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Abstract. In this paper we prove the existence of nonnegative non-
trivial solutions of the system

{

∆u = u in Ω,
∆v = v,

with nonlinear coupling through the boundary given by
{

∂u
∂n = f(x, u, v) on ∂Ω,
∂v
∂n = g(x, u, v),

under suitable assumptions on the nonlinear terms f and g. For the
proof we use a fixed-point argument and the key ingredient is a Liouville
type theorem for a system of Laplace equations with nonlinear coupling
through the boundary of power type in the half space.

1. Introduction. In this paper we study the existence via topological
methods of nonnegative solutions of the following elliptic system:

{

∆u = u in Ω,
∆v = v,

(1.1)

with nonlinear coupling at the boundary given by
{

∂u
∂n = f(x, u, v) on ∂Ω,
∂v
∂n = g(x, u, v).

(1.2)
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Here Ω is a bounded smooth domain in RN , ∂/∂n denotes the outer normal
derivative and f, g : ∂Ω×R+×R+ → R+ are smooth positive functions with
f(x, 0, 0) = g(x, 0, 0) = 0. Moreover we deal with the “superlinear” case (see
Section 3 for detailed assumptions, (H1), (H2), (H3), on f and g).

Existence results for nonlinear elliptic systems have deserved a great deal
of interest in recent years, in particular when the nonlinear term appears as
a source in the equation, complemented with Dirichlet boundary conditions.
There are two main classes of systems that can be treated variationally:
Hamiltonian and gradient systems. The system (1.1)-(1.2) is called Hamil-
tonian if there exists a function H such that Hv = f and Hu = g, and is
called gradient if there exists F with ∇F = (f, g). Other problems without
variational structure can be treated via fixed-point arguments. For this type
of results see, among others, [2], [4], [6], [8], [9], [13] and the survey [7].

Here we address the existence problem for (1.1)–(1.2) without a varia-
tional assumption on f and g. To our knowledge, no existence result prior
to this work is available for the nonlinear boundary-condition case.

The topological method (a fixed-point argument) we apply here, has been
used by several authors to deal with problems without variational structure
(see for instance [5], [10], [23], [24]), and, as in our case, they were forced to
impose some growth restrictions on f and g (see Theorem 3.2 in Section 3).

In the course of the proof, we will need some knowledge of the following
eigenvalue problem:

{

∆ϕ = ϕ in Ω,
∂ϕ
∂n = λϕ on ∂Ω.

We collect the results that we need in Section 2, and we include the proofs,
though they are straightforward, in order to make the paper self-contained.

The main difficulty in carrying out the fixed-point argument is to obtain
L∞ a priori bounds for (1.1)–(1.2). This difficulty is overcome by means of
the blow-up technique introduced by Gidas-Spruck [17]. The key ingredient
in making this technique work is a Liouville-type theorem for the system

{

∆u = 0 in RN
+ ,

∆v = 0,
(1.3)

with boundary conditions
{

∂u
∂n = vp on ∂RN

+ ,
∂v
∂n = uq.

(1.4)
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In [20], Bei Hu studies the single equation,
{

∆u = 0 in RN
+ ,

∂u
∂n = up on ∂RN

+ .
(1.5)

There he proves that if 1 < p < N
N−2 there is no nontrivial nonnegative

classical solution of (1.5). In [19] such nonexistence-type result is applied to
compute the blow-up rate of a parabolic problem. In [14] the authors use a
similar result to obtain the blow-up rate for a parabolic system.

Here, in Section 4, we adapt the moving plane technique to deal with
the system (1.3)–(1.4), and we obtain the same type of result with similar
restrictions on the exponents (see Theorems 3.5 and 3.6). This result seems
to be of independent interest.

We remark that we can also deal with the semilinear case
{

−∆u + u = r(x, u, v) in Ω,
−∆v + v = s(x, u, v),

{

∂u
∂n = f(x, u, v) on ∂Ω,
∂v
∂n = g(x, u, v),

using the same ideas (see Remark 3.1). Since the main novelty here comes
from the boundary terms, we present our results for (1.1)–(1.2).

The paper is organized as follows: in Section 2, we analyze the eigenvalue
problem; in Section 3, we state and prove our main results (Theorems 3.2, 3.4
and 3.7). Finally, in Section 4 we prove the nonexistence results (Theorems
3.5 and 3.6).

2. The eigenvalue problem. In this section we analyze the following
eigenvalue problem:

{

∆ϕ = ϕ in Ω,
∂ϕ
∂n = λϕ on ∂Ω.

(2.1)

The proof of the results are rather standard, so we only sketch them. In fact
we prove

Theorem 2.1. There exists a first positive eigenvalue λ1 with positive eigen-
function ϕ1 of (2.1). Moreover, if µ > λ1 there is no nonnegative nontrivial
solution of

{

∆w = w in Ω,
∂w
∂n ≥ µw on ∂Ω.

(2.2)
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Proof. First, we observe that the operator A : L2(∂Ω) → L2(∂Ω) given by
Af = u |∂Ω, where u is the solution of

{

∆u = u in Ω,
∂u
∂n = f on ∂Ω

is compact, self-adjoint and ker(A) = {0} (see [11], [12]). To see that it is
positive, we observe that

〈Af, f〉 =
∫

∂Ω
uf =

∫

∂Ω
u

∂u
∂n

=
∫

Ω
|∇u|2 + ∆uu =

∫

Ω
|∇u|2 + u2.

Then there exists a nonincreasing sequence of positive eigenvalues of A,
0 < µn with µn → 0. Then, if we take 0 < λ1 = 1/µ1 we only have to show
that the corresponding eigenfunction ϕ1 is positive. For that purpose we
observe that ϕ1 is a solution of the following minimization problem:

λ1 = minR
∂Ω u2=1

(∫

Ω
|∇u|2 +

∫

Ω
u2

)

.

As |u| is also a solution if u is a solution, we can choose ϕ1 positive (see [11],
[12] for the details).

To finish the proof of the theorem, assume that we have a nonnegative
solution of (2.2). We multiply the equation by ϕ1 and, after integration by
parts, we get

∫

Ω
w∆ϕ1 −

∫

∂Ω
w

∂ϕ1

∂n
+

∫

∂Ω

∂w
∂n

ϕ1 =
∫

Ω
wϕ1.

Hence we obtain
µ

∫

∂Ω
wϕ1 ≤ λ1

∫

∂Ω
wϕ1,

a contradiction, unless w ≡ 0. �

3. Main results. As we have described in the introduction, we will
use a topological argument in order to obtain our existence result. More
precisely, we want to apply the following fixed-point theorem that can be
found, for instance, in [6] (Theorem 3.1).

Theorem 3.1. Let C be a cone in a Banach space X and S : C → C a
compact mapping such that S(0) = 0. Assume that there are real numbers
0 < r < R and t > 0 such that
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1. x 6= tSx for 0 ≤ t ≤ 1 and x ∈ C, ‖x‖ = r, and

2. there exists a compact mapping H : BR × [0,∞) → C (where Bρ =
{x ∈ C : ‖x‖ < ρ}) such that

(a) H(x, 0) = S(x) for ‖x‖ = R.

(b) H(x, t) 6= x for ‖x‖ = R and t > 0.

(c) H(x, t) = x has no solution x ∈ BR for t ≥ t0.

Then S has a fixed point in U = {x ∈ C : r < ‖x‖ < R}.
To apply this theorem, we proceed as follows. Consider the space

X = {(u, v) : u, v ∈ C(Ω)},

with the norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞, which makes it a Banach space.
Let S : X → X be the solution operator defined by S(φ, ψ) = (u, v), where
(u, v) is the solution of

{

∆u = u in Ω,
∂u
∂n = f(x, φ, ψ) on ∂Ω,

(3.1)

{

∆v = v in Ω,
∂v
∂n = g(x, φ, ψ) on ∂Ω.

(3.2)

We observe that a fixed point of S is a solution of (1.1)–(1.2).
Now let us see that S satisfies the hypotheses of Theorem 3.1. By stan-

dard regularity theory, [18], as the normal derivatives of u and v are bounded
in L∞ it follows that u and v are Cα; hence S is a compact operator. As
f(x, 0, 0) = g(x, 0, 0) = 0 we have, by Hopf’s lemma, that S(0) = 0.

Let C be the cone C = {(u, v) ∈ X : u ≥ 0, v ≥ 0}. It follows from the
maximum principle that S(C) ⊂ C.

To verify (1) in Theorem 3.1 we argue by contradiction. Let us assume
that for every r > 0 there exists a 0 ≤ t ≤ 1 and a pair (U, V ) such that

{

∆U = U in Ω,
∆V = V,

(3.3)

{

∂U
∂n = tf(x,U, V ) on ∂Ω,
∂V
∂n = tg(x,U, V ).

(3.4)
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We multiply the first equation of (3.3) by ϕ1, the first eigenfunction of (2.1),
and we obtain

0 =
∫

Ω
(∆U − U)ϕ1 =

∫

Ω
U(∆ϕ1 − ϕ1) + t

∫

∂Ω
f(x, U, V )ϕ1 −

∫

∂Ω
U

∂ϕ1

∂n
.

Hence
0 = t

∫

∂Ω
f(x,U, V )ϕ1 − λ1

∫

∂Ω
Uϕ1.

We assume that f and g are “superlinear”; in fact, we make the following
hypothesis, which we call (H1):

f(x,U, V ) ≤ ε(U + V ) and g(x,U, V ) ≤ ε(U + V ), (H1)

for small ‖(U, V )‖. Using (H1), we obtain

λ1

∫

∂Ω
Uϕ1 ≤ εt

∫

∂Ω
(U + V )ϕ1.

Analogously, for V we get

λ1

∫

∂Ω
V ϕ1 ≤ εt

∫

∂Ω
(U + V )ϕ1.

Adding both inequalities we conclude that λ1 ≤ 2ε, a contradiction if ε
satisfies ε < λ1/2.

To see (2) we define H as follows: H((φ, ψ), t) = S(φ + t, ψ + t). Clearly
(a) holds.

To see (c) we have to impose any of the following conditions (we call this
(H2)):

(H2.i) There exist real numbers µ > λ1 and C > 0 such that f(x, u, v) ≥
µu− C uniformly in x ∈ Ω and v ∈ R+.

(H2.ii) There exist real numbers µ > λ1 and C > 0 such that g(x, u, v) ≥
µv − C uniformly in x ∈ Ω and u ∈ R+.

(H2.iii) There exist real numbers µ > λ1 and C > 0 such that f(x, u, v)+
g(x, u, v) ≥ µ(u + v)− C uniformly in x ∈ Ω.

For instance, assume that (H2.i) holds. Then we observe that for t large
enough we have f(x, u + t, v + t) ≥ µ(u + t) − C ≥ µu, with µ > λ1, and
hence, for t large, u is a nonnegative solution of

{

∆u = u in Ω,
∂u
∂n ≥ µu on ∂Ω,
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which contradicts Theorem 2.1.
The other cases can be handled in a similar fashion. Finally, condition

(b) is an immediate consequence of an a priori bound for the system
{

∆u = u in Ω,
∆v = v,

(3.5)

{

∂u
∂n = f(x, u + t, v + t) on ∂Ω,
∂v
∂n = g(x, u + t, v + t).

(3.6)

Hence we have proved our main result, provided we have an a priori L∞

bound for (3.5)-(3.6).

Theorem 3.2. Let f and g satisfy (H1)–(H2); if there exists a constant C
such that for every solution (u, v) of (1.1)-(1.2) it holds that ‖u‖∞, ‖v‖∞ ≤
C, then the system (1.1)-(1.2) has a nontrivial positive solution.

Now our aim is to prove that, under further conditions on f and g, the
nonnegative solutions of (1.1)-(1.2) are bounded in L∞, so Theorem 3.2
applies. To do so, we apply the blow-up technique introduced by Gidas and
Spruck [17]. We argue by contradiction. Assume that there is no such a priori
bound; then there exists a sequence of positive solutions (un, vn) such that
max{‖un‖∞, ‖vn‖∞} → ∞ Let β1, β2 be two positive numbers to be fixed.
We can assume that ‖un‖∞ →∞ and that ‖un‖β2

∞ ≥ ‖vn‖β1
∞ . As Ω is compact

and un is continuous, we can choose xn ∈ Ω such that un(xn) = maxΩ un.
Moreover, it follows from the maximum principle that xn ∈ ∂Ω. Again, by
the compactness of Ω, we can assume that xn → x0 ∈ ∂Ω.

We define γn such that γβ1
n ‖un‖∞ = 1. This sequence γn goes to 0 as

n →∞. Let

wn(y) = γβ1
n un(γny + xn), zn(y) = γβ2

n vn(γny + xn).

These functions are defined in Ωn = {y ∈ RN : γny + xn ∈ Ω}. We observe
that 0 ≤ wn, zn ≤ 1 and wn(0) = 1.

On f and g we impose the following condition (hypothesis (H3)):

f(x, u, v) = a(x)up11 + b(x)vp12 + h1(x, u, v),
g(x, u, v) = c(x)up21 + d(x)vp22 + h2(x, u, v),

(H3)

where 0 < k ≤ a, b, c, d ≤ K < ∞ and hi are lower-order terms,

|hi(x, u, v)| ≤ ci(1 + |u|αi1 + |v|αi2).
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Here the exponents αij satisfy 0 ≤ αij < pij . Hence, wn and zn satisfy
{

∆wn = γ2
nwn in Ωn,

∆zn = γ2
nzn,

(3.7)



















∂wn
∂n = γβ1(1−p11)+1

n a(∗)wp11
n + γβ1+1−β2p12

n b(∗)zp12
n

+γβ1+1
n h1(∗, γ−β1

n wn, γ−β2
n zn) on ∂Ωn,

∂zn
∂n = γβ2+1−β1p21

n c(∗)wp21
n + γβ2(1−p22)+1

n d(∗)zp22
n

+γβ2+1
n h2(∗, γ−β1

n wn, γ−β2
n zn).

(3.8)

Now we want to pass to the limit in (3.7)-(3.8), so we need to know what
happens with the coefficients of the leading terms.

We distinguish two cases in terms of pij : the weakly coupled case and
the strongly coupled case.

1) Weakly coupled case. We say that the system is weakly coupled if
there exist β1, β2 such that

β1(1− p11) + 1 = 0, β1 + 1− β2p12 > 0,
β2(1− p22) + 1 = 0, β2 + 1− β1p21 > 0.

(3.9)

Thus, in this case we choose β1 = 1
p11−1 , β2 = 1

p22−1 . These conditions impose

1 < p11, p22, p12 <
p11(p22 − 1)

p11 − 1
, and p21 <

p22(p11 − 1)
p22 − 1

.

2) Strongly coupled case. We say that the system is strongly coupled
if there exist β1, β2 such that

β1(1− p11) + 1 > 0, β1 + 1− β2p12 = 0,
β2(1− p22) + 1 > 0, β2 + 1− β1p21 = 0.

(3.10)

Thus, in this case we choose β1 = p12+1
p12p21−1 , β2 = p21+1

p12p21−1 . These conditions
impose

1 < p21p12, p11 < 1 +
p21p12 − 1
p12 + 1

, and p22 < 1 +
p21p12 − 1
p21 + 1

.

First we deal with the weakly coupled case.
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As wn, zn are Cα (see [18]) and f , g are smooth, we have (see [22], [15])
that wn, zn are uniformly bounded in C1+α. Hence, by standard Schauder
theory, [18], we obtain that wn, zn are uniformly bounded in C2+α. Using a
compactness argument we can assume that (wn, zn) → (w, z) in C2+β×C2+β

with β < α. We observe that the domains Ωn approach RN
+ . Therefore,

passing to the limit we obtain a nontrivial nonnegative bounded solution w
of

{

∆w = 0 in RN
+ ,

∂w
∂n = a(x0)wp11 on ∂RN

+ .
(3.11)

Bei Hu in [20] proved the following nonexistence theorem:

Theorem 3.3. The only nonnegative classical solution of (3.11) is w ≡ 0
when 1 < p11 < N

N−2 (p11 is subcritical) if N ≥ 3 or 0 < p11 if N = 2.

The proof of Theorem 3.3 relies on the moving plane method, introduced
by Alexandroff and then used by several authors to study the symmetry
properties of many elliptic equations ([1], [16], [21], etc.). We want to re-
mark that in the critical case, p11 = N

N−2 , there exist nontrivial nonnegative
solutions of (3.11), [3].

Using Theorem 3.3 we get a contradiction, and this proves the a priori
bound in the weakly coupled case. In summary, we have proved the following
result:

Theorem 3.4. Assume that the system (1.1)–(1.2) satisfies (H3) and is
weakly coupled. If 1 < p11, p22 < N

N−2 (N ≥ 3) or 0 < p11, p22 (N = 2), then
there exists a constant C such that every nonnegative solution (u, v) satisfies

‖u‖∞, ‖v‖∞ ≤ C.

Next, we deal with the strongly coupled case. Passing to the limit as in
the previous case, we obtain a nontrivial, nonnegative solution of

{

∆w = 0 in RN
+ ,

∆z = 0,
(3.12)

with boundary conditions
{

∂w
∂n = b(x0)zp12 on ∂RN

+ ,
∂z
∂n = c(x0)wp21 .

(3.13)

For this problem, using the moving planes technique, in the next section we
prove the following Liouville-type theorems:
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Theorem 3.5. Suppose N ≥ 3, and p12, p21 ≤ N
N−2 but not both equal to

N
N−2 , with p12p21 > 1. Let (w, z) be a classical nonnegative solution of
(3.12)–(3.13); then w ≡ z ≡ 0.

For the case N = 2 we have to suppose that w or z is bounded, and
we obtain the same conclusion with no restriction on the exponents p12, p21.
More precisely, we have

Theorem 3.6. Let N = 2, and p12, p21 > 0. Let (w, z) be a classical non-
negative solution of (3.12)–(3.13) with w bounded; then w ≡ z ≡ 0.

Again, applying Theorems 3.5 and 3.6 we get a contradiction in the
strongly coupled case. In summary we have proved the following theorem:

Theorem 3.7. Assume that the system (1.1)–(1.2) satisfies (H3) and is
strongly coupled. If 1 < p12p21 and p12, p21 ≤ N

N−2 but not both equal (N ≥ 3)
or 0 < p12, p21 (N = 2), then there exists a constant C such that every non-
negative solution (u, v) satisfies ‖u‖∞, ‖v‖∞ ≤ C.

Remark 3.1 We observe that the same techniques apply to the semilinear
case,

{

−∆u + u = r(x, u, v) in Ω,
−∆v + v = s(x, u, v),

{

∂u
∂n = f(x, u, v) on ∂Ω,
∂v
∂n = g(x, u, v).

The differences arises in the blow-up argument. When we apply this tech-
nique, the points xn need not lie in ∂Ω, and hence we have to discriminate
the case where xn → x0 6∈ ∂Ω. In this case we can pass to the limit, but we
lose the boundary condition, obtaining a semilinear problem in RN .

4. Nonexistence results. This section is devoted to the proofs of The-
orems 3.5 and 3.6.

Throughout this section, for the sake of simplicity, we write p, q instead
of p12, p21 and u, v instead of w, z. Also we assume that b(x0) = c(x0) = 1.

Proof of Theorem 3.5. To apply the moving plane method we use the
following notation: for λ ∈ R, let

Σλ = {(x1, ..., xN ) : x1 > 0, xN < λ}, Tλ = {(x1, ..., xN ) : x1 ≥ 0, xN = λ},

˜Σλ = Σλ − {(0, ..., 0, 2λ)}, B+
µ (y0) = Bµ(y0) ∩ {x1 > 0}.
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Let (u, v) be a positive solution of (1.3)-(1.4) and α1 = − p+1
pq−1 , α2 = − q+1

pq−1
(we observe that, as pq > 1, α1 and α2 are negative). Then define

u(x) = µ−α1u(µx), v(x) = µ−α2v(µx).

As (u, v) satisfies (1.3)-(1.4), (u, v) satisfies
{

∆u = 0, ∆v = 0,
∂u
∂n = vp, ∂v

∂n = uq.
(4.1)

By (4.1), if u ≡ 0, then v ≡ 0; then we can suppose that u 6≡ 0, v 6≡ 0. Now
we observe that if µ < 1

supx∈B+
1 (0) u(x) ≤ µ−α1 supx∈B+

µ (0) u(x) ≤ Cµ−α1 ,

supx∈B+
1 (0) v(x) ≤ µ−α2 supx∈B+

µ (0) v(x) ≤ Cµ−α2 .
(4.2)

Also

infx∈B+
1 (0) u(x) ≥ µ−α1 infx∈B+

µ (0) u(x) ≥ cµ−α1 ,

infx∈B+
1 (0) v(x) ≥ µ−α2 infx∈B+

µ (0) v(x) ≥ cµ−α2 .
(4.3)

Let ε1, ε2 be the following numbers, which are positive by the maximum
principle:

ε1 = min
|x|=1, xN≥0

u(x) > 0, ε2 = min
|x|=1, xN≥0

v(x) > 0.

Next we observe that if ε = min{ε1, ε2}, then by a comparison argument,
{

u(x) ≥ ε
|x|N−2 |x| ≥ 1 x1 > 0,

v(x) ≥ ε
|x|N−2 .

(4.4)

Now we use Kelvin’s inversion to define

ϕ(x) =
u( x
|x|2 )

|x|N−2 , ψ(x) =
v( x
|x|2 )

|x|N−2 .

As (u, v) satisfies (4.1), this pair of functions, (ϕ,ψ), satisfies
{

∆ϕ(x) = 0, ∆ψ(x) = 0,
∂ϕ
∂n (x) = ψp(x)

|x|N−(N−2)p , ∂ψ
∂n (x) = ϕq(x)

|x|N−(N−2)q .
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As a consequence of (4.4), we obtain

ψ(x) =
v( x
|x|2

)

|x|N−2 ≥ ε, ϕ(x) =
u( x
|x|2

)

|x|N−2 ≥ ε, in |x| ≤ 1, x1 > 0.

Also, by (4.2), we have

ϕ(x) =
u( x
|x|2

)

|x|N−2 ≤
sup

y∈B+
1 (0)

u(y)

|x|N−2 ≤ Cµ−α1

|x|N−2 if |x| ≥ 1, x1 > 0,

ψ(x) =
v( x
|x|2

)

|x|N−2 ≤
sup

y∈B+
1 (0)

v(y)

|x|N−2 ≤ Cµ−α2

|x|N−2 if |x| ≥ 1, x1 > 0.
(4.5)

In order to prove symmetry properties of ϕ and ψ, we set

Φλ(x) = ϕλ(x)− ϕ(x), Ψλ(x) = ψλ(x)− ψ(x),

where for λ < 0 we define

ϕλ(x1, ...., xN ) = ϕ(x1, ..., xN−1, 2λ− xN ) = ϕ(xλ),
ψλ(x1, ..., xN ) = ψ(x1, ..., xN−1, 2λ− xN ) = ψ(xλ).

Now we can begin the moving plane method.

Lemma 4.1. If −λ is big enough, then

Φλ, Ψλ ≥ 0 in ˜Σλ.

Proof. Let us start by defining the following functions:

Φλ(x) = |z|βΦλ(x), Ψλ(x) = |z|βΨλ(x),

where z = x + e1 = x + (1, 0, ..., 0). These functions satisfy

−∆Φλ + 2β
|z|2 z · ∇Φλ + β(N−2−β)

|z|2 Φλ = 0,
in Σλ

−∆Ψλ + 2β
|z|2 z · ∇Ψλ + β(N−2−β)

|z|2 Ψλ = 0.

We choose β = N−2
2 so that the coefficient of order zero in both equations

is nonnegative.
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At the boundary, these functions satisfy

−∂Φλ

∂x1
|x1=0 = −

(∂|z|β

∂x1
Φλ(x) + |z|β ∂Φλ

∂x1
(x)

)

|x1=0

= −
( β
|z|2

Φλ + |z|β ∂
∂x1

(ϕλ(x)− ϕ(x))
)

|x1=0

= − β
|z|2

Φλ + |z|β
( 1
|xλ|N−(N−2)p ψp

λ −
1

|x|N−(N−2)p ψp
)

.

Now, as |xλ| ≤ |x| in Σλ (λ < 0), by the mean value theorem,
( 1
|xλ|N−(N−2)p ψp

λ −
1

|x|N−(N−2)p ψp
)

≥ 1
|x|N−(N−2)p

(

ψp
λ − ψp)

=
1

|x|N−(N−2)p

(

pξp−1Ψλ
)

,

where ξ lies between ψλ and ψ. Then

−∂Φλ

∂x1
|x1=0≥ − β

|z|2
Φλ + Ψλ

1
|x|N−(N−2)p pξp−1. (4.6)

Analogously,

−∂Ψλ

∂x1
|x1=0≥ − β

|z|2
Ψλ + Φλ

1
|x|N−(N−2)q qζq−1, (4.7)

where ζ lies between ϕλ and ϕ.
Now suppose that the statement of the lemma is false; that is,

inf
x∈eΣλ

Φλ = −δ < 0.

We have

|Φλ(x)| = |z|β|ϕλ(x)− ϕ(x)| ≤ |z|β (|ϕλ(x)|+ |ϕ(x)|)

≤
( Cµ−α1

|xλ|N−2 +
Cµ−α1

|x|N−2

)

|z|β ≤ 3Cµ−α1

|x|
N−2

2

, if |x| is big enough.

Analogously,

|Ψλ(x)| ≤ 3Cµ−α2

|x|
N−2

2

.
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Now, near the point (0, ..., 0, 2λ) (more precisely, for |x− (0, ..., 0, 2λ)| ≤ 1),
we have

Φλ(x) ≥ |z|β (ε− ϕ(x)) ≥ |z|β
(

ε− Cµ−α1

|x|N−2

)

≥ |z|β
(

ε− Cµ−α1

|λ|N−2

)

> 0, if −λ is big enough.

In a similar way we obtain, for |x− (0, ..., 0, 2λ)| ≤ 1, Ψλ(x) > 0. Then the
infimum must be located in y ∈ Σλ\B1(0, ..., 0, 2λ).

By the maximum principle, y 6∈ int(˜Σλ) and y 6∈ Tλ because Φλ ≡ 0 in
Tλ; then y must be in {(x1, ..., xN ); x1 = 0}.

If Ψλ(y) ≥ 0 we are done because by (4.6) the normal derivative of Φλ
must be positive at y, a fact that contradicts Hopf’s Lemma.

If not, ψλ(y) < ψ(y) and then inf Ψλ(x) = Ψλ(y∗) < 0, and by an
analogous argument, ϕλ(y∗) < ϕ(y∗).

Then we have, by (4.5),

ξ(y) ≤ Cµ−α2

|y|N−2 , ζ(y∗) ≤ Cµ−α1

|y∗|N−2 . (4.8)

By Hopf’s Lemma, we can suppose that the normal derivative of Φλ is neg-
ative at y; that is, using (4.8)

0 > −∂Φλ

∂x1
|x=y≥ − β

|z|2
Φλ(y) + Ψλ(y)

1
|y|N−(N−2)p pξp−1

≥ − β
1 + |y|2

Φλ(y) + Ψλ(y)
1
|y|2

pCµ−α2(p−1).

Then, we have
β

1 + |y|2
δ < − p

|y|2
Cµ−α2(p−1)Ψλ(y).

Replacing in (4.7), we get

−∂Ψλ

∂x1
|x=y∗ ≥ − β

1 + |y∗|2
Ψλ(y)− q

|y∗|2
Cµ−α1(q−1)δ

≥ β2

1 + |y∗|2
δ

|y|2

1 + |y|2
1

pCµ−α2(p−1) −
q

|y∗|2
δCµ−α1(q−1)

≥
[ β2

pCµ−α2(p−1) − qCµ−α1(q−1)
] δ
|y∗|2

.

(4.9)
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We observe that, as pq > 1, if we choose µ small enough, we get that the
last term is positive, which is a contradiction, and the lemma is proved.

Let us now start to move the plane.

Lemma 4.2. If λ0 = sup{λ < 0 : Φγ , Ψγ ≥ 0 in ˜Σγ ∀ γ < λ}, then λ0 = 0.

Proof. Suppose that λ0 < 0. By continuity, we have

Φλ0 , Ψλ0 ≥ 0 in ˜Σλ0 .

In the boundary {x1 = 0} ∩ Σλ0 , by (4.6) and (4.7) these functions satisfy

∂Φλ0

∂n
=

ψp
λ

|xλ|N−(N−2)p −
ψp

|x|N−(N−2)p ≥
p

|x|N−p(N−2) ξ
p−1Ψλ0 ≥ 0,

∂Ψλ0

∂n
=

ϕq
λ

|xλ|N−(N−2)q −
ϕq

|x|N−(N−2)q ≥
q

|x|N−q(N−2) ζ
q−1Φλ0 ≥ 0.

(4.10)

Now, by (4.10) (as N − p(N − 2) ≥ 0, N − q(N − 2) > 0 and λ0 < 0),
Φλ0 ,Ψλ0 6≡ 0 in ˜Σλ0 ; then, by the maximum principle, we have

Φλ0 , Ψλ0 > 0 in Σλ0 − {Tλ0 ∪ {(0, ..., 0, 2λ0)}}. (4.11)

Now, let us define the following numbers, which by (4.11) are positive:

δ1 = inf{Φλ0 : x1 > 0, |x− (0, ..., 0, 2λ0)| =
|λ0|
2
},

δ2 = inf{Ψλ0 : x1 > 0, |x− (0, ..., 0, 2λ0)| =
|λ0|
2
},

δ = min{δ1, δ2}. The point (0, ..., 0, 2λ0) might be a singularity point for Φλ0

and Ψλ0 ; to control this fact, we define hε to be the solution of the following
problem:























∆hε = 0 in ε < |x− (0, ..., 0, 2λ0)| < 1
2 |λ0|, x1 > 0,

hε = δ on |x− (0, ..., 0, 2λ0)| = 1
2 |λ0|, x1 ≥ 0,

hε = 0 on |x− (0, ..., 0, 2λ0)| = ε, x1 ≥ 0,
∂hε
∂n = 0 on ε < |x− (0, ..., 0, 2λ0)| < 1

2 |λ0|, x1 = 0.

By the maximum principle, we have

Φλ0 , Ψλ0 ≥ hε in ε ≤ |x− (0, ..., 0, 2λ0)| ≤ 1
2 |λ0|, |x1| ≥ 0.
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Now, let ε → 0, and as limε→0+ hε(x) ≡ δ, we obtain

Φλ0 , Ψλ0 ≥ δ in 0 < |x− (0, ..., 0, 2λ0)| ≤ 1
2 |λ0|, |x1| ≥ 0.

As, in ˜Σλ0 , Φλ0 ≥ Φλ0 , Ψλ0 ≥ Ψλ0 , we obtain

lim
λ↘λ0

inf
|x−(0,...,0,2λ0)|≤|λ0|/2

x1≥0

Φλ ≥ inf
|x−(0,...,0,2λ0)|≤|λ0|/2

x1≥0

Φλ0 ≥ δ,

and an analogous inequality holds for Ψλ.
By the definition of λ0, there exists a sequence (λk), λk ↘ λ0, such that

infx∈eΣλk
Φλk(x) < 0 or infx∈eΣλk

Ψλk(x) < 0. Let us suppose that

inf
x∈eΣλk

Φλk(x) < 0. (4.12)

Clearly, lim|x|→∞Φλk(x) = 0; then the infimum (4.12) must be located in
some point xk ∈ Σλk −B |λ0|

2
(0, ..., 0, 2λ0) if |λk − λ0| is small enough.

From the equation for Φλk one finds that xk cannot be an interior point.
Since Φλk ≡ 0 on Tλk it follows that xk is located on the lateral wall

{

x : x1 = 0, xN < λk, |x− (0, ..., 0, 2λ0)| ≥
|λ0|
2

}

.

Then the tangential derivative
∂Φλk
∂xN

(xk) = 0. Now, as Φλk , Ψλk satisfy (4.6)
and (4.7), the infimum of Ψλk must also be less than 0, and by analogous
considerations must be located in the lateral wall too.

By the boundary conditions (4.6), (4.7) and by (4.9) we have that Φλk

cannot take a negative minimum at a point on the boundary {x1 = 0}∩{|x| >
1}; then we must have |xk| ≤ 1. Therefore we can assume (via a subsequence)
that limk→∞ xk = x0. Then we have

Φλ0(x0) = 0,
∂Φλ0

∂xN
= 0, x0 ∈ Tλ0 ∩ {x1 = 0}, (4.13)

and, as a consequence of (4.13), we get

∂Φλ0

∂xN
(x0) = 0. (4.14)



existence for an elliptic system 17

Let g be the solution of the following elliptic problem:






















∆g = 0 in {3/2λ0 < xN < λ0, x2
1 + · · ·+ x2

N−1 < 1},
g(x) = 0 on {xN = λ0} ∩ {x2

1 + · · ·+ x2
N−1 ≤ 1},

g(x) = 0 on {x2
1 + · · ·+ x2

N−1 = 1} ∩ {3/2λ0 ≤ xN ≤ λ0},
g(x) = η on {xN = 3/2λ0} ∩ {x2

1 + · · ·+ x2
N−1 ≤ 1},

where η = inf{Φλ0(x) : xN = 3/2λ0, x2
1 + · · · + x2

N−1 ≤ 1} > 0. By
construction, we have Φλ0 ≥ g. Now, as g is symmetric with respect to
{x1 = 0}, we have

∂g
∂n

(x) = − ∂g
∂x1

(x) = 0 on {x1 = 0},

and as Φλ0(x0) = g(x0) = 0,

∂Φλ0

∂xN
(x0) ≤

∂g
∂xN

(x0).

But, by Hopf’s Lemma, ∂g
∂xN

(x0) must be negative, which is a contradiction
of (4.14) and proves our claim.

End of the proof of Theorem 3.5. From the last lemma we have that

ϕ(x1, ...,−xN ) ≥ ϕ(x1, ..., xN ), xN < 0.

As the same is valid for xN > 0 we obtain that ϕ is symmetric with respect
to the xN axis.

The same argument shows that ϕ is symmetric with respect to every
direction perpendicular to x1, and hence ϕ(x) = q(x1, |(x2, ..., xN )|). We
conclude that u and v depend also on x1 and |(x2, ..., xN )|. As the origin is
arbitrary we obtain that u and v are functions of x1 only and we can easily
see that this is not possible unless u ≡ v ≡ 0.

Proof of Theorem 3.6. As before, if u ≡ 0, then v ≡ 0; hence we can
suppose that u and v are not identically zero. By the maximum principle,
we have

c = inf
|x|=2R; x1≥0

v(x) > 0,

and by hypothesis ‖u‖L∞ ≤ L.
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We now construct the auxiliary function ψ(x) = c (2R)ε

|x|ε . A direct calcu-
lation shows that

−∆ψ < 0 for x 6= 0 since N = 2 and ε > 0,

∂ψ
∂n

= 0 ≤ ∂v
∂n

on {x1 = 0},

ψ(x) = c ≤ v(x) on {x : |x| = 2R and x1 ≥ 0},

lim
M→∞

inf
|x|>M

(v(x)− ψ(x)) ≥ 0.

It follows from the maximum principle that v(x) ≥ ψ(x), for |x| ≥ 2R, x1 ≥
0. Now, letting ε → 0+, we obtain v(x) ≥ c, for |x| ≥ 2R, x1 ≥ 0. Next, let
K > 2R be a large positive number, and take a smooth cut-off function ζ(x)
such that

ζ(x) ≡ 0 on {|x| ≤ K} ∪ {|x| ≥ 4K},
ζ(x) ≡ 1 on {2K ≤ |x| ≤ 3K},
0 ≤ ζ(x) ≤ 1, |∇ζ(x)| ≤ C

K .

Multiplying the equation ∆u = 0 by u−1ζ2 and integrating by parts, we
obtain

∫

{x1=0}

ζ2

u
vpdS +

∫ ∫

{x1>0}
ζ2 |∇u|2

u2 dx =
∫ ∫

{x1>0}
2ζ∇ζ

∇u
u

dx

≤
∫ ∫

{x1>0}
|∇ζ|2dx +

∫ ∫

{x1>0}
ζ2 |∇u|2

u2 dx.

It follows that
∫

{x1=0}

ζ2

u
vpdS ≤

∫ ∫

{x1>0}
|∇ζ|2 dx,

which implies that

cp

L
K ≤

∫ 3K

2K

vp

u
(0, x2) dx2 ≤

C2

K2 |B4K(0)| ≤ 16π2C2.

This is a contradiction if K is large enough
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