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Abstract. We establish global Hölder regularity for eigenfunctions of the fractional g−Laplacian
with Dirichlet boundary conditions where g = G′ and G is a Young functions satisfying the
so called ∆2 condition. Our results apply to more general semilinear equations of the form
(−∆g)

su = f(u).

1. Introduction

Given an open and bounded set Ω ⊂ Rn with Lipschitz boundary we consider the problem{
(−∆g)

su = λg(u) in Ω,

u = 0 in Rn \ Ω
(1)

for λ ∈ R with g = G′, G being a Young function, and (−∆g)
s the fractional g−Laplacian ia

given by

(−∆g)
su(x) = p.v.

∫
g (Dsu(x, y))

dy

|x− y|n+s
.

Here Dsu is the s−Hölder quotient defined by

Dsu(x, y) :=
u(x)− u(y)

|x− y|s
. (2)

The fractional g−Laplacian operator is the natural generalization of the fractional p−Laplacian
when a non-power behavior of the s−Hölder quotient is considered. These type of operators have
received much attention in recent years, see for instance [1, 2, 3, 4, 7, 8, 10, 14, 18, 19, 20, 21]
and the references in these articles. Observe that in the particular case that G(t) = tp, p > 1,
the eigenvalue problem for the fractional p−Laplacian is recovered.

The non-local, non-linear and non-homogeneous eigenvalue problem (1) was treated in [18, 20],
where existence of eigenvalues was proved. Eigenvalues with other boundary conditions were
studied in [4]. Recently, a homogeneous version of (1) was dealt with in [10]. The particular
case of powers was studied in [5, 11, 16], where L∞ bound of eigenfunctions was obtained.

The local version of (1) was addressed for instance in [12, 13, 17]. In [17], by appealing to the
regularity theory of G. Lieberman, the authors prove C1,α regularity of the first eigenfunction.
In this setting, lower bounds of eigenvalues were also proved in [19].

The aim of this note is to prove global Hölder regularity for solutions of (1) for a class of
operators where the Young function G satisfies that G(t) is comparable with tG′(t) (see condition
(6)) and G is sub-critical in the sense of condition (11). This class of Young functions includes
powers, powers multiplied by logarithms and sum of different powers, among others functions
(see Section 2 for further examples).
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The main regularity result will be achieved via the following a priori bound on the L∞ norm
of u (see below for conditions and definitions):

Theorem 1. Let s ∈ (0, 1), G a Young function satisfying (6) with sp+ < n and u ∈ W s,G
0 (Ω)

a weak solution of (1) such that
∫
ΩG(u) dx = µ for some µ > 0. Then there exists a constant

C = C(n, s, p±, µ) < ∞ such that
∥u∥L∞(Ω) ≤ C.

The proof of Theorem 1 is based in the well-known De Giorgi’s iteration scheme. This
technique is a powerful tool in regularity analysis of elliptic and parabolic PDEs and it has
been shown to be very versatile and adaptable to different contexts. In our problem, one of the
main drawbacks to be overtaken in order to apply the iteration scheme is the possible lack of
homogeneity of the equation. An extra difficulty is added by the fact that weak solutions satisfy
an equation in terms of modular but not in terms of norms, however, both embedding theorems
and Hölder type inequalities hold for norm of functions and not for modulars.

The desired global regularity is a consequence of the previous theorem and the following result
recently proved by the authors (see [9]):

Theorem 2. Under the assumptions of Theorem 1, and assuming that g = G′ satisfies

p− − 1 ≤ tg′(t)

g(t)
≤ p+ − 1, (3)

there exists α > 0 such that u ∈ Cα(Ω) and

∥u∥Cα(Ω) ≤ C

for some constant C depending of n, s, µ and p±.

A slight modification of our arguments gives regularity of nonlinear problems of the form{
(−∆g)

su = f(u) in Ω,

u = 0 in Rn \ Ω
(4)

where the nonlinearity satisfies f = F ′ for F a Young function such that

η− ≤ tf(t)

F (t)
≤ η+.

together with the sub-critical constrain F ≺≺ G∗, that is

lim
t→∞

F (kt)

G∗(t)
= 0; (5)

this condition is enough to ensure that the embeddings hold. Here G∗ is the critical Sobolev
Young function defined in (12). Condition (5) holds in particular if η+ ≤ (p−)∗, the Sobolev
conjugate of p− which is the lower bound

(p−)∗ ≤ t(G∗)′(t)

G∗(t)
.

Theorem 3. Under the assumptions of Theorem 1, and assuming that F is a Young function

satisfying (5), let u ∈ W s,G
0 (Ω) be a weak solution of (4). Then there exists C = C(n, s, p±, η±) <

∞ such that
∥u∥L∞(Ω) ≤ C.

If G additionaly satisfies (3), there exists α > 0 such that u ∈ Cα(Ω) and

∥u∥Cα(Ω) ≤ C
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for some constant C.

We would like to highlight the recent work [6] in which regularity estimates for quasilinear
equations driven by the g−Laplacian are addressed via a Moser type approach. These results
bear some resemblance with the ones presented here. However, we point out that they assume a
stronger assumptions on the Young function G, i.e., the submultiplicativity condition (condition
known as the ∆′ condition). Moreover, in [6] the eigenvalue problem is only covered for the case
in which g is equivalent to a power. We also allow for a broader range of growth behaviors in
the semilinear setting (4).

The paper is organized as follows: in Section 2 we give the necessary definitions and provide
some examples of Young functions that fit our setting; in Section 3 we prove some technical
results that will be used in the proof of Theorem 1 and in Section 4 we prove Theorem 1 (and
as a consequence Theorem 2).

2. Preliminaries and some technical results

An application G : [0,∞) −→ [0,∞) is said to be a Young function if it admits the integral
representation

G(t) =

∫ t

0
g(s) ds,

where the right-continuous function g defined on [0,∞) has the following properties:

(i) g(0) = 0, g(t) > 0 for t > 0,
(ii) g is nondecreasing on (0,∞),
(iii) limt→∞ g(t) = ∞.

From these properties it is easy to see that a Young function G is continuous, nonnegative,
strictly increasing and convex on [0,∞). Without of loss generality we can assume G(1) = 1
and we extend G to negative values in an even fashion: G(−t) = G(t).

We will assume throughout the paper that G satisfies

1 < p− ≤ tg(t)

G(t)
≤ p+ < ∞. (6)

Condition (6) is equivalent to ask G and G̃ to satisfy the ∆2 condition or doubling condition,
i.e.,

G(2t) ≤ 2p
+
G(t), G̃(2t) ≤ 2(p

−)′G̃(t), (7)

(we usually denote C := 2p
+
) where the complementary function of a Young function G is the

Young function G̃ defined as

G̃(t) = sup{ta−G(a) : a > 0}.
This condition allows to split sums as

G(a+ b) ≤ C
2 (G(a) +G(b)). (8)

The following lemma will be useful often; its proof is elementary so we omit it.

Lemma 4. For α ∈ [0, 1] and t ≥ 0

G(αt) ≤ αG(t),

and for α ≥ 1 and t ≥ 0
G(αt) ≥ αG(t)

More generally, for any, α, t ≥ 0

G(t)min{αp− , αp+} ≤ G(αt) ≤ G(t)max{αp− , αp+}, (9)



4 JULIÁN FERNÁNDEZ BONDER, ARIEL SALORT AND HERNÁN VIVAS

G−1(t)min{α
1

p− , α
1

p+ } ≤ G−1(αt) ≤ G−1(t)max{α
1

p− , α
1

p+ }. (10)

Examples of Young functions satisfying the assumptions of Theorem 1 include:

• G(t) = tp, t ≥ 0, p > 1;
• G(t) = tp(1 + | log t|), t ≥ 0, p > 1;
• G(t) = tpχ(0,1](t) + tqχ(1,∞)(t), t ≥ 0, p, q > 1;

• G(t) given by the complementary function to G̃(t) = (1 + t)
√

log(1+t) − 1, t ≥ 0.
• G1◦. . .◦Gm, max{G1, . . . , Gm} and

∑m
j=1 ajGj where Gj is a Young function and aj ≥ 0

for j = 1, . . . ,m.

We will assume also that∫ 1

0

G−1(τ)

τ1+
s
n

dτ < ∞ and

∫ +∞

1

G−1(τ)

τ1+
s
n

dτ = ∞ (11)

which are the conditions necessary for the Orlicz-Sobolev embeddings to hold (see Proposition
5). We also consider the critical Young function G∗ defined as

(G∗)−1(t) :=

∫ t

0

G−1(τ)

τ
n+s
n

dτ. (12)

Condition (11) is fulfilled in particular when

sp+ < n. (13)

We point out that this is not the optimal function Young function under which the embeddings
hold; indeed, in [1] they are shown to hold for

G s
n
(t) := G

(
F−1(t)

)
with F (t) :=

(∫ t

0

(
τ

G(τ)

) s
s−n

dτ

)n−s
n

.

Throughout the paper, given a Young function G we will denote H := G∗ ◦ G−1, where G∗ is
the critical Sobolev Young function defined in (12) and G−1 is the inverse of G. Observe that
H defines a new Young function.

Weak solutions of (1) satisfy

⟨(−∆g)
su, v⟩ = λ

∫
Ω
g(u)v dx for any v ∈ W s,G

0 (Ω) (14)

where

⟨(−∆g)
su, v⟩ :=

∫∫
Rn×Rn

g

(
u(x)− u(y)

|x− y|s

)
(v(x)− v(y))

|x− y|n+s
dxdy.

From now on, the modulars in LG(Ω) and W s,G(Ω) will be denoted as

ΦG(u) :=

∫
Ω
G(|u|) dx Φs,G(u) :=

∫∫
Rn×Rn

G(|Dsu|) dµ,

respectively where the notation

dµ :=
dxdy

|x− y|n
(15)

and Dsu defined in (2) will be used throughout. Over the space

W s,G(Ω) := {u : Rn → R measurable s.t. Φs,G(u) + ΦG(u) < ∞}
we define the norm

∥u∥s,G := ∥u∥G + [u]s,G, (16)
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where

∥u∥G := inf
{
λ > 0: ΦG

(u
λ

)
≤ 1
}
.

and

[u]s,G := inf
{
λ > 0: Φs,G

(u
λ

)
≤ 1
}
.

is the (s,G)−Gagliardo seminorm.
We also denote

W s,G
0 (Ω) := {u ∈ W s,G(Ω): u = 0 a.e. in Rn \ Ω}.

In this space [·]s,G turns out to be an equivalent norm.
For the proof of the aforementioned facts and an introduction to fractional Orlicz-Sobolev

spaces we refer to [7, 8]. The following embedding is proved in [3].

Proposition 5 (Embedding). Let G be a Young function satisfying (6) and (11), then there is
a positive constant C such that

∥u∥G∗ ≤ C∥u∥s,G.

As mentioned before, Proposition 5 is not the most general embedding result for W s,G(Ω),
see [1]. However, the simplicity of the formula for G∗, (12), allows us to simplify a lot of our
arguments.

3. Some technical results

The purpose of this section is to gather some technical and useful inequalities which are the
key of our argument. Recall that H := G∗◦G−1, where G∗ is the critical Sobolev Young function
defined in (12) and G−1 is the inverse of G.

Lemma 6. Let G be a Young function satisfying (6). Then for any u ∈ LG(Ω) we have that

∥G(u)∥H ≤ max{∥u∥p
+

G∗ , ∥u∥p
−

G∗}.

Proof. When ∥u∥G∗ ≥ 1, (10) and the definition of the Luxemburg norm yield that∫
Ω
H

(
G(u)

∥u∥p
+

G∗

)
dx =

∫
Ω
G∗ ◦G−1

(
G(u)

∥u∥p
+

G∗

)
dx ≤

∫
Ω
G∗
(

u

∥u∥G∗

)
dx = 1

which gives ∥G(u)∥H ≤ ∥u∥p
+

G∗ . The case ∥u∥G∗ < 1 is analogous. □

Lemma 7. Let G be a Young function satisfying (6) and (11) and G∗ be defined by (12). If we
define

K(t) := t(G∗ ◦G−1)−1
(
1
t

)
= t(G ◦ (G∗)−1)

(
1
t

)
then there exists a some constant C̄ > 0 (depending only on n, s, p±,C ) such that

K(t) ≤ C̄max{t, t
sq
n } for all t > 0 and q < p−.

Proof. Using the expression of G∗ and (11) we have that, for t ≥ 1,

K(t) = tG

(∫ 1
t

0

G−1(τ)

τ1+
s
n

dτ

)
≤ tC1 with C1 := G

(∫ 1

0

G−1(τ)

τ1+
s
n

dτ

)
.
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Let us deal now with the case t < 1. From (8) we get

K(t) = tG

(∫ 1

0

G−1(τ)

τ1+
s
n

dτ +

∫ 1
t

1

G−1(τ)

τ1+
s
n

dτ

)

≤ C

2
t

(
G

(∫ 1

0

G−1(τ)

τ1+
s
n

dτ

)
+G

(∫ 1
t

1

G−1(τ)

τ1+
s
n

dτ

))
:= (a) + (b).

As before, (a) ≤ C
2 C1t. In order to bound (b), observe that

G−1(τ)τ−
s
n is an increasing function for all τ > 0 (17)

whenever sp+ < n. Indeed, by using the change of variable w = G(t), the last assertion is

equivalent to wG(w)−
s
n to be increasing, assertion which is true since due to (6) we get

(wG(w)−
s
n )′ = G(w)−

s
n − sw

n
G(w)−

s
n
−1g(t) > 0 ⇐⇒ tg(t)

G(t)
≤ p+ <

n

s
.

Therefore, from (17) we have that

tG

(∫ 1
t

1

G−1(τ)

τ1+
s
n

dτ

)
≤ tG

(
G−1

(
1

t

)
t
s
n

∫ 1
t

1
τ−1 dτ

)

≤ tG

(
G−1

(
1

t

)
t
s(1−ε)

n t
sε
n log

(
1

t

))
where ε > 0 is arbitrary. Since t

sε
n log

(
1
t

)
≤ Cε, from the last expression together with (9) and

the fact that t < 1 we get

tG

(∫ 1
t

1

G−1(τ)

τ1+
s
n

dτ

)
≤ C̃εt

1+ sp
n
(1−ε)p−G

(
G−1

(
1

t

))
≤ C̃εt

sq
n

for any q < p−.
Putting together the bounds for (a) and (b) we get the desired estimate. □

The following lemma relates norms with modulars of weak solutions to (1).

Lemma 8. If u ∈ W s,G(Ω) satisfies that∫∫
Rn×Rn

G(|Dsu|) dµ ≤ M

for some M ≥ 1, then it holds that

[u]s,G ≤ M
1

p− .

Proof. Since M ≥ 1, from (9) we have

1 ≥ 1

M

∫∫
Rn×Rn

G(|Dsu|) dµ ≥
∫∫

Rn×Rn

G
(
M

− 1
p− |Dsu|

)
dµ.

Then, the definition of [·]s,G implies that [u]s,G ≤ M
1

p− as desired. □

We also have the general version of the Chebyshev’s inequality, which is proved as the usual
one:
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Lemma 9. Let G be a real valued, measurable in Ω, nonnegative and nondecreasing function.
For any u measurable in Ω and real valued and t > 0 we have

|{x ∈ Ω: u(x) ≥ t}| ≤ 1

G(t)

∫
Ω
G(u(x)) dx

We close this section with a simple real analysis result regarding sequences that satisfy a
nonlinear recurrence relationship, its proof is elementary:

Lemma 10. Let {ak}k be a sequence of nonnegative real numbers and assume that exist C > 0
and δ ∈ (0, 1) such that

ak+1 ≤ Ca1+δ
k , k ≥ 0. (18)

Then there exists ε0 > 0 such that

a0 ≤ ε0 ⇒ lim
k→∞

ak = 0.

4. Proof of the main results

In this section we give the proof of our main result, namely Theorem 1.

Proof of Theorem 1. The proof follows De Giorgi’s L2 implies L∞ scheme; we are going to show
that, if ∫∫

G(Dsu) dµ ≤ cλ

∫
Ω
G(u) dx (19)

for some constant c = c(p+, p−), then there exists ε0 > 0 such that∫
Ω
G(u) = µ ≤ ε0 ⇒ ∥u∥L∞(Ω) ≤ 1. (20)

Note that (19) is readily implied by (14) (taking v = u) and (11):∫∫
G(Dsu) dµ ≤ 1

p−

∫∫
g(Dsu)Dsu dµ

=
1

p−
λ

∫
Ω
g(u)u dx

≤ p+

p−
λ

∫
Ω
G(u) dx

and that (20) implies the general result by scaling: if µ > ε0 we can rescale:∫
Ω
G
( u
C

)
dx ≤ max

{
C−p− , C−p+

}
µ ≤ ε0

by taking C sufficiently large. Notice that u/C fulfills that∫∫
Rn×Rn

G
(∣∣∣Ds

( u
C

)∣∣∣) dµ ≤ max
{
C−p− , C−p+

}∫∫
Rn×Rn

G(|Dsu|) dµ

≤ max
{
C−p− , C−p+

}
cλ

∫
Ω
G(u) dx

≤
max

{
C−p− , C−p+

}
min

{
C−p− , C−p+

} cλ

∫
Ω
G
( u
C

)
dx

=: C0λ

∫
Ω
G
( u
C

)
dx.
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Then, by (20) we have

∥u∥L∞(Ω) ≤ C

and we get the desired result.

Let us prove (20). For any k ∈ N consider the function wk ∈ W s,G
0 (Ω) defined as

wk := (u− (1− 2−k))+.

It is easy to see that these functions fulfill the following properties

wk+1(x) ≤ wk(x) a.e. in Rn,

{wk+1 > 0} ⊂ {wk > 2−(k+1)}.
(21)

We further claim that:

u ≤ (2k+1 − 1)wk in {wk+1 > 0}. (22)

Indeed, notice that wk+1(x) > 0 implies u(x) > 1− 2−(k+1) and that

2k+1 − 1 =
1− 2−(k+1)

1− 2−(k+1) − (1− 2−k)

and compute

(2k+1 − 1)wk(x) = (2k+1 − 1)
(
u(x)− (1− 2−k)

)
=

1− 2−(k+1)

1− 2−(k+1) − (1− 2−k)
u(x)− (1− 2−(k+1))(1− 2−k)

1− 2−(k+1) − (1− 2−k)

= u(x) +
1− 2−k

1− 2−(k+1) − (1− 2−k)
u(x)− (1− 2−(k+1))(1− 2−k)

1− 2−(k+1) − (1− 2−k)

= u(x) + 2k+1(1− 2−k)
(
u(x)− (1− 2−(k+1))

)
> u(x),

so (22) holds.
Now, since 0 ≤ wk ≤ |u|+ 1 ∈ LG(Ω) and

lim
k→∞

wk = (u− 1)+,

by the Dominated Convergence Theorem one gets that

lim
k→∞

∫
Ω
G(wk) dx =

∫
Ω
G((u− 1)+) dx. (23)

We want to get a recursive bound of the form∫
Ω
G(wk+1) dx ≤ Ck

(∫
Ω
G(wk) dx

)1+δ

(24)

for some δ > 0 and some (increasing) sequence of constants Ck > 0. Indeed, (24) is exactly
condition (18) in Lemma 10 so its proof would imply∫

Ω
G(u+) dx =

∫
Ω
G(w0) dx ≤ ε0 ⇒ lim

k→∞

∫
Ω
G(wk) dx = 0.

Finally this combined with (23), implies

u ≤ 1 a.e. in Ω.

Replacing u by −u we get the other bound.
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To prove (24) we start with the following inequality:

g

(
v(x)− v(y)

|x− y|s

)(
v+(x)− v+(y)

|x− y|s

)
≥ p−G

(
v+(x)− v+(y)

|x− y|s

)
. (25)

Indeed, we may assume without loss of generality that v(x) ≥ v(y). If x, y ∈ {v > 0} then (25)
is just (6). If x ∈ {v > 0} and y ∈ {v ≤ 0} then we use the fact that g is increasing and (6) to
get

g

(
v(x)− v(y)

|x− y|s

)(
v+(x)− v+(y)

|x− y|s

)
≥ g

(
v(x)

|x− y|s

)(
v(x)

|x− y|s

)
≥ p−G

(
v+(x)− v+(y)

|x− y|s

)
as desired.

Now we use (25) with v = u− (1− 2−k) as follows:∫∫
R2n

G(Dswk+1) dµ =

∫∫
R2n

G

(
(wk+1)+(x)− (wk+1)+(y)

|x− y|s

)
dxdy

|x− y|n

≤ 1

p−

∫∫
R2n

g

(
u(x)− u(y)

|x− y|s

)(
(wk+1)+(x)− (wk+1)+(y)

|x− y|s

)
dxdy

|x− y|n

=
λ

p−

∫
Ω
g(|u|) u

|u|
wk+1 dx

where the last equality comes from testing the equation with wk+1. Using this together with
(22), (21) and (6) gives∫∫

R2n

G(Dswk+1) dµ ≤ λ

p−

∫
Ω
g((2k+1 − 1)wk+1)

(2k+1 − 1)wk+1

2k+1 − 1
dx

≤ p+

p−
λ

∫
Ω
G((2k+1 − 1)wk+1)

1

2k+1 − 1
dx

≤ p+

p−
λ(2k+1 − 1)p

+−1

∫
Ω
G(wk+1) dx.

(26)

Next, by using Hölder inequality for Orlicz spaces∫
Ω
G(wk+1) dx ≤ 2∥G(wk+1)∥H∥χ{wk+1>0}∥H̃ (27)

where H = G∗ ◦G and H̃ is its conjugate. To get a bound for the first factor we recall that

∥χ{wk+1>0}∥H̃ ≤ |{wk+1 > 0}|H−1
(
|{wk+1 > 0}|−1

)
=: K (|{wk+1>0}|)

(see [15], page 149) to get, using Lemma 7, (21), Lemma 9 and (9)

∥χ{wk+1>0}∥H̃ ≤ C̄κ(|{wk+1 > 0}|

≤ C̄κ(|{wk > 2−(k+1)}|)

≤ C̄κ

(
1

G(2−(k+1))

∫
Ω
G(wk) dx

)
≤ C̄κ

(
1

G(1)2−(k+1)p+

∫
Ω
G(wk) dx

)
≤ C0C̃

k+1κ

(∫
Ω
G(wk) dx

)
,

(28)
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where κ denotes the increasing function κ(t) = max{t, t
sp−
n }, t > 0 and

C0 := C̄κ(1/G(1)), C̃ = κ(2
sp−
n ) > 1.

Now we need to bound the other term in (27). For this, we use Lemma 6, Proposition 5, and
Lemma 8 applied to (26)

∥G(wk+1)∥H ≤ max{∥wk+1∥p
+

G∗ , ∥wk+1∥p
−

G∗}

≤ Cmax{[wk+1]
p+

s,G, [wk+1]
p−

s,G}.

Applying Lemma 6 to (26) with M = p+

p−λ(2
k+1 − 1)p

+−1
∫
ΩG(wk+1) dx gives (observe that

M ≥ 1 for k big enough)

[wk+1]s,G ≤ C(λ, p±)2
(k+1)(p+−1)

p−

(∫
Ω
G(wk)

) 1
p−

.

The last two inequalities together give

∥G(wk+1)∥H ≤ C̄k max


∫
Ω
G(wk) dx,

(∫
Ω
G(wk) dx

) p+

p−

 (29)

for some constant C̄(λ, p±) > 1
Inserting (28) and (29) in (27) we finally get∫

Ω
G(wk+1) dx ≤ CC̄k max


(∫

Ω
G(wk)

)1+ p+

p−

,

(∫
Ω
G(wk)

) sp−
n

+ p+

p−


≤ CC̄k+1

(∫
Ω
G(wk)

)1+δ

for some δ > 0 and some C̄(λ, p±) > 1. This proves (24).
□
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