} d \sigma=1
$$

that is $a=|\partial \Omega|^{-1 / p}$. As for r small we have that $\left|\Omega \backslash \Omega_{r}\right| \sim r|\partial \Omega|$ we get

$$
\int_{\Omega}|v|^{p} d \sigma \leq C r .
$$

Using that $|\nabla v| \leq C / r$ we obtain

$$
\int_{\Omega}|\nabla v|^{p} d \sigma \leq \frac{C}{r^{p-1}},
$$

therefore

$$
\lambda_{1}\left(\Omega_{\mu}\right) \leq C \mu\left(C \frac{\mu^{-p}}{r^{p-1}}+C r\right) .
$$

Finally, choose $r=\mu^{-1}$ to obtain the desired result.
Lemma 3.2. Let $p<q<p^{*}$, then there exists a constant $C>0$ such that $S_{q}\left(\Omega_{\mu}\right) \leq$ C, for every μ large.

Proof. As we mentioned in the introduction, we have that

$$
\begin{equation*}
S_{q}\left(\Omega_{\mu}\right)=\mu^{(N q-N p+p) / q} \inf _{v \in W^{1, p}(\Omega)} \frac{\int_{\Omega} \mu^{-p}|\nabla v|^{p}+|v|^{p} d x}{\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{p / q}} . \tag{16}
\end{equation*}
$$

Now, let us choose a point $x_{0} \in \partial \Omega$ and let $\phi \in C^{\infty}(\Omega)$ with support $B\left(x_{0}, \mu^{-1}\right)$, and $\|\phi\|_{L^{q}(\partial \Omega)}^{q}=1$.

Arguing as in Section 2, we have that

$$
\mu^{(N q-N p+p) / q} \int_{\Omega}|\phi|^{p} d x \leq C,
$$

and

$$
\mu^{(N q-N p+p) / q} \mu^{-p} \int_{\Omega}|\nabla \phi|^{p} d x \leq C .
$$

Therefore, taking $\phi=v$ in (16), we get $S_{q}\left(\Omega_{\mu}\right) \leq C$, and this ends the proof.
Lemma 3.3. Let $1<q<p$, then we have $S_{q}\left(\Omega_{\mu}\right) \leq C \mu^{(N-1)(q-p) / q}$, for some constant $C>0$. Remark that this says that $\lim _{\mu \rightarrow \infty} S_{q}\left(\Omega_{\mu}\right)=0$.

Proof. We observe that the same calculations of Lemma 3.2 show that S_{q} is bounded independently of μ for $1<q<p$. Now, as in the case $p=q$ (Lemma 3.1), let us take $v(x)$ such that $v=a=$ constant on $\partial \Omega$ and $v=0$ in $\Omega_{r}=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega) \geq$ $r\}$. We fix a such that

$$
\int_{\partial \Omega}|v|^{q} d \sigma=1
$$

Using the same arguments as in Lemma 3.1 we get

$$
S_{q}\left(\Omega_{\mu}\right) \leq C \mu^{(N q-N p+p) / q}\left(C \frac{\mu^{-p}}{r^{p-1}}+C r\right)
$$

and choosing $r=\mu^{-1}$ we obtain $S_{q}\left(\Omega_{\mu}\right) \leq C \mu^{(N q-N p+p-q) / q}$.
Now let us prove that the extremals concentrates at the boundary.
Lemma 3.4. Let $1<q<p^{*}$. The extremals concentrate at the boundary in the sense that

$$
\int_{\Omega}\left|v_{\mu}\right|^{p} d x \rightarrow 0 \quad \text { as } \mu \rightarrow+\infty
$$

while

$$
\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma=1
$$

Proof. Let v_{μ} be an extremal such that $\left\|v_{\mu}\right\|_{L^{q}(\partial \Omega)}=1$. From our previous bound we get, for $p=q$,

$$
\mu^{1-p} \int_{\Omega}\left|\nabla v_{\mu}\right|^{p} d x+\mu \int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq C
$$

Hence

$$
\int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq \frac{C}{\mu} \rightarrow 0 \quad \text { as } \mu \rightarrow+\infty
$$

Now we turn back to the case $1<q<p$. We have, from our previous calculations,

$$
S_{q}\left(\Omega_{\mu}\right) \leq C \mu^{(N q-N p+p-q) / q}
$$

Hence

$$
\int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq C \mu^{(N-1)(q-p) / q} \rightarrow 0 \quad \mu \rightarrow+\infty
$$

Finally, for $p<q<p^{*}$ we get that

$$
\mu^{(N q-N p+p) / q} \int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq C
$$

and therefore, as we are in the case $q>p$ and so $N q>p(N-1)$, we get

$$
\int_{\Omega}\left|v_{\mu}\right|^{p} d x \leq \frac{C}{\mu^{(N q-N p+p) / q}} \rightarrow 0 \quad \text { as } \mu \rightarrow+\infty
$$

The proof is now complete.
To get the bound from below for λ_{1} in the case $p=q$ we use the following idea, first we replace the minimization problem in $W^{1, p}(\Omega)$ with a minimization problem in a sequence of increasing subspaces and next we find that for an adequate choice of the subspaces we get a uniform lower bound for the approximate problems. This idea combined with a convergence result for the approximations gives the desired result. So, let us first state and prove the convergence result. Since this procedure works for every $1<q<p^{*}$ we prove it in full generality.

Now we want to describe a general approximation procedure for S_{q}. These results are essentially contained in [14] but we reproduce the main arguments here in order to make the paper self-contained.

The Sobolev trace constant S_{q} can be characterized as

$$
\begin{equation*}
S_{q}=\inf _{v \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla v|^{p}+|v|^{p} d x ; \quad \int_{\partial \Omega}|v|^{q} d \sigma=1 .\right\} . \tag{17}
\end{equation*}
$$

As we have already mentioned, the idea is to replace the space $W^{1, p}(\Omega)$ with a subspace V_{h} in the minimization problem (17). To this end, let V_{h} be an increasing sequence of closed subspaces of $W^{1, p}(\Omega)$, such that

$$
\begin{array}{ll}
& \left\{u_{h} \in V_{h} ; \int_{\partial \Omega}\left|u_{h}\right|^{q} d \sigma=1\right\} \neq \emptyset \\
\text { and } & \lim _{h \rightarrow 0} \inf _{u_{h} \in V_{h}}\left\|v-u_{h}\right\|_{W^{1, p}(\Omega)}=0, \quad \forall\|v\|_{W^{1, p}(\Omega)}=1 . \tag{18}
\end{array}
$$

We observe that the only requirement on the subspaces V_{h} is (18). This allows us to choose V_{h} as the usual finite elements spaces, for example.

With this sequence of subspaces V_{h} we define our approximation of S_{q} by

$$
\begin{equation*}
S_{q, h}=\inf _{u_{h} \in V_{h}}\left\{\int_{\Omega}\left|\nabla u_{h}\right|^{p}+\left|u_{h}\right|^{p} d x ; \quad \int_{\partial \Omega}\left|u_{h}\right|^{q} d \sigma=1\right\} . \tag{19}
\end{equation*}
$$

We have that, under hypothesis (18), $S_{q, h}$ approximates S_{q} when $h \rightarrow 0$.
Theorem 3.1. Let v be an extremal for (17). Then, there exists a constant C independent of h such that,

$$
\left|S_{q}-S_{q, h}\right| \leq C \inf _{u_{h} \in V_{h}}\left\|u_{h}-v\right\|_{W^{1, p}(\Omega)},
$$

for every h small enough.
Proof. As $V_{h} \subset W^{1, p}(\Omega)$ we have that

$$
\begin{equation*}
S_{q} \leq S_{q, h} \tag{20}
\end{equation*}
$$

Let us choose $w \in V_{h}$ such that $\|w-v\|_{W^{1, p}(\Omega)} \leq \inf _{V_{h}}\left\|v-u_{h}\right\|_{W^{1, p}(\Omega)}+\varepsilon$. We have

$$
\begin{aligned}
S_{q, h}^{1 / p} & =\left\|u_{h}\right\|_{W^{1, p}(\Omega)} \leq \frac{\|w\|_{W^{1, p}(\Omega)}}{\|w\|_{L^{q}(\partial \Omega)}} \\
& \leq \frac{\|w-v\|_{W^{1, p}(\Omega)}+\|v\|_{W^{1, p}(\Omega)}}{\|w\|_{L^{q}(\partial \Omega)}} \\
& =\left(\frac{\|w-v\|_{W^{1, p}(\Omega)}+S_{q}^{1 / p}}{\|w\|_{L^{q}(\partial \Omega)}}\right) .
\end{aligned}
$$

Now we use that

$$
\left|\|w\|_{L^{q}(\partial \Omega)}-1\right| \leq\left|\|w\|_{L^{q}(\partial \Omega)}-\|v\|_{L^{q}(\partial \Omega)}\right| \leq\|w-v\|_{L^{q}(\partial \Omega)} \leq C\|w-v\|_{W^{1, p}(\Omega)}
$$

and hypothesis (18) to obtain that for every h small enough,

$$
\begin{equation*}
S_{q, h} \leq\left(\frac{\|w-v\|_{W^{1, p}(\Omega)}+S_{q}^{1 / p}}{1-C\|w-v\|_{W^{1, p}(\Omega)}}\right)^{p} \leq S_{q}+C\|w-v\|_{W^{1, p}(\Omega)} \tag{21}
\end{equation*}
$$

The result follows from (20) and (21).

Now we prove a result regarding the convergence of the approximate extremals. We will not use it but it completes the analysis of the approximations.
THEOREM 3.2. Let u_{h} be a function in V_{h} where the infimum (19) is archived. Then from any sequence $h \rightarrow 0$ we can extract a subsequence $h_{j} \rightarrow 0$ such that $u_{h_{j}}$ converges strongly to an extremal in $W^{1, p}(\Omega)$. That is, there exists an extremal of (17), v, with

$$
\lim _{h_{j} \rightarrow 0}\left\|u_{h_{j}}-v\right\|_{W^{1, p}(\Omega)}=0
$$

Proof. Theorem 3.1 and hypothesis (18) gives that

$$
\lim _{h \rightarrow 0}\left\|u_{h}\right\|_{W^{1, p}(\Omega)}^{p}=\lim _{h \rightarrow 0} S_{q, h}=S_{q} .
$$

Hence there exists a constant C such that for every h small enough, $\left\|u_{h}\right\|_{W^{1, p}(\Omega)} \leq$ C. Therefore we can extract a subsequence, that we denote by $u_{h_{j}}$, such that

$$
\begin{array}{ll}
u_{h_{j}} \rightharpoonup w & \text { weakly in } W^{1, p}(\Omega), \\
u_{h_{j}} \rightarrow w & \text { strongly in } L^{p}(\Omega), \tag{22}\\
u_{h_{j}} \rightarrow w & \text { strongly in } L^{q}(\partial \Omega) .
\end{array}
$$

Hence, from the $L^{q}(\partial \Omega)$ convergence we have,

$$
1=\lim _{h_{j} \rightarrow 0} \int_{\partial \Omega}\left|u_{h_{j}}\right|^{q} d \sigma=\int_{\partial \Omega}|w|^{q} d \sigma
$$

Therefore w is an admissible function in the minimization problem (17). Now we observe that, if v is an extremal,

$$
\begin{aligned}
\|v\|_{W^{1, p}(\Omega)}^{p} & \leq\|w\|_{W^{1, p}(\Omega)}^{p} \leq \liminf _{h_{j} \rightarrow 0}^{p}\left\|u_{h_{j}}\right\|_{W^{1, p}(\Omega)}^{p} \\
& \leq \lim _{h_{j} \rightarrow 0}\left\|u_{h_{j}}\right\|_{W^{1, p}(\Omega)}^{p}=\lim _{h_{j} \rightarrow 0} S_{q, h}=S_{q}=\|v\|_{W^{1, p}(\Omega)}^{p},
\end{aligned}
$$

and therefore,

$$
\begin{equation*}
\lim _{h_{j} \rightarrow 0}\left\|u_{h_{j}}\right\|_{W^{1, p}(\Omega)}=\|w\|_{W^{1, p}(\Omega)}=S_{q}^{1 / p} \tag{23}
\end{equation*}
$$

The space $W^{1, p}(\Omega)$ being uniformly convex, the weak convergence, (22), and the convergence of the norms, (23), imply the convergence in norm. Therefore $u_{h_{j}} \rightarrow w$ in $W^{1, p}(\Omega)$. This limit w verifies $\|w\|_{W^{1, p}(\Omega)}^{p}=S_{q}$ and $\|w\|_{L^{q}(\partial \Omega)}=1$. Hence it is an extremal and we have that $\lim _{h_{j} \rightarrow 0}\left\|u_{h_{j}}-w\right\|_{W^{1, p}(\Omega)}=0$.

With these convergence results we can prove the lower bound in the case $p=q$.
Lemma 3.5. Let $p=q$, then $S_{p}\left(\Omega_{\mu}\right)=\lambda_{1}\left(\Omega_{\mu}\right) \geq C$, for every μ large.
Proof. Let us choose a particular subspace V_{h} of $W^{1, p}(\Omega)$. As the boundary of Ω is smooth, we can define new coordinates near the boundary as follows. As before we denote by $\Omega_{r}=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega) \geq r\}$ and by $\partial \Omega_{r}=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega)=r\}$ and we use the following construction. We define $\Phi(\xi, r)=\xi-r \nu(\xi)$, where $\nu(\xi)$ is the exterior normal vector at $\xi \in \partial \Omega$. $\Phi: \partial \Omega \times(0, R) \mapsto \Omega \backslash \bar{\Omega}_{R}$. We recall that Φ is a difeomorphism if R is small enough. With this application Φ we can define a triangulation as follows. First, choose a uniform regular triangulation of size h of the set $\partial \Omega \times(0, R)$. Now, by the application Φ we can get a triangulation of the strip $\Omega \backslash \bar{\Omega}_{R}$. In fact, we can select as nodes $x_{i j}$ the points $\Phi\left(\xi_{i}, r_{j}\right)$, where
$\left(\xi_{i}, r_{j}\right)$ is a node of the uniform mesh of $\partial \Omega \times(0, R)$. Our space V_{h} is defined by all the continuous functions in $W^{1, p}(\Omega)$ that are linear over each triangle of the strip $\Omega \backslash \bar{\Omega}_{R}$. This space is the usual space of linear finite elements in special triangulations defined using the mapping Φ, see [3] for detailed information on the finite elements method.

Let us call u_{h} the functions in V_{h}. We have indexed the nodes $x_{i j}$ in a way such that $x_{i 1} \in \partial \Omega$ and $x_{i j}$ is at distance $j-1$ (in nodes) from the boundary, $\partial \Omega$. We denote by $u_{i j}$ the value of u_{h} at the node $x_{i j}$ and by $a_{i j}$ the value of the gradient of u_{h} on the triangle $T_{i j}$. We assume that the index i runs from 1 to l and j from 1 to k_{0}. Remark that $k_{0} \sim R / h$ and $l \sim|\partial \Omega| / h^{N-1}$.

We want to find a lower bound (independent of h and μ) on the approximation of the first eigenvalue,

$$
\lambda_{1, h}\left(\Omega_{\mu}\right)=\inf _{u_{h} \in V_{h}}\left\{\mu^{1-p} \int_{\Omega}\left|\nabla u_{h}\right|^{p} d x+\mu \int_{\Omega}\left|u_{h}\right|^{p} d x ; \quad \int_{\partial \Omega}\left|u_{h}\right|^{p} d \sigma=1\right\} .
$$

To this end we consider a function $u_{h} \in V_{h}$ such that

$$
\int_{\partial \Omega}\left|u_{h}\right|^{p} d \sigma=1
$$

that is

$$
\sum_{i=1}^{l}\left|u_{i 1}\right|^{p} h^{N-1} \geq C_{1}
$$

Let k be the first integer in $\left[1, k_{0}\right]$ such that

$$
\sum_{i=1}^{l}\left|u_{i k}\right|^{p} h^{N-1} \leq \frac{C_{1}}{2}
$$

First, let us observe that if $k=k_{0}$ (there are k_{0} triangles between the two boundaries of $\Omega \backslash \Omega_{r}$), then we have

$$
\begin{aligned}
\mu \int_{\Omega}\left|u_{h}\right|^{p} d x & \geq \mu \sum_{j=2}^{k_{0}} \sum_{i=1}^{l} \int_{T_{i j}}\left|u_{h}\right|^{p} d x \geq C \mu \sum_{j=2}^{k_{0}} \sum_{i=1}^{l}\left|u_{i j}\right|^{p} h^{N} \\
& =C h \mu \sum_{j=2}^{k_{0}} \sum_{i=1}^{l}\left|u_{i j}\right|^{p} h^{N-1} \geq C h \mu k_{0} \frac{C_{1}}{2}
\end{aligned}
$$

As $k_{0} \sim R / h$ we get that

$$
\begin{aligned}
\lambda_{1, h}\left(\Omega_{\mu}\right) & =\inf _{u_{h} \in V_{h}}\left\{\mu^{1-p} \int_{\Omega}\left|\nabla u_{h}\right|^{p} d x+\mu \int_{\Omega}\left|u_{h}\right|^{p} d x ; \quad \int_{\partial \Omega}\left|u_{h}\right|^{p} d \sigma=1\right\} \\
& \geq \inf _{u_{h} \in V_{h}}\left\{\mu \int_{\Omega}\left|u_{h}\right|^{p} d x ; \quad \int_{\partial \Omega}\left|u_{h}\right|^{p} d \sigma=1\right\} \geq C \mu>1
\end{aligned}
$$

and we are done. Hence let us assume that $k<k_{0}$. As before we can bound the term $\mu \int_{\Omega}\left|u_{h}\right|^{p}$ by

$$
\begin{equation*}
\mu \int_{\Omega}\left|u_{h}\right|^{p} d x \geq C \mu \sum_{j=2}^{k} \sum_{i=1}^{l}\left|u_{i j}\right|^{p} h^{N}=C h \mu \sum_{j=2}^{k} \sum_{i=1}^{l}\left|u_{i j}\right|^{p} h^{N-1} \geq C h \mu k \frac{C_{1}}{2} . \tag{24}
\end{equation*}
$$

Now we observe that

$$
u_{i 1}-u_{i k}=\sum_{j=1}^{k} a_{i j} h
$$

Using this fact we get,

$$
\begin{aligned}
C & \leq\left|\left(\frac{1}{l} \sum_{i=1}^{l}\left|u_{i 1}\right|^{p}\right)^{1 / p}-\left(\frac{1}{l} \sum_{i=1}^{l}\left|u_{i k}\right|^{p}\right)^{1 / p}\right| \\
& \leq\left(\frac{1}{l} \sum_{i=1}^{l}\left|u_{i 1}-u_{i k}\right|^{p}\right)^{1 / p}=\left(\frac{k^{p}}{l} \sum_{i=1}^{l}\left|\frac{1}{k} \sum_{j=1}^{k} a_{i j} h\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

Hence we get

$$
\frac{C l}{k^{p-1} h^{p}} \leq \sum_{i=1}^{l} \frac{1}{k} \sum_{j=1}^{k}\left|a_{i j}\right|^{p}
$$

and finally,

$$
\begin{equation*}
\mu^{1-p} \int_{\Omega}\left|\nabla u_{h}\right|^{p} d x \geq \frac{C \mu^{1-p} l h^{N-1}}{k^{p-1} h^{p-1}} \geq \frac{C \mu^{1-p}}{k^{p-1} h^{p-1}} . \tag{25}
\end{equation*}
$$

Using (24) and (25) we obtain

$$
\begin{aligned}
\lambda_{1, h}\left(\Omega_{\mu}\right) & =\inf _{u_{h} \in V_{h}}\left\{\mu^{1-p} \int_{\Omega}\left|\nabla u_{h}\right|^{p} d x+\mu \int_{\Omega}\left|u_{h}\right|^{p} d x ; \quad \int_{\partial \Omega}\left|u_{h}\right|^{p} d \sigma=1\right\} \\
& \geq C(\mu h k)+\frac{C}{(\mu h k)^{p-1}}
\end{aligned}
$$

Hence, if we call $\tau=\mu h k$ we get that

$$
\lambda_{1, h}\left(\Omega_{\mu}\right) \geq F(\tau) \equiv C \tau+\frac{C}{\tau^{p-1}} \geq C
$$

Since the subspaces that we have chosen verify hypotheses (18), we can use the convergence result, Theorem 3.1, to get that $\lambda_{1}\left(\Omega_{\mu}\right)=\lim _{h \rightarrow 0} \lambda_{1, h}\left(\Omega_{\mu}\right) \geq C$.

Let us look at the case $1<q<p$ more carefully, and obtain a bound from below using the lower bound obtained for $\lambda_{1}\left(\Omega_{\mu}\right)$.

Lemma 3.6. Let $1<q<p$. Then, for every μ large, $S_{q}\left(\Omega_{\mu}\right) \geq C \mu^{\beta_{p q}-1}$. Moreover this shows that, if v is an extremal,

$$
c_{1}\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{1 / q} \geq\left(\int_{\partial \Omega}|v|^{p} d \sigma\right)^{1 / p} \geq c_{2}\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{1 / q} .
$$

Hence there is no peaking formation in this case.

Proof. As we mentioned in the introduction, we have that

$$
\begin{aligned}
S_{q}\left(\Omega_{\mu}\right) & =\mu^{(N q-N p+p) / q} \inf _{v \in W^{1, p}(\Omega)} \frac{\int_{\Omega} \mu^{-p}|\nabla v|^{p}+|v|^{p} d x}{\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{p / q}} \\
& =\mu^{\beta_{p q}-1} \inf _{v \in W^{1, p}(\Omega)} \frac{\int_{\Omega} \mu^{1-p}|\nabla v|^{p}+\mu|v|^{p} d x}{\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{p / q}} \\
& =\mu^{\beta_{p q}-1} \inf _{v \in W^{1, p}(\Omega)} \frac{\int_{\Omega} \mu^{1-p}|\nabla v|^{p}+\mu|v|^{p} d x}{\int_{\partial \Omega}|v|^{p} d \sigma} \frac{\int_{\partial \Omega}|v|^{p} d x}{\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{p / q}} .
\end{aligned}
$$

Using that $1<q<p$ we get that, by Holder's inequality

$$
\frac{\int_{\partial \Omega}|v|^{p} d x}{\left(\int_{\partial \Omega}|v|^{q} d \sigma\right)^{p / q}} \geq C
$$

Hence, using our previous lower bound for $\lambda_{1}\left(\Omega_{\mu}\right)$ we get that there exists a constant C such that $S_{q}\left(\Omega_{\mu}\right) \geq C \mu^{\beta_{p q}-1}$. The upper bound proved in Lemma 3.3, $S_{q}\left(\Omega_{\mu}\right) \leq$ $C \mu^{\beta_{p q}-1}$, gives that

$$
\begin{aligned}
C \mu^{\beta_{p q}-1} & \geq S_{q}\left(\Omega_{\mu}\right)=\mu^{\beta_{p q}-1} \frac{\int_{\Omega} \mu^{1-p}\left|\nabla v_{\mu}\right|^{p}+\mu\left|v_{\mu}\right|^{p} d x}{\int_{\partial \Omega}\left|v_{\mu}\right|^{p} d \sigma} \frac{\int_{\partial \Omega}\left|v_{\mu}\right|^{p} d x}{\left(\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma\right)^{p / q}} \\
& \geq C \mu^{\beta_{p q}-1} \frac{\int_{\partial \Omega}\left|v_{\mu}\right|^{p} d x}{\left(\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma\right)^{p / q}} .
\end{aligned}
$$

Hence

$$
\int_{\partial \Omega}\left|v_{\mu}\right|^{p} d x \leq C\left(\int_{\partial \Omega}\left|v_{\mu}\right|^{q} d \sigma\right)^{p / q}
$$

This ends the proof.
To finish the proof of Theorem 1.3 we need the following Lemma.
Lemma 3.7. Let $p<q<p^{*}$. Then, for large $\mu, S_{q}\left(\Omega_{\mu}\right) \geq C$. Moreover, the extremals concentrates in the sense that $a^{p}\left|\partial \Omega \cap\left\{v_{\mu}>a\right\}\right| \rightarrow 0$, as $\mu \rightarrow+\infty$, with $\max _{\bar{\Omega}} v_{\mu}=1$.
Proof. First we prove that there exists a constant C such that $S_{q}\left(\Omega_{\mu}\right) \geq C$. Let v_{μ} be an extremal in Ω. By rescaling v_{μ} we can obtain an extremal \tilde{v}_{μ} such that
$\max _{\bar{\Omega}} \tilde{v}_{\mu}=1$. That is, $0<\tilde{v}_{\mu} \leq 1$ and there exits a point $x_{0} \in \partial \Omega$ with $\tilde{v}_{\mu}\left(x_{0}\right)=1$. Arguing as in Lemma 3.6 we have

$$
\begin{equation*}
S_{q}\left(\Omega_{\mu}\right)=\mu^{\beta_{p q}-1} \frac{\int_{\Omega} \mu^{1-p}\left|\nabla \tilde{v}_{\mu}\right|^{p}+\mu\left|\tilde{v}_{\mu}\right|^{p} d x}{\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{p} d \sigma} \frac{\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{p} d x}{\left(\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{q} d \sigma\right)^{p / q}} \tag{26}
\end{equation*}
$$

As \tilde{v}_{μ} satisfies (2), by our hypothesis, we have that $\left|\nabla \tilde{v}_{\mu}\right| \leq C \mu$. Hence

$$
\left\{x \in \partial \Omega ; \tilde{v}_{\mu}(x) \geq 1 / 2\right\} \supseteq B\left(x_{0}, c / \mu\right) \cap \partial \Omega
$$

As $q>p$ and $0<\tilde{v}_{\mu} \leq 1$ we have that

$$
\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{p} d \sigma \geq \int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{q} d \sigma
$$

Therefore

$$
\begin{aligned}
\mu^{\beta_{p q}-1} \frac{\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{p} d x}{\left(\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{q} d \sigma\right)^{p / q}} & \geq \mu^{\beta_{p q}-1}\left(\int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{p} d x\right)^{(q-p) / q} \\
& \geq C \mu^{\beta_{p q}-1}\left(\int_{\partial \Omega \cap B\left(x_{0}, c / \mu\right)} \frac{1}{2^{p}} d x\right)^{(q-p) / q} \geq C .
\end{aligned}
$$

Using this bound and the lower bound for $S_{p}\left(\Omega_{\mu}\right)$ in (26) we get the desired lower bound. Next, we prove the concentration property for the extremals. Using the same arguments as before, we get

$$
a^{p}\left|\partial \Omega \cap\left\{\tilde{v}_{\mu}>a\right\}\right| \leq \int_{\partial \Omega}\left|\tilde{v}_{\mu}\right|^{p} d \sigma \leq \frac{C}{\mu^{N-1}} \rightarrow 0, \quad \text { as } \mu \rightarrow+\infty,
$$

with $\max _{\bar{\Omega}} \tilde{v}_{\mu}=1$. This proves the concentration phenomena.
We end the article proving that every eigenvalue is bounded as $\mu \rightarrow+\infty$.
Proof of Theorem 1.4. The idea is similar as the one used in the proof of Theorem 1.2, see Section 2. Let $x_{1}, \ldots, x_{k} \in \partial \Omega$ such that $\operatorname{dist}\left(x_{i}, x_{j}\right)>2 \mu$ and let $\phi_{j} \in C^{\infty}(\Omega)$ with support $B\left(x_{j}, \mu\right)$ and $\max \phi_{j}=1$. Now, let us define $S_{k}=$ $\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k}\right\} \cap\left\{u \in W^{1, p}(\Omega) ;\|u\|_{W^{1, p}(\Omega)}=1\right\}$ and $S_{k, \mu}=\left\{v(x / \mu) ; v \in S_{k}\right\}$. Then, $\gamma\left(S_{k}\right)=\gamma\left(S_{k, \mu}\right)=k$. Hence

$$
\frac{1}{\lambda_{k}\left(\Omega_{\mu}\right)}=\sup _{\gamma(S) \geq k} \inf _{u \in S} \frac{\int_{\partial \Omega_{\mu}}|u|^{p} d \sigma}{\int_{\Omega_{\mu}}|\nabla u|^{p}+|u|^{p} d x} \geq \inf _{u \in S_{k, \mu}} \frac{\int_{\partial \Omega_{\mu}}|u|^{p} d \sigma}{\int_{\Omega_{\mu}}|\nabla u|^{p}+|u|^{p} d x} .
$$

Changing variables we get,

$$
\begin{equation*}
\frac{1}{\lambda_{k}\left(\Omega_{\mu}\right)} \geq \mu^{p-1} \inf _{v \in S_{k}} \frac{\int_{\partial \Omega}|v|^{p} d \sigma}{\int_{\Omega}|\nabla v|^{p}+\mu^{p}|v|^{p} d x} \tag{27}
\end{equation*}
$$

As ϕ_{i} have disjoint support,

$$
\|v\|_{L^{p}(\Omega)}^{p}=\left\|\sum_{i=1}^{k} a_{i} \phi_{i}\right\|_{L^{p}(\Omega)}^{p}=\sum_{i=1}^{k}\left|a_{i}\right|^{p}\left\|\phi_{i}\right\|_{L^{p}(\Omega)}^{p} \leq C \sum_{i=1}^{k}\left|a_{i}\right|^{p} \mu^{-N}
$$

and

$$
\|\nabla v\|_{L^{p}(\Omega)}^{p}=\left\|\sum_{i=1}^{k} a_{i} \nabla \phi_{i}\right\|_{L^{p}(\Omega)}^{p}=\sum_{i=1}^{k}\left|a_{i}\right|^{p}\left\|\nabla \phi_{i}\right\|_{L^{p}(\Omega)}^{p} \leq C \sum_{i=1}^{k}\left|a_{i}\right|^{p} \mu^{-N+p} .
$$

As the boundary of Ω is regular we have that there exists a constant C such that

$$
\|v\|_{L^{p}(\partial \Omega)}^{p}=\left\|\sum_{i=1}^{k} a_{i} \phi_{i}\right\|_{L^{p}(\partial \Omega)}^{p}=\sum_{i=1}^{k}\left|a_{i}\right|^{p}\left\|\phi_{i}\right\|_{L^{p}(\partial \Omega)}^{p} \geq C \sum_{i=1}^{k}\left|a_{i}\right|^{p} \mu^{1-N} .
$$

Using these estimates we get $0<c \leq \lambda_{1}\left(\Omega_{\mu}\right) \leq \lambda\left(\Omega_{\mu}\right) \leq \lambda_{k}\left(\Omega_{\mu}\right) \leq C_{k}<+\infty$.
Acknowledgements. Supported by ANPCyT PICT No. 03-05009. J.D. Rossi is a member of CONICET.

We want to thank M. Graña and S. Ombrosi for their valuable help.

REFERENCES

[1] W. Allegretto and Y-X. Huang, A Piccone's identity for the p-Laplacian and applications. Nonlinear Anal. TMA, Vol. 32 (7) (1996), 143-175.
[2] I. Babuska and J. Osborn, Eigenvalue Problems, Handbook of Numer. Anal., Vol. II (1991). North-Holland.
[3] P. Ciarlet. The finite element method for elliptic problems. North Holland (1978).
[4] C. Flores and M. del Pino, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains. Comm. Partial Differential Equations, Vol. 26 (11-12) (2001), 2189-2210.
[5] J. F. Escobar, Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. Vol. 37 (1988), 687-698.
[6] J. F. Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm. Pure Appl. Math. Vol. 43 (1990), 857883.
[7] J. F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature. Ann. of Math. (2). Vol. 136 (1992), 1-50.
[8] J. Fernández Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. Vol. 263 (2001), 195-223.
[9] J. Fernández Bonder and J.D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding. Publ. Mat. Vol. 46 (2002), 221-235.
[10] J. Garcia-Azorero and I. Peral, Existence and non-uniqueness for the p-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations. Vol. 12 (1987), 1389-1430.
[11] M.A. Krasnoselski, Topological methods in the theory of nonlinear integral equations, Macmillan, New York (1964).
[12] S. Martinez and J.D. Rossi, Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition. Abstr. Appl. Anal. Vol. 7 (5) (2002), 287-293.
[13] Y. J. Park, Sobolev trace inequalities. Preprint.
[14] J. D. Rossi, Approximation of the Sobolev trace constant. Preprint.
[15] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, Vol. 51 (1984), 126-150.
[16] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., Vol. 12 (3) (1984), 191-202.

November 2001; revised April 2002.
E-mail address: jfbonder@dm.uba.ar
E-mail address: jrossi@dm.uba.ar

[^0]: 1991 Mathematics Subject Classification. 35J65, 35J20, 35P30, 35P15.
 Key words and phrases. Sobolev trace constants, p-Laplacian, nonlinear boundary conditions, eigenvalue problems.

