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BLOW-UP VS. SPURIOUS STEADY SOLUTIONS

JULIÁN FERNÁNDEZ BONDER AND JULIO D. ROSSI

(Communicated by David S. Tartakoff)

Abstract. In this paper, we study the blow-up problem for positive solutions
of a semidiscretization in space of the heat equation in one space dimension
with a nonlinear flux boundary condition and a nonlinear absorption term in
the equation. We obtain that, for a certain range of parameters, the continuous
problem has blow-up solutions but the semidiscretization does not and the
reason for this is that a spurious attractive steady solution appears.

1. Introduction

For many differential equations or systems the solutions can become unbounded
in finite time (a phenomena that is known as blow up). Typical examples where
this happens are problems involving reaction terms in the equation (see [6] and the
references therein).

In this paper we are interested in numerical approximations of problems with
blow-up. In particular, we study the long time behaviour of solutions of the semidis-
cretization in space of the following parabolic problem:





ut = uxx − λup in (0, 1)× [0, T ),
ux(1, t) = u(1, t)q on [0, T ),
ux(0, t) = 0 on [0, T ),
u(x, 0) = u0(x) ≥ 0 in [0, 1],

(1.1)

where p, q > 1 and λ > 0 are parameters.
For this type of problems, existence and regularity of solutions have been proved

in [5], [2] for an initial data that satisfies a compatibility condition. In the general
case one can obtain a solution in H1 by a standard approximation procedure (see
[2] for the details).

In our problem one has a reaction term at the boundary and an absorption term
in the equation. These two terms compete and the blow up phenomenon occurs if
and only if p < 2q − 1 or p = 2q − 1 with λ < q (see [5], [2]).
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In fact there holds:

Theorem 1.1 ([2], Theorems 4.1, 4.2 and 4.7 and [5]).
1. Suppose that p < 2q − 1 or p = 2q − 1 with λ < q, if u0 > v, where v is any

maximal stationary solution; then u blows up in finite time.
2. Suppose that p > 2q− 1 or p = 2q− 1 with λ ≥ q; then every positive solution

is global.

The numerical semidiscrete version of (1.1) proposed here comes from a first
order finite element approximation on the variable x with a uniform mesh (this is
not an essential requirement) keeping t continuous (from a well known fact in this
case this scheme coincides with a classical finite difference second order scheme). A
further mass lumping technique simplifies the scheme and the subsequent proofs.
For other approximations of problems with blow-up we refer to [3], [1] and references
therein.

The equation reads as follows:{
MU ′ = −AU + uq

NeN − λMUp,
U(0) = uI

0,
(1.2)

where U = (u1, ..., uN ), eN = (0, ..., 0, 1), M is the mass matrix, A is the stiffness
matrix and uI

0 is the Lagrange interpolation of u0. If we write this equation as a
system, we obtain





u′1 = 2
h2 (u2 − u1)− λup

1,

u′k = 1
h2 (uk+1 − 2uk + uk−1)− λup

k, 2 ≤ k ≤ N − 1,

u′N = 2
h2 (uN−1 − uN )− λup

N + 2
huq

N ,

ui(0) = u0(xi), 1 ≤ i ≤ N,

(1.3)

where xi is a uniform partition of the interval [0, 1].
For this numerical scheme a straightforward adaptation of the proof of Theorem

2 of [3] gives the following convergence theorem for regular solutions.

Theorem 1.2. Let u ∈ C2,1([0, 1] × [0, T1]) be the solution of (1.1) and uh its
semidiscrete approximation. Then there exists a constant C depending on T1 and
u such that, for h small enough:

‖u− uh‖L∞([0,1]×[0,T1]) ≤ Ch
3
2 .

We want to describe the cases in which the blow-up phenomenon occurs for (1.3).
In section 2 we prove the following theorem:

Theorem 1.3. Let U = (u1, ..., uN ) be a positive solution of (1.3). Then
1. if p ≤ q and the initial datum is large enough, U has finite blow-up time;
2. if p > q, U is global.

Therefore we want to give an explanation for the different behaviour of the
solutions in the continuous and semidiscrete cases expressed by Theorems 1.1 and
1.3. For that purpose we prove in section 3 that there exists a spurious steady
solution that is attractive and goes to infinity as h (the mesh parameter) goes to
zero. In fact, we prove the following theorem:
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Theorem 1.4. Assume q < p < 2q−1. Then there exists a spurious steady solution
W = (w1, ..., wN ) of (1.3), which is attractive and verifies that |wN | ∼ 1

h1/(p−q) . So
if the initial datum is large enough, the solution is global and converges, as t goes
to infinity, to a spurious stationary solution for which wN is of order h−1/(p−q).

2. Semidiscrete blow-up

In this section we describe when the blow-up phenomena occurs for the semidis-
crete scheme (1.3) in terms of the parameters p, q.

Case p ≤ q. Let

Φ(u) ≡
∫ 1

0

(ux)2

2
+ λ

∫ 1

0

up+1

p + 1
− uq+1(1, t)

q + 1
;

then Φ is a Lyapunov functional for (1.1). We want to observe that if u0 verifies
Φ(u0) < 0, then u has finite blow-up time (see [2], Theorem 4.5). The discrete
analogous of Φ is

Φh(U) ≡ 1
2
〈A1/2U ;A1/2U〉+

λ

p + 1
〈MUp; U〉 − Uq+1

N

q + 1
.

As before, this Φh is a Lyapunov functional for (1.2). Now, let W = (w1, ..., wN )
be a stationary solution of (1.2). Then we have

0 = −AW − λMW p + wq
N · eN ;(2.1)

multiplying (2.1) by W and using the fact that 1 < p ≤ q, we obtain

0 = −1
2
〈A1/2W ;A1/2W 〉 − λ

N∑

i=1

mii
wp+1

i

2
+

wq+1
N

2

≥ −1
2
〈A1/2W ;A1/2W 〉 − λ

N∑

i=1

mii
wp+1

i

p + 1
+

wq+1
N

q + 1
= −Φh(W ).

So every positive stationary solution of (1.2) has positive “energy” (i.e. Φh(W ) ≥
0) and then if U0 satisfies Φh(U0) < 0, as every global solution must converge to a
stationary one (see [4]), it must blow-up. Now, it is easy to check that Φh(uI

0) →
Φ(u0) and therefore we conclude that, if Φ(u0) < 0, then u and uh blow up for
every small h.

Remark. As an alternative proof of this fact, we observe that if the initial datum
satisfies uq−1

N (0) > 2/h, the solution blows up in finite time, because uN satisfies

u′N ≥ −2uN

h2
− λup

N +
2
h

uq
N ≥ uq

N

if h is small enough. Then, as q > 1, uN blows-up, and so does U . Moreover, after
integration, we have

Th − t ≤
∫ ∞

uN (t)

1
xq

dx < ∞.(2.2)

From this proof it seems that the size that the initial data needs to guarantee
blow-up depends on h. From the former proof we can see that this is not the case.
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Case p > q. In this case, we have that every solution is globally defined. Suppose
not; then

lim
t↗T

max
k=1,...,N

|uk(t)| = ∞.

Hence there exist t0 < T and 1 ≤ j ≤ N such that

max
k=1,..,N

sup
t∈[0,t1]

uk(t) = uj(t0) > M ;

therefore u′j(t0) ≥ 0. Now we can assume that j = N , because if not from the
equations (1.3) and u′j(t0) ≥ 0, we deduce that uj+1 = uj−1 = uj so U(t0) is
constant. But with j = N (as p ≥ q)

u′N (t0) =
2(uN−1(t0)− uN (t0))

h2
− λup

N (t0) +
2
h

uq
N (t0) < 0,

which is a contradiction. This proves Theorem 1.3.

The latter case shows that this semidiscrete scheme has substantial differences
in the global behaviour of the solutions with the real equation, since for the case
q < p < 2q− 1, we know that (1.1) has initial data that blows-up in finite time but
all the solutions of (1.3) are global.

In order to explain this phenomenon, we will proceed to make an analysis of the
steady solutions of (1.3).

3. Spurious steady solutions

In this section we will assume that q < p < 2q − 1.
We want to look at stationary solutions of (1.3), i.e., solutions of





0 = 2
h2 (w2 − w1)− λwp

1 ,

0 = 1
h2 (wk+1 − 2wk + wk−1)− λwp

k, 2 ≤ k ≤ N − 1,

0 = 2
h2 (wN−1 − wN )− λwp

N + 2
hwq

N .

(3.1)

From this equation we can obtain w2 as an increasing function of w1,

w2 = w1 + λh2wp
1 ≡ F2(w1)

and from the second equation we can obtain w3 as a function of w1 and w2 and,
using the former equation, as a function of w1

w3 = 2w2 − w1 + λh2wp
2 = 2F2(w1)− w1 + λh2(F2(w1))p ≡ F3(w1).

We observe that w3 is increasing as a function of w1 and also that the differences
w2 − w1 and w3 − w2 are increasing functions of w1.

We can continue with this procedure and obtain an increasing sequence of w1 <
w2 < .... < wk = Fk(w1) < ... < wN (also each Fk is a increasing function of w1)
that satisfies

wk = 2wk−1 − wk−2 + λh2wp
k−1

= 2Fk−1(w1)− Fk−2(w1) + λh2(Fk−1(w1))p ≡ Fk(w1).

We have obtained that every solution of (3.1) is increasing.
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Now, if W = (w1, ...., wN ) is a solution of (3.1), then the last two coordinates
wN−1 = FN−1(w1) and wN = FN (w1) have to satisfy the last condition

0 = 2
FN−1 − FN

h2
− λ(FN )p +

2F q
N

h
≡ G(w1).(3.2)

Then every positive solution of (3.1) gives a solution of (3.2). Conversely if we have
a positive w1 such that G(w1) = 0, then we can obtain a solution of (3.1) by taking
wk = Fk(w1).

We observe that as FN (w1) is a continuous increasing function of w1 and has
range [0, +∞), then there exists x such that

FN (x) =
a

h
1

p−q

.

For that value of x,

G(x) ≥ − 2a

h2+ 1
p−q

+
2aq

h1+ q
p−q

− λ
ap

h
p

p−q

≥ 0

if a < ( 2
λ )

1
p−q and h is small enough (here we are using the fact that p < 2q − 1).

Moreover, there exists y such that

FN (y) =
b

h
1

p−q

,

and if b ≥ ( 2
λ )

1
p−q ,

G(y) ≤ 2bq

h1+ q
p−q

− λ
bp

h
p

p−q

≤ 0.

As G(w1) is continuous and satisfies G(x) ≥ 0 and G(y) ≤ 0, we obtain that
there exists a solution of G(w1) = 0 (and therefore a solution of (3.1)) that satisfies

FN (w1) =
c

h
1

p−q

with ( 2
λ )

1
p−q − ε < c < ( 2

λ )
1

p−q if h is small enough (h = h(ε)).
Now we want to show that this spurious steady solution W is attractive. For

that purpose, we only have to observe that the linearization of (1.2) at W has all
the eigenvalues with negative real part. The linearization has the form

Z ′ = (−M−1A + B)Z

where A is the stiffness matrix (and hence positive semidefinite), M is the mass
matrix (which is diagonal with positive entries) and B is a diagonal matrix that
has the following coefficients:

bii = −pλwp−1
i , 1 ≤ i ≤ N − 1, and bNN = −pλwp−1

N +
2qwq−1

N

h
.

Now, if we take ε such that ( 2
λ )

1
p−q − ε > ( 2q

λp )
1

p−q , we get wN > ( 2q
pλh )

1
p−q ; then

the matrix B is negative definite and hence −M−1A + B is negative definite. This
proves Theorem 1.4.
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