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Abstract. In this paper we study a semilinear problem for the fractional
laplacian that are the counterpart of the Neumann problems in the classical

setting. We show uniqueness of minimal energy solutions for small domains.

1. Introduction

In recent years there has been an increasing amount of attention to problems
involving nonlocal diffusion operators. These problems are so vast that is impossible
to give a comprehensive list of references, just to cite a few, see [10, 11, 13, 16, 20,
25] for some physical models, [2, 17, 22] for some applications in finances, [6] for
appications in fluid dynamics, [15, 19, 21] for application in ecology and [14] for
some applications in image processing.

Among these applications, one operator that is of particular importance is the
fractional laplacian that is defined (up to some normalization constant) as

(−∆)su(x) = p.v.

∫
Ω

u(x)− u(y)

|x− y|n+2s
dy,

where p.v. stands for in principal value and Ω ⊂ Rn is a bounded domain.

This operator is classical and have been studied by several authors. See for
instance [1, 4, 5, 7, 9, 8, 18, 23], etc.

In this paper, we address the following semilinear problem associated to (−∆)s

(1.1) (−∆)su+ u = λ|u|q−2u, in Ω.

This is the fractional counterpart of the classical Neumann problem

(1.2)

{
−∆u+ u = λ|u|q−2u in Ω
∂u
∂ν = 0 on ∂Ω.

Here, q is a subcritical exponent in the sense of the Sobolev embeddings. That is,

1 ≤ q < 2∗s :=

{
2n
n−2s if 2s < n

∞ if 2s ≥ n.

The problem can be separated into three different types of behavior: sublinear
(1 ≤ q < 2); linear (q = 2) and superlinear (q > 2).
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The linear case is by now well understood as an eigenvalue problem and will not
be considered here.

For the sublinear and superlinear cases, the parameter λ is superfluous since if
one gets a solution for some particular value of λ, then taking a suitable multiple
of the solution the value of λ can be taken to be 1.

It is fairly easy to see that any solution to (1.1) is a critical point of the functional

F(u) :=
1
2 [u]2s;Ω + ‖u‖22;Ω

‖u‖2q;Ω
,

where

[u]s;Ω :=

(∫∫
Ω×Ω

(u(x)− u(y))2

|x− y|n+2s
dxdy

) 1
2

is the so-called Gagliardo seminorm of u and, as usual, ‖u‖r;Ω denotes the Lr(Ω)−norm.

By standard variational methods, one can see that there exists minimal energy
solutions to (1.1). That is, functions u ∈ Hs(Ω) such that

F(u) = inf
v∈Hs(Ω)

F(v).

Moreover, by a direct application of the Ljusternik – Schnirelmann method, one
can construct a sequence λk ↑ ∞ of critical energy levels and a sequence of critical
points {uk}k∈N of F associated to {λk}k∈N.

Therefore, there exist infinitely many solutions to problem (1.1).

In this paper, we focus on minimal energy solutions to (1.1). In particular to
the multiplicity problem of such solutions.

To this end, inspired by the results of [12], given a domain Ω we consider the
family of contracted domains

(1.3) Ωµ := µ · Ω = {µx : x ∈ Ω} as µ ↓ 0

and look for the asymptotic behavior of minimal energy solutions in Ωµ as µ ↓ 0.

We first show that the asymptotic behavior of every minimal energy solution is
the same and, using this asymptotic behavior, we are able to conclude the unique-
ness of minimal energy solution for contracted domains.

Finally, we give an estimate on the contraction parameter in order to obtain the
uniqueness result.

To end this introduction, we want to remark that the same ideas can be used to
deal with the Neumann problem (1.2). The changes needed are easy and are left
to the interested reader.

2. Preliminaries.

Let Ω ⊂ Rn be a bounded smooth domain and 0 < s < 1. The fractional order
Sobolev space is defined as

Hs(Ω) :=

{
u ∈ L2(Ω):

u(x)− u(y)

|x− y|n2 +s
∈ L2(Ω× Ω)

}
.

This space is endowed with the norm

‖u‖s;Ω := ([u]2s;Ω + ‖u‖22;Ω)
1
2 .
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It is well known (see, for instance, [9]) that there exists a critical exponent

2∗s :=

{
2n
n−2s if 2s < n,

∞ otherwise

such that for any 1 ≤ q < 2∗s the embedding Hs(Ω) ⊂ Lq(Ω) is compact.

We define the Sobolev constant as the number

S(Ω) = Ss,q(Ω) := inf
u∈Hs(Ω)

‖u‖2s;Ω
‖u‖2q;Ω

.

It is easy to see, as a consequence of the compactness of the embedding, that
there exists an extremal for S(Ω). That is a function u ∈ Hs(Ω) where the above
infimum is attained.

Also, any extremal for S(Ω) is a minimal energy (weak) solution to (1.1).

The constant λ in (1.1) depends on the normalization of the extremal. For
instance, if the extremal u is normalized as ‖u‖q;Ω = 1 then λ = S(Ω).

Recall that the operator (−∆)s is a bounded operator between the Sobolev space
Hs(Ω) and its dual (Hs(Ω))′ and can be computed by

〈(−∆)su, v〉 =
1

2

∫∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.

Therefore, for a solution to (1.1) we mean a function u ∈ Hs(Ω) such that

1

2

∫∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy +

∫
Ω

uv dx = λ

∫
Ω

|u|q−2uv dx,

for every v ∈ Hs(Ω).

3. Asymptotic behavior in thin domains

Throughout this section we fix the exponent q ∈ [1, 2∗s), q 6= 2.

Our objective in this section is to study the asymptotic behavior of the constant
S(Ωµ) as µ ↓ 0, where the contracted domains Ωµ are given by (1.3).

We begin with a simple estimate.

Lemma 3.1. Under the above notations, we have that

S(Ωµ) ≤ |Ωµ|1−
2
q = µn(1− 2

q )|Ω|1−
2
q .

Proof. The lemma follows just by taking u = 1 as a test function in the definition
of S(Ωµ). �

Now we want to be more precise. We need to show that the asymptotic behav-

ior of S(Ωµ) is given precisely by µn(1− 2
q ) and also to study the behavior of the

associated extremals.

Lemma 3.2. Under the above notations, we have that

lim
µ↓0

S(Ωµ)

µn(1− 2
q )

= |Ω|1−
2
q .



4 J. FERNÁNDEZ BONDER, A. SILVA AND J. SPEDALETTI

Moreover if uµ ∈ Hs(Ωµ) is an extremal for S(Ωµ), the rescaled extremals ūµ(x) :=
uµ(µx) normalized such that ‖ūµ‖q;Ω = 1 verify that

ūµ → |Ω|−
1
q strongly in Hs(Ω).

Proof. First, observe that for v ∈ Hs(Ωµ), if we denote v̄(x) = v(µx), then v̄ ∈
Hs(Ω). Moreover, [v]s;Ωµ = µ

n
2−s[v̄]s;Ω and ‖v‖r;Ωµ = µ

n
r ‖v̄‖r;Ω for 1 ≤ r < 2∗s.

Therefore
‖v‖2s;Ωµ
‖v‖2q;Ωµ

= µn(1− 2
q )
µ−2s[v̄]2s;Ω + ‖v̄‖22;Ω

‖v̄‖2q;Ω
.

Now, let uµ ∈ Hs(Ωµ) be an extremal for S(Ωµ) and let ūµ(x) = uµ(µx). Then,

S(Ωµ) = µn(1− 2
q )
µ−2s[ūµ]2s;Ω + ‖ūµ‖22;Ω

‖ūµ‖2q;Ω
.

Now, by Lemma 3.1, it follows that

(3.1)
µ−2s[ūµ]2s;Ω + ‖ūµ‖22;Ω

‖ūµ‖2q;Ω
≤ |Ω|1−

2
q .

Let us now fix the normalization of the extremal uµ such that ‖ūµ‖q;Ω = 1, and by
(3.1), we obtain that ūµ is bounded in Hs(Ω) uniformly on µ > 0. So, there exists
ū ∈ Hs(Ω) such that (up to some sequence µk → 0),

ūµ ⇀ ū weakly in Hs(Ω),(3.2)

ūµ → ū strongly in Lr(Ω) for any 1 ≤ r < 2∗s.(3.3)

Also, from (3.1) and (3.2), we have that

[ū]s;Ω ≤ lim inf
µ↓0

[ūµ]s;Ω = 0,

therefore ū is constant and, since ‖ūµ‖q;Ω = 1, from (3.3) we obtain that ‖ū‖q;Ω = 1.

All these together imply that ū = |Ω|−
1
q .

From these estimates, one easily concludes that

|Ω|1−
2
q ≤ lim inf

µ↓0
µ−2s[ūµ]2s;Ω + ‖ūµ‖22;Ω

= lim inf
µ↓0

S(Ωµ)

µn(1− 2
q )
≤ lim sup

µ↓0

S(Ωµ)

µn(1− 2
q )
≤ |Ω|1−

2
q .

The proof is complete. �

4. Uniqueness of extremals for small domains

In this section we show the uniqueness of extremals if the domain is contracted
enough.

For that purpose, observe that if uµ is an extremal for S(Ωµ) and ūµ is the
rescaled extremal normalized as ‖ūµ‖q;Ω = 1, then ūµ is a weak solution of the
problem

(4.1) (−∆)su+ µ2su = µ2sλµ|u|q−2u in Ω,

where λµ = S(Ωµ)µ−n(1− 2
q ). Recall also, that 0 ≤ λµ ≤ |Ω|1−

2
q (c.f. Lemma 3.1).
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So, we define the space

E := {u ∈ Hs(Ω): ‖u‖q;Ω = 1}.
It is easy to see that E is a C1 manifold.

We then define F : E × [0, 1)→ (Hs(Ω))′ as

〈F (u, µ), v〉 :=
1

2

∫∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy

+ µ2s

∫
Ω

uv dx− µ2sλµ

∫
Ω

|u|q−2uv dx.

Denote u0 = |Ω|−
1
q ∈ E and observe that F (u0, 0) = 0.

Following the ideas of [12] we want to use the Implicit Function Theorem (IFT)
to show the existence of a small number δ > 0 and a curve φ : [0, δ)→ E such that

φ(0) = u0 and F (φ(µ), µ) = 0 for every 0 ≤ µ < δ,

and if (u, µ) ∈ E × [0, δ) is such that F (u, µ) = 0 and u is close to u0 then u = φ(µ).

Observe that if we can apply the IFT then, combining this with Lemma 3.2,
automatically we obtain the uniqueness of extremals of S(Ωµ) for µ small.

In order to be able to apply the IFT we need to check that duF |(u0,0) is invertible
(see [3] or [24]). Recall that since F is define on a manifold, the derivative is defined
on the tangent space of E at the point u0.

Let us begin with a couple of lemmas.

Lemma 4.1. The tangent space of E at u0, that we denote by Tu0
E is given by

Tu0
E =

{
v ∈ Hs(Ω):

∫
Ω

v dx = 0

}
.

Proof. Let v ∈ Tu0
E . Then, there exists a differentiable curve, α : (−1, 1)→ E such

that α(0) = u0 and α̇(0) = v.

But, since α(t) ∈ E for every t ∈ (−1, 1) it follows that∫
Ω

|α(t)|q dx = 1 for every t ∈ (−1, 1).

Differentiating both sides of the equality gives∫
Ω

q|α(t)|q−2α(t)α̇(t) dx = 0.

So, if we evaluate at t = 0 and recall that u0 is constant, we obtain that

(4.2)

∫
Ω

v dx = 0.

On the other hand, if v ∈ Hs(Ω) verifies (4.2), we construct the curve α : (−1, 1)→
E as

α(t) =
u0 + tv

‖u0 + tv‖q
.

Straightforward computations show that α(0) = u0 and α̇(0) = v. �

Now, we denote A = (span{1})⊥ = {f ∈ (Hs(Ω))′ : 〈f, 1〉 = 0}.
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Lemma 4.2. We have that

duF |(u0,0) : Tu0
E → A.

Moreover, the following expression holds

〈duF |(u0,0)(u), v〉 =
1

2

∫∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.

Proof. To prove the Lemma, first observe that

〈F (u, 0), v〉 =
1

2

∫∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy,

for every u ∈ E .

From this expression the lemma follows. �

It remains to see that duF |(u0,0) has a continuous inverse.

Lemma 4.3. The derivative duF |(u0,0) : Tu0
E → A has a continuous inverse.

Proof. First observe that Tu0
E is a Hilbert space with inner product given by

(u, v) = 〈duF |(u0,0)(u), v〉 =
1

2

∫∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.

So, the Lemma follows from the Riesz representation Theorem. �

Combining Lemmas 4.1, 4.2, 4.3 we are in position to apply the IFT and conclude
the main result of the section

Theorem 4.4. Given Ω ⊂ Rn smooth and of finite measure and 1 < q < 2∗s, there
exists δ > 0 such that S(Ωµ) has a unique extremal for 0 < µ < δ.

Proof. At this point the proof is a direct consequence of the IFT and the remarks
made at the beginning of the section. �

5. Estimates for the contraction parameter

Let us first define

µ0 = sup{δ > 0: ∃! normalized extremal for S(Ωµ) ∀µ < δ}.
From the results of the previous section, we know that µ0 > 0. We now want to
find a lower bound for µ0.

Lemma 5.1. There exists u0 ∈ Hs(Ωµ0
) an extremal for S(Ωµ0

), such that the
rescaled function ū0(x) = u0(µ0x) normalized as ‖ū0‖q;Ω = 1 verifies that duF |(ū0,µ0)

is not invertible.

Proof. Assume the oposite.

We first claim that there is a unique extremal for S(Ωµ0
). Otherwise, if u0 6= u1

are extremals such that the rescaled functions ūi(x) = ui(µ0x), i = 0, 1 normalized
as ‖ūi‖q;Ω = 1, i = 0, 1, verify that duF |(ūi,µ0) is invertible for i = 0, 1. But then,
by the IFT, there exists δ > 0 and two curves φi : (µ0 − δ, µ0 + δ)→ E such that

F (φi(µ), µ) = 0, for every µ ∈ (µ0 − δ, µ0 + δ), i = 0, 1.

But this contradicts the uniqueness of extremals for µ < µ0.
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Now, let µk > µ0 be such that µk → µ0 as k → ∞ and let uk be an extremal
for S(Ωµk). We normalized these extremals so that the rescaled functions ūk(x) =
uk(µkx) verify ‖ūk‖q;Ω = 1.

We want to see that {ūk}k∈N converges to ū0 that is the rescaled function of the
unique extremal u0 for S(Ωµ0

).

In fact, it is immediate to see that supk∈N ‖ūk‖s;Ω < ∞, and so, up to a subse-
quence, there exists w̄ ∈ Hs(Ω) such that

ūk ⇀ w̄ weakly in Hs(Ω)

ūk → w̄ strongly in Lr(Ω), for every 1 ≤ r < 2∗s.

From these convergence results it follows that

1 = ‖ūk‖q;Ω → ‖w̄‖q;Ω
and

µ−2s
0 [w̄]2s,2;Ω + ‖w̄‖22;Ω ≤ lim inf

k→∞
µ−2s
k [ūk]2s,2;Ω + ‖ūk‖22;Ω = lim inf

k→∞

S(Ωµk)

λµk
.

Now, let u0 ∈ Hs(Ωµ0
) be the unique extremal for S(Ωµ0

) normalized such that
the rescaled function ū0 satisfies ‖ū0‖q;Ω = 1.

Then,

lim sup
k→∞

S(Ωµk)

λµk
≤ lim sup

k→∞
µ−2s
k [ū0]2s,2;Ω+‖ū0‖22;Ω = µ−2s

0 [ū0]2s,2;Ω+‖ū0‖22;Ω =
S(Ωµ0

)

λµ0

These two inequalities combined imply that w(x) = w̄(µ−1
0 x) is an extremal for

S(Ωµ0
) and so w = u0.

Now, since we are assuming that duF |(u0,µ0) is invertible, we can apply the IFT
as in the proof of Theorem 4.4 to conclude that for some δ > 0 there is a unique
extremal for S(Ωµ) for µ < µ0 + δ. But this contradicts the definition of µ0. �

Remark 5.2. By a simple application of the Fredholm’s alternative, it follows that
duF |(u0,µ0) is not invertible if and only if it has a nontrivial kernel.

The following Poincaré-type inequality plays an important role in the bound of
µ0

Lemma 5.3. Let Ω ⊂ Rn be an open, smooth and of finite measure. Let 0 < s < 1
and 1 ≤ q < 2∗s. Then, there exists c > 0, that depends on q, s and Ω, such that

c‖w‖2q;Ω ≤
1

2
[w]2s;Ω,

for every w ∈ Hs(Ω) such that
∫

Ω
w dx = 0.

Proof. The proof follows by a standard compactness argument and is omitted. �

We are ready to prove the main result of the section.

Theorem 5.4. Under the notations and assumptions of the section, we have that

µ0 ≥

(
c

(q − 1)|Ω|1−
2
q

) 1
2s

,

where c > 0 is the constant in the Poincaré-type inequality of Lemma 5.3.
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Proof. By Lemma 5.1, there exists u0 an extremal for S(Ωµ0
) such that the rescaled

function ū0 normalized such that ‖ū0‖q;Ω = 1 verifies that duF |(ū0,µ0) is not invert-
ible.

Moreover, by Remark 5.2, duF |(ū0,µ0) has a nontrivial kernel.

Let 0 6= z ∈ ker(duF |(ū0,µ0)), then z is a nontrivial weak solution to the problem

(5.1)

{
(−∆)sz + µ2s

0 z = µ2s
0 λµ0

(q − 1)|ū0|q−2z in Ω∫
Ω
z dx = 0.

Using z as a test function in the weak formulation of (5.1) gives

(5.2)
1

2
[z]2s,2;Ω + µ2s

0 ‖z‖22;Ω = µ2s
0 λµ0

(q − 1)

∫
Ω

|ū0|q−2z2 dx.

Now, we use the Poincaré-type inequality of Lemma 5.3, Lemma 3.1 and Hölder’s
inequality to deduce from (5.2) that

c‖z‖2q;Ω ≤ µ2s
0 |Ω|

1− 2
q (q − 1)‖ū0‖q−2

q;Ω ‖z‖
2
q;Ω.

Finally, recalling that ‖ū0‖q;Ω = 1 and that z 6= 0 we arrive that the desired
result. �
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