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Abstract. We consider the optimization problem of minimizing
∫
Ω
|∇u|p dx with a constrain

on the volume of {u > 0}. We consider a penalization problem, and we prove that for small
values of the penalization parameter, the constrained volume is attained. In this way we prove
that every solution u is locally Lipschitz continuous and that the free boundary, ∂{u > 0} ∩Ω,
is smooth.

1. Introduction

In the seminal paper [2], Aguilera, Alt and Caffarelli study an optimal design problem with
a volume constrain by introducing a penalization term in the energy functional (the Dirichlet
integral) and minimizing without the volume constrain. For fixed values of the penalization
parameter, the penalized functional is very similar to the one considered in the paper [4]. So
that, regularity results for minimizers of the penalized problem follow almost without change
as in [4]. The main result in [2] that makes this method so useful is that the right volume is
already attained for small values of the penalization parameter. In this way, all the regularity
results apply to the solution of the optimal design problem.

This method has been applied to other problems with similar success. In all those cases, the
differential equation satisfied by the minimizers is nondegenerate, uniformly elliptic. See, for
instance, [3, 9, 13, 16].

In this article we want to show that the same kind of results can be obtained for some nonlinear
degenerate or singular elliptic equations. As an example, we study here the following problem
which is a generalization of the one in [2] for 1 < p <∞:

We take Ω a smooth bounded domain in RN and ϕ0 ∈ W 1,p(Ω), a Dirichlet datum, with
ϕ0 ≥ c0 > 0 in Ā, where A is a nonempty relatively open subset of ∂Ω such that A ∩ ∂Ω is C2.
Let

Kα = {u ∈W 1,p(Ω) / |{u > 0}| = α, u = ϕ0 on ∂Ω}.

Our problem is to minimize J (u) =
∫
Ω |∇u|

p dx in Kα.

Problems similar to the one considered here appear in shape optimization. For instance, in
optimization of torsional rigidity [13], insulation of pipelines for hot liquids [10], minimization
of the current leakage from insulated wires and coaxial cables [1], minimization of the capacity
of condensers and resistors, etc.
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Although the existence of a minimizer is not difficult to establish by variational techniques,
the regularity properties of such minimizers and their free boundaries ∂{u > 0}, are not easy
to obtain since it is hard to make enough volume preserving perturbations without the previous
knowledge of the regularity of ∂{u > 0}.

In order to solve our original problem in a way that allows us to perform non volume preserving
perturbations we consider instead the following penalized problem: We let

K = {u ∈W 1,p(Ω) / u = ϕ0 on ∂Ω}

and

(1.1) Jε(u) =
∫

Ω
|∇u|p dx+ Fε(|{u > 0}|),

where

Fε(s) =

{
ε(s− α) if s < α
1
ε (s− α) if s ≥ α.

Then, the penalized problem is

(Pε) Find uε ∈ K such that Jε(uε) = inf
v∈K

Jε(v).

The existence of minimizers follows easily by direct minimization. Their regularity and the
regularity of their free boundaries ∂{uε > 0} follow as in [5] where a very similar problem was
studied, namely, to minimize

(1.2) J λ(v) =
∫

Ω
|∇v|p dx+ λp|{v > 0}|,

where λ > 0 is a constant. In particular, uε is a solution of the following free boundary problem∆pu = 0 in {u > 0} ∩ Ω,
∂u

∂ν
= λε on ∂{u > 0} ∩ Ω,

where λε is a positive constant and ∆pu = div(|∇u|p−2∇u) is the p−laplacian.

In [9] the authors study a problem closely related to [2]. The problem in [9] is to minimize
the best Sobolev trace constant from H1(Ω) into Lq(∂Ω) for subcritical q, among functions that
vanish in a set of fixed measure. We will sometimes refer to some of the proofs in [9] for the
different treatment of the penalization term (which is piecewise linear in the measure of the
positivity set) with respect to [4] and [5] where the function is linear in the measure.

As in [2], the reason why this penalization method is so useful is that there is no need to pass
to the limit in the penalization parameter ε for which uniform, in ε, regularity estimates would
be needed. In fact, we show that for small values of ε the right volume is already attained. This
is, |{uε > 0}| = α for ε small. It is at this point where the main changes have to be made since
the perturbations used in [2] and [9] make strong use of the linearity of the underlying equation.

In particular, the fact that, for small ε, any minimizer of Jε satisfies |{uε > 0}| = α implies
that any minimizer of our original optimization problem is also a minimizer of Jε so that it is
locally Lipschitz continuous with smooth free boundary.
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We include at the end of the paper a couple of appendices where some properties of p−sub-
harmonic functions are established. We use these results in Section 2. We believe that these
results have independent interest.

The paper is organized as follows: In Section 2 we begin our analysis of problem (Pε) for fixed
ε. First we prove the existence of a minimizer, local Lipschitz regularity and nondegeneracy
near the free boundary (Theorem 2.1) and with these results we have the regularity of the free
boundary by adapting the results of [5].

The main results of this paper appear in Section 3 where we prove that for small values of ε
we recover our original optimization problem.

The appendices are included at the end of the paper.

2. The penalized problem

In this section we look for minimizers of the functional Jε and a representation theorem for
solutions of Jε as in [4] Theorem 4.5.

Observe that a solution to (Pε) satisfies that

∆pu = 0 in {u > 0}◦.
In fact, let B be a ball such that u > 0 in B. Let v be the solution to

∆pv = 0 in B, v = u on ∂B.

Let v̄ ∈W 1,p(Ω), v̄(x) = v(x) for x ∈ B, v̄(x) = u(x) if x /∈ B. Then, v̄ ∈ K so that

(2.3) 0 ≤
∫

Ω
|∇v̄|p dx−

∫
Ω
|∇u|p dx+ Fε(|{v̄ > 0}|)− Fε(|{u > 0}|) =

∫
B
|∇v|p − |∇u|p dx,

and (see [5], Section 3),∫
B
|∇v|p − |∇u|p dx ≤ −c

∫
B
|∇(v − u)|p dx if p ≥ 2,(2.4) ∫

B
|∇v|p − |∇u|p dx ≤ −c

∫
B
|∇(v − u)|2

(
|∇v|+ |∇u|

)p−2
dx if 1 < p ≤ 2,(2.5)

where c is a positive constant that depends on p. In any case, combining (2.3) and (2.4) – (2.5)
we get |∇(v − u)| = 0 in B. Thus, u = v in B. So that, ∆pu = 0 in B.

We begin by discussing the existence of extremals.

Theorem 2.1. Let Ω ⊂ RN be bounded and 1 < p < ∞. Then there exists a solution to the
problem (Pε). Moreover, any such solution uε has the following properties:

(1) uε is locally Lipschitz continuous in Ω.
(2) For every D ⊂⊂ Ω, there exist constants C, c > 0 such that for every x ∈ D ∩ {uε > 0},

cdist(x, ∂{uε > 0}) ≤ uε(x) ≤ C dist(x, ∂{uε > 0}).
(3) For every D ⊂⊂ Ω, there exists a constant c > 0 such that for x ∈ ∂{u > 0} and

Br(x) ⊂ D,

c ≤ |Br(x) ∩ {uε > 0}|
|Br(x)|

≤ 1− c.
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The constants may depend on ε.

Proof. The proof of existence is standard. We state it here for the reader’s convenience.

Take u0 with |{u0 > 0}| ≤ α, then Jε(u0) ≤ C (uniformly in ε), also Jε ≥ −α. Therefore a
minimizing sequence (un) ⊂ K exists. Then Jε(un) is bounded, so ‖∇un‖p ≤ C. As un = ϕ0 in
∂Ω, there exists a subsequence (that we still call un) and a function uε ∈W 1,p(Ω) such that

un ⇀ uε weakly in W 1,p(Ω),
un → uε a.e. Ω.

Thus,

uε = ϕ0 on ∂Ω,

|{uε > 0}| ≤ lim inf
n→∞

|{un > 0}| and∫
Ω
|∇uε|p dx ≤ lim inf

n→∞

∫
Ω
|∇un|p dx.

Hence uε ∈ K and
Jε(uε) ≤ lim inf

n→∞
Jε(un) = inf

v∈K
Jε(v),

therefore uε is a minimizer of Jε in K.

The proof of (1), (2) and (3) follow as Theorem 3.3, Lemma 4.2 and Theorem 4.4 in [5]. The
only difference being that the functional they analyze is linear in |{uε > 0}| and ours is piecewise
linear. The different treatment of this term is similar to the one in [9]. �

From now on we denote by u instead of uε a solution to (Pε).

Lemma 2.1. Let u ∈ K be a solution to (Pε). Then u satisfies for every ϕ ∈ C∞
0 (Ω) such that

supp(ϕ) ⊂ {u > 0},

(2.6)
∫

Ω
|∇u|p−2∇u∇ϕ = 0.

Moreover, the application

λ(ϕ) := −
∫

Ω
|∇u|p−2∇u∇ϕdx

from C∞
0 (Ω) into R defines a nonnegative Radon measure with support on Ω ∩ ∂{u > 0}.

Proof. See Theorem 5.1 in [5] �

Theorem 2.2 (Representation Theorem). Let u ∈ K be a solution to (Pε). Then,

(1) HN−1(D ∩ ∂{u > 0}) <∞ for every D ⊂⊂ Ω.
(2) There exists a Borel function qu such that

∆pu = quHN−1b∂{u > 0}.

(3) For D ⊂⊂ Ω there are constants 0 < c ≤ C <∞ depending on N,Ω, D and ε such that
for Br(x) ⊂ D and x ∈ ∂{u > 0},

c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂{u > 0}) ≤ C rN−1.
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(4) for HN−1–a.e. x0 ∈ ∂red{u > 0},
u(x0 + x) = qu(x0)(x · ν(x0))− + o(|x|) for x→ 0

with ν(x0) the outward unit normal de ∂{u > 0} in the measure theoretic sense.
(5) HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Proof. The proof of (1), (2) and (3) follow exactly as that of Theorem 4.5 in [4].

Observe that D ∩ ∂{u > 0} has finite perimeter, thus, the reduce boundary ∂red{u > 0} is
defined as well as the measure theoretic normal ν(x) for x ∈ ∂red{u > 0} (see [8]). For the proof
of (4) see Theorem 5.5 in [5].

Finally, (5) is a consequence of Theorem 2.1 and (3) (see [8]). �

Theorem 2.3. Let u ∈ K be a solution to (Pε) and qu the function in Theorem 2.2. Then there
exists a constant λu such that

lim sup
x→x0

u(x)>0

|∇u(x)| = λu, for every x0 ∈ Ω ∩ ∂{u > 0}(2.7)

qu(x0) = λu, HN−1 − a.e x0 ∈ Ω ∩ ∂{u > 0}.(2.8)

Moreover, if B is a ball contained in {u = 0} touching the boundary ∂{u > 0} at x0. Then

(2.9) lim sup
x→x0

u(x)>0

u(x)
dist(x,B)

= λu.

To prove this theorem, we have to prove first the following lemma,

Lemma 2.2. Let x0, x1 ∈ ∂{u > 0} and ρk → 0+. For i = 0, 1 let xi,k → xi with u(xi,k) = 0
such that Bρk

(xi,k) ⊂ Ω and such that the blow-up sequence

ui,k(x) =
1
ρk
u(xi,k + ρkx)

has a limit ui(x) = λi(x · νi)−, with 0 < λi <∞ and νi a unit vector. Then λ0 = λ1.

Proof. Assume that λ1 < λ0 then we will perturb the minimizer u near x0 and x1 and get
an admissible function with less energy. To this end, we take a nonnegative C∞

0 function φ
supported in the unit interval. For k large, define

τk(x) =



x+ ρ2
kφ
( |x− x0,k|

ρk

)
ν0 for x ∈ Bρk

(x0,k),

x− ρ2
kφ
( |x− x1,k|

ρk

)
ν1 for x ∈ Bρk

(x1,k),

x elsewhere,

which is a diffeomorphism if k is big enough. Now let

vk(x) = u(τ−1
k (x)),

that are admissible functions. Let us also define

(2.10) ηi(y) = (−1)iφ(|y|)νi.
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We have

(2.11) Fε(|{vk > 0}|)− Fε(|{u > 0}|) = o(ρN+1
k ).

To estimate the other term in Jε we make a change of variables and then

ρ−N
k

∫
Bρk

(xi)
(|∇vk|p − |∇uε|p) dx

=
∫

B1(0)∩{ui,k>0}
ρk

[
|∇ui,k|p div(ηi)− p |∇ui,k|p−2(∇ui,k)tDηi∇ui,k

]
+ o(ρk) dy.

On the other hand, by Lemma B.1, we have

B1(0) ∩ {ui,k > 0} → B1(0) ∩ {y · νi < 0}, as ρ→ 0, and

∇ui,k → ∇ui = −λiνiχ{y·νi<0} a.e in B1(0).

Therefore

ρ−N−1
k

∫
Bρk

(xi)
(|∇vk|p − |∇uε|p) dx→

∫
B1(0)∩{y·νi>0}

λp
i

(
div(ηi)− p νt

i Dηi νi

)
dy

Using that

div(ηi)− p νt
i Dηi νi = (−1)i(1− p)

φ′(|y|)
|y|

(y · νi) = (−1)i(1− p)div(ηi),

we obtain

ρ−N−1
k

∫
Bρk

(xi)
(|∇vk|p − |∇uε|p) dx→ (−1)i(1− p)λp

i

∫
B1(0)∩{y·νi=0}

φ(|y|) dHN−1(y)

Hence

(2.12)

∫
Ω
|∇vk|p dx−

∫
Ω
|∇uε|p dx =

= ρN+1
k (λp

1 − λp
0)
∫

B1(0)∩{y1=0}
(p− 1)φ(|y|) dHN−1(y) + o(ρN+1

k ).

If we take k large enough we get
Jε(vk) < Jε(u),

a contradiction. �

Proof of Theorem 2.3. Now, the Theorem follows as in steps 2 and 3 of Theorem 5.1 in [13],
using Lemma 5.4 in [5], Theorem A.1 and properties (1)–(8) of Lemma B.1. We sketch the proof
here for the reader’s convenience.

Let x0 ∈ Ω ∩ ∂{u > 0} and let

λ = λ(x0) := lim sup
x→x0

u(x)>0

|∇u(x)|.

Then there exists a sequence zk → x0 such that

u(zk) > 0, |∇u(zk)| → λ.
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Let yk be the nearest point to zk on Ω ∩ ∂{u > 0} and let dk = |zk − yk|. Consider the blow up
sequence with respect to Bdk

(yk) with limit u0, such that there exists

ν := lim
k→∞

yk − zk
dk

,

and suppose that ν = eN . Using the results of Appendix B, we can proceed as in [5] p.13 to
prove that 0 < λ <∞ and

u0(x) = −λxN in {xN ≤ 0}.
Finally by Lemma B.1(8) we have that 0 ∈ ∂{u0 > 0} and then, using Lemma B.1(6) we
see that u0 satisfies the hypotheses of Theorem A.1. Therefore u0 = 0 in {xN > 0}. Then
u0 = λmax(−x · ν, 0).

To complete the proof, we follow the lines in step 3 of Theorem 5.1 in [13]. This is, we apply
Lemma 2.2 to this blow up sequence and to a blow up sequence centered at a regular point of
the free boundary.

A similar argument proves (2.9). �

Summing up, we have the following theorem,

Theorem 2.4. Let u ∈ K be a solution to (Pε). Then u is a weak solution to the following free
boundary problem

∆pu = 0 in {u > 0} ∩ Ω,
∂u

∂ν
= λu on ∂{u > 0} ∩ Ω,

where λu is the constant in Theorem 2.3. More precisely, HN−1−a.e. point x0 ∈ ∂{u > 0}
belongs to ∂red{u > 0} and

u(x0 + x) = λu(x · ν(x0))− + o(|x|) for x→ 0.

Finally, we get an estimate of the gradient of u that will be needed in order to get the regularity
of the free boundary.

Theorem 2.5. Let u ∈ K be a solution to (Pε). Given D ⊂⊂ Ω, there exist constants C =
C(N, ε,D) r0 = r0(N,D) > 0 and γ = γ(N, ε,D) > 0 such that, if x0 ∈ D ∩ ∂{u > 0} and
r < r0, then

sup
Br(x0)

|∇u| ≤ λu(1 + Crγ).

Proof. The proof follows the lines of the proof of Theorem 7.1 in [5]. �

As a corollary we have the following regularity result for the free boundary ∂{u > 0}.

Corollary 2.1. Let uε ∈ K be a solution to (Pε). Then ∂red{uε > 0} is a C1,β surface locally
in Ω and the remainder of the free boundary has HN−1−measure zero.

Proof. See [5] Corollary 9.2. �

Remark 2.1. In dimension 2, D. Danielli and A. Petrosyan (see [6]) proved the full regularity
of the free boundary of the minimizers of (1.2) if 2 − δ ≤ p < ∞ for a small δ > 0. Also, a
similar result was proved by A. Petrosyan in dimension 3 for p close to 2 (see [15]).
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3. Behavior of the minimizer for small ε.

In this section, since we want to analyze the dependence of the problem with respect to ε we
will again denote by uε a solution to problem (Pε).

To complete the analysis of the problem, we will now show that if ε is small enough, then

|{uε > 0}| = α.

To this end, we need to prove that the constant λε := λuε is bounded from above and below by
positive constants independent of ε. We perform this task in a series of lemmas.

Lemma 3.1. Let uε ∈ K be a solution to (Pε). Then, there exists a constant C > 0 independent
of ε such that

λε := λuε ≤ C.

Proof. The proof is similar to the one in [2], Theorem 3.

First we will prove that there exist C, c > 0, independent of ε, such that

c ≤ |{uε > 0}| ≤ Cε+ α.

In fact, as in Theorem 2.1 we have that Fε(|{uε > 0}|) ≤ C thus obtaining the bound from above.
On the other hand, taking q < p, using the Sobolev trace Theorem, the Hölder inequality and
the fact that ‖uε‖W 1,p(Ω) ≤ C (see Theorem 2.1) we have∫

∂Ω
ϕq

0 dH
N−1 ≤ C|{uε > 0}|

p−q
p ‖u‖q

W 1,p(Ω)
≤ C|{uε > 0}|

p−q
p ,

and thus we obtain the bound from below.

Take D ⊂⊂ Ω smooth, such that θ = |D| > α and |Ω \D| < c then,

|D ∩ {uε > 0}| ≤ α+ Cε < θ

for ε small enough. On the other hand

|D ∩ {uε > 0}| ≥ |{uε > 0}| − |Ω \D| ≥ c− |Ω \D| > 0,

Therefore by the relative isoperimetric inequality we have

HN−1(D ∩ ∂{uε > 0}) ≥ cmin
{
|D ∩ {uε > 0}|, |D ∩ {uε = 0}|

}N−1
N ≥ c > 0.

Now let w be the p−harmonic function in Ω with boundary data equal to ϕ0. Using Theorem
2.2 and Theorem 2.3 we have,

C ≥
∫

Ω
|∇uε|p−2∇uε∇(uε − w) dx =

∫
Ω∩∂{uε>0}

wλε dHN−1 ≥
∫

D∩∂{uε>0}
wλε dHN−1

≥ λε(inf
D
w)HN−1(D ∩ ∂{uε > 0}) ≥ cλε.

Now the result follows. �

Lemma 3.2. Let uε ∈ K be a solution to (Pε), Br ⊂⊂ Ω and v a solution to

∆pv = 0 in Br, v = uε on ∂Br.

then ∫
Br

|∇(uε − v)|q dx ≥ C|Br ∩ {uε = 0}|

(
1
r

(
–
∫
–

Br

uγ
ε dx

)1/γ
)q
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for all q ≥ 1 and for any γ < N(p−1)
N−p if p ≤ N , γ <∞ if p > N , and C is a constant independent

of ε.

Proof. The idea of the proof is similar to Lemma 3.2 in [4]. We include the details since there
are differences due to the fact that we are dealing with the p-laplacian instead of the laplacian.

First let us assume that Br = B1(0). For |z| ≤ 1
2 we consider the change of variables

from B1 into itself such that z becomes the new origin. We call uz(x) = u
(
(1 − |x|)z + x

)
,

vz(x) = v
(
(1− |x|)z + x

)
and define

rξ = inf
{
r /

1
8
≤ r ≤ 1 and uz(rξ) = 0

}
,

if this set is nonempty. Observe that this change of variables leaves the boundary fixed.

Now, for almost every ξ ∈ ∂B1 we have

(3.1) vz(rξξ) =
∫ 1

rξ

d

dr
(uz − vz)(rξ) dr ≤ (1− rξ)1/q′

(∫ 1

rξ

|∇(uz − vz)(rξ)|q dr

)1/q

.

Let us assume that the following inequality holds

(3.2) vz(rξξ) ≥ C(N,Ω)(1− rξ)
(

–
∫
–

B1

uγ dx

)1/γ

.

Then, using (3.1) and (3.2), integrating first over ∂B1 and then over |z| ≤ 1/2 we obtain as
in [4], ∫

B1

|∇(u− v)|q dx ≥ C|B1 ∩ {u = 0}|
(

–
∫
–

B1

uγ dx

)q/γ

.

If we take ur(x) = 1
ru(x0 + rx) (where x0 is the center of the ball Br) then∫

B1

|∇(ur − vr)|q dx = r−N

∫
Br

|∇(u− v)|q dy,

|B1 ∩ {ur = 0}| = r−N |Br ∩ {u = 0}| and(
–
∫
–

B1

uγ
r dx

)1/γ

=
1
r

(
–
∫
–

Br

uγ dy

)1/γ

,

so we have the desired result.

Therefore we only have to prove (3.2). If |(1− rξ)z + rξξ| ≤ 3
4 , by Harnack inequality,

vz(rξξ) ≥ CNv(0).

By Theorem 1.2 in [17] we have

(3.3) v(0) ≥ α(N,Ω)
(

–
∫
–

B1

vγ dx

)1/γ

≥ α(N,Ω)
(

–
∫
–

B1

uγ dx

)1/γ

.

If |(1− rξ)z + rξξ| ≥ 3
4 we prove by a comparison argument that inequality (3.2) also holds.

In fact, again by Theorem 1.2 in [17],

v ≥ CNα

(
–
∫
–

B1

uγ dx

)1/γ

in B3/4.
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Let w(x) = e−λ|x|2 − e−λ. There exists λ = λ(N,α) such that
∆pw ≥ 0 in B1 \B3/4,

w ≤ CNα on ∂B3/4,

w = 0 on ∂B1,

so that,

v ≥ w

(
–
∫
–

B1

uγ dx

)1/γ

≥ C(1− |x|)
(

–
∫
–

B1

uγ dx

)1/γ

in B1 \B3/4.

Therefore

vz(rξξ) ≥ C
(
1− |(1− rξ)z + rξξ|

)(
–
∫
–

B1

uγ dx

)1/γ

≥ C(1− rξ)
(

–
∫
–

B1

uγ dx

)1/γ

since |z| ≤ 1
2 . So that (3.2) holds for every rξ ≥ 1

8 .

This completes the proof. �

Lemma 3.3. Let uε ∈ K be a solution to (Pε), then

λε ≥ c > 0,

where c is independent of ε

Proof. We proceed as in Lemma 6 in [2]. We will use the following fact that we prove in Lemma
3.4 bellow: For every ε > 0 there is a neighborhood of A in Ω where uε > 0.

Let y0 ∈ A and let Dt with 0 ≤ t ≤ 1 be a family of open sets with smooth boundary and
uniformly (in ε and t) bounded curvatures such that D0 is an exterior tangent ball at y0, D1

contains a free boundary point, D0 ⊂⊂ Dt for t > 0 and Dt ∩ ∂Ω ⊂ A.

Let t ∈ (0, 1] be the first time such thatDt touches the free boundary and let x0 ∈ ∂Dt∩∂{uε >
0} ∩ Ω. Now, take w such that ∆pw = 0 in Dt \ D0 with w = c0 on ∂D0 and w = 0 on ∂Dt.
Thus w ≤ uε in Dt ∩Ω and ∂−νw(x0) ≥ c c0 with c > 0 independent of ε. Therefore, for r small
enough,

(3.4)

(
–
∫
–

Br(x0)
uγ

ε dx

)1/γ

≥

(
–
∫
–

Br(x0)
wγ dx

)1/γ

≥ rc̄ c0,

with c̄ is independent of ε.

If v0 is the solution to {
∆pv0 = 0 in Br(x0)
v0 = uε on ∂Br(x0),

then, by Lemma 3.2, we have∫
Br

|∇(uε − v0)|p dx ≥ C|Br ∩ {uε = 0}|

(
1
r

(
–
∫
–

Br

uγ
ε dx

)1/γ
)p

, for p ≥ 2

∫
Br

|∇(uε − v0)|2 dx ≥ C|Br ∩ {uε = 0}|

(
1
r

(
–
∫
–

Br

uγ
ε dx

)1/γ
)2

, for 1 < p ≤ 2.
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Then using (2.4) we obtain,

(3.5)
∫

Br

(|∇uε|p − |∇v0|p) dx ≥ C|Br ∩ {uε = 0}|

(
1
r

(
–
∫
–

Br

uγ
ε dx

)1/γ
)p

for p ≥ 2.

By Theorem 2.3 and Lemma 3.1 we have that, near x0, |∇uε| is bounded from above by a
constant independent of ε. Then by (2.5) we obtain that (3.5) also holds for 1 < p ≤ 2 if r is
small enough (depending on ε). Then by (3.4)

(3.6)
∫

Br(x0)
(|∇uε|p − |∇v0|p) dx ≥ cδr

where δr = |Br(x0) ∩ {uε = 0}| and c is a constant independent of ε.

Consider now a free boundary point x1 away from x0. We can choose x1 to be regular.

Let us take

τρ(x) =

x− ρ2φ

(
|x− x1|

ρ

)
νuε(x1) for x ∈ Bρ(x1),

x elsewhere,

where φ ∈ C∞
0 (−1, 1) with φ′(0) = 0.

Now choose ρ such that

δr = ρ2

∫
Bρ(x1)∩∂{uε>0}

φ

(
|x− x1|

ρ

)
dHN−1.

Take vρ(τρ(x)) = uε(x) and

v =


v0 in Br(x0)
vρ in Bρ(x1)
uε elsewhere.

Thus, we have that

(3.7) |{v > 0}| = |{uε > 0}|.

On the other hand as in Lemma 2.2, we have∫
Bρ(x1)

(|∇vρ|p − |∇uε|p) dy =
∫

τρ(Bρ(x1))∩{vρ>0}
|∇vρ|p dy −

∫
Bρ(x1)

|∇u|p dx

=
∫

Bρ(x1)∩{u>0}
ρ(|∇uε|pdiv η − p |∇uε|p−2∇uεDη∇uε) + o(ρ) dx

where η(y) = −φ(|y|)ν(x1). Using the fact that η is bounded from above by a constant k
independent of ρ and ε, and that |∇uε| = λε +O(ρ2) in Bρ(x1) we have∫

Bρ(x1)
(|∇vρ|p − |∇uε|p) dy ≤ kλp

ερ
N+1 + o(ρ)ρN

but, δr has the same order of ρN+1 then

(3.8)
∫

Bρ(x1)
(|∇vρ|p − |∇uε|p) dy ≤ kλp

εδr + o(δr).
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Therefore by (3.6), (3.8) and (3.7) we have

0 ≤ Jε(v)− Jε(uε) ≤ −cδr + kλp
εδr + o(δr)

and then λε ≥ c > 0. �

Now we prove the positivity result that was used in the previous Lemma.

Lemma 3.4. For every ε > 0 there exists a neighborhood of A in Ω such that uε > 0 in this
neighborhood.

Proof. Let y0 ∈ A and let Bδ(z0) be an exterior tangent ball to ∂Ω at y0 such that Ω∩B = {y0}.
Let us take δ small enough so that B2δ(z0) ∩ ∂Ω ⊂⊂ A. Let wε be a minimizer of

(3.9) J̃ε(w) :=
∫
R
|∇w|p dx+

1
ε
|{w > 0} ∩ R|

in {w ∈W 1,p(R) , w = 0 on ∂B2δ(z0), w = c0 on ∂Bδ(z0)}. Here R = B2δ(z0) \Bδ(z0).

Every minimizer of (3.9) is radially symmetric and radially decreasing with respect to z0. This
is seen by using Schwartz symmetrization after extending wε to Bδ(z0) as the constant function
c0 (see [12]). This symmetrization preserves the distribution function and strictly decreases the
Lp norm of the gradient unless the function is already radially symmetric and radially decreasing.
Moreover, these minimizers are ordered and their supports are nested. Let us take as wε the
smallest minimizer.

By the properties of wε there holds that wε is strictly positive in a ring around Bδ(z0). Also
wε is continuous in R. Recall that uε is continuous in Ω. Let us see that uε ≥ wε in R ∩ Ω.
This will prove the statement.

Assume instead that {wε > uε} 6= ∅.
Let us first consider the function v = min{uε, wε} in R ∩ Ω. Since uε ≥ c0 ≥ wε on ∂Ω ∩ R

and uε ≥ 0 = wε on Ω ∩ ∂R there holds that v = wε on ∂(R ∩ Ω). Therefore, the function
v = v in R ∩ Ω, v = wε in R \ Ω is an admissible function for the minimization problem (3.9).
Since wε is the smallest minimizer and, by assumption v ≤ wε and v 6= wε, there holds that
J̃ε(v) > J̃ε(wε). Since v = wε in R \ Ω and in R∩ Ω ∩ {wε ≤ uε} and equal to uε outside those
sets there holds that (with D = R∩ Ω ∩ {wε > uε}),

(3.10)
∫
D
|∇uε|p dx+

1
ε
|{uε > 0} ∩ D| >

∫
D
|∇wε|p dx+

1
ε
|{wε > 0} ∩ D|.

Let now v̄ = max{uε, wε} in R ∩ Ω, v̄ = uε in Ω \ R. This function is admissible for (Pε) so
that ∫

Ω
|∇v̄|p dx+ Fε

(
|{v̄ > 0}|

)
≥
∫

Ω
|∇uε|p dx+ Fε

(
|{uε > 0}|

)
.

Since v̄ = wε in D and v̄ = uε in Ω \ D,

(3.11)

∫
D
|∇wε|p dx+ Fε

(
|{uε > 0}|+ |{wε > 0} ∩ D| − |{uε > 0} ∩ D|

)
≥
∫
D
|∇uε|p dx+ Fε

(
|{uε > 0}|

)
.
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By (3.10) and (3.11) (with Cw = |{wε > 0} ∩ D| and Cu = |{uε > 0} ∩ D|) we have,∫
D
|∇uε|p dx >

∫
D
|∇wε|p dx+

1
ε
(Cw − Cu)

≥
∫
D
|∇uε|p dx+ Fε(|{uε > 0}|)− Fε(|{uε > 0}|+ Cw − Cu) +

1
ε
(Cw − Cu).

Thus,

Fε(|{uε > 0}|+ Cw − Cu)− Fε(|{uε > 0}) > 1
ε
(Cw − Cu)

which is a contradiction since Fε(A)−Fε(B) ≤ 1
ε (A−B) if A ≥ B and Cw ≥ Cu by assumption.

Therefore, uε ≥ wε in R∩ Ω and the lemma is proved. �

With these uniform bounds on λε, we can prove the desired result.

Theorem 3.1. There exists ε0 > 0 such that if uε ∈ K is a solution to (Pε) and ε < ε0 there
holds that |{uε > 0}| = α. Therefore, uε is a minimizer of J in Kα.

Proof. Arguing by contradiction, assume first that |{uε > 0}| > α. Let x1 ∈ ∂{uε > 0} ∩ Ω be
a regular point. We will proceed as in the proof of Lemma 3.3. Given δ > 0, we perturb the
domain {uε > 0} in a neighborhood of x1, decreasing its measure by δ. We choose δ small so
that the measure of the perturbed set is still larger than α. Take vρ(τρ(x)) = uε(x), and let

v =

{
vρ in Bρ(x1)
uε elsewhere,

where τρ is the function that we have considered in the previous lemma.

We have

0 ≤ Jε(v)− Jε(uε) =
∫

Ω
|∇v|p dx−

∫
Ω
|∇uε|p dx+ Fε(|{v > 0}|)− Fε(|{uε > 0}|)

≤ kλp
εδ + oε(δ)−

1
ε
δ ≤

(
kCp − 1

ε

)
δ + oε(δ) < 0,

if ε < ε0 and then δ < δ0(ε). A contradiction.

Now assume that |{uε > 0}| < α. This case, is a little bit different from the other. First,
we proceed as in the previous case but this time we perturb in a neighborhood of x1 the set
{uε > 0} increasing its measure by δ. That is, take

τρ(x) =

x+ ρ2φ

(
|x− x1|

ρ

)
νuε(x1) for x ∈ Bρ(x1),

x elsewhere,

where φ ∈ C∞
0 supported in the unit interval, take vρ(τρ(x)) = uε(x) and

v =

{
vρ in Bρ(x1)
uε elsewhere.

For ρ small enough we have |{v > 0}| < α and

|{v > 0}| − |{uε > 0}| = CρN+1 + o(ρN+1),
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therefore

(3.12) Fε(|{v > 0}|)− Fε(|{uε > 0}|) ≤ CερN+1 + oε(ρN+1).

In order to estimate the other term, we will make use of a blow up argument as in Lemma
2.2. In fact, we take uρ(y) = 1

ρu(x1 + ρy) and we change variables to obtain,

ρ−N

∫
Bρ(x1)

(|∇vρ|p − |∇uε|p) dx

=
∫

B1(0)∩{uρ>0}
ρ[|∇uρ|pdiv(η)− p|∇uρ|p−2(∇uρ)tDη∇uρ] + o(ρ) dy

where η(y) = φ(|y|)ν(x1). Now, as in Lemma 2.2 we get,

ρ−N−1

∫
Bρ(x1)

(|∇vρ|p − |∇uε|p) dx→ (1− p)λp
ε

∫
B1(0)∩{y·ν=0}

φ(|y|) dHN−1(y).

Therefore ∫
Bρ(x1)

(|∇vρ|p − |∇uε|p) dx = CρN+1(1− p)λp
ε + o(ρN+1).(3.13)

Finally, combining (3.12) and (3.13) we have

0 ≤ Jε(v)− Jε(uε) =
∫

Ω
|∇v|p dx−

∫
Ω
|∇uε|p dx+ Fε(|{v > 0}|)− Fε(|{uε > 0}|)

≤ C(1− p)λp
εδ + oε(δ) + Cεδ ≤ C(−cp + ε)δ + oε(δ) < 0,

if ε < ε1 and then δ < δ0(ε). Again a contradiction that ends the proof. �

As a corollary, we have the desired result for our problem

Corollary 3.1. For ε small any minimizer u of J in Kα is a locally Lipschitz continuous
function and ∂red{u > 0} is a C1,β surface locally in Ω and the remainder of the free boundary
has HN−1−measure zero.

Proof. If u is minimizer of J in Kα, by Theorem 3.1 we have that for small ε there exists a
solution uε to (Pε) such that |{uε > 0}| = α, then u is a solution to (Pε), therefore the result
follows. �

Appendix A. A result on p-harmonic functions with linear growth

In this section we will prove some properties of p-subharmonic functions. From now on, we
note B+

r = Br(0) ∩ {xN > 0}.

Theorem A.1. Let u be a Lipschitz function in RN such that

(1) u ≥ 0 in RN , ∆pu = 0 in {u > 0}.
(2) {xN < 0} ⊂ {u > 0}, u = 0 in {xN = 0}.

(3) There exists 0 < λ0 < 1 such that
|{u = 0} ∩BR(0)|

|BR(0)|
> λ0, ∀R > 0.

Then u = 0 in {xN > 0}.



AN OPTIMIZATION PROBLEM WITH VOLUME CONSTRAIN 15

In order to prove this theorem we follow ideas from [13]. To this end, we need to prove a
couple of lemmas.

Lemma A.1. Let u be a p−subharmonic function in B+
r such that, 0 ≤ u ≤ αxN in B+

r ,
u ≤ δ0αxN on ∂B+

r ∩Br0(x̄) with x̄ ∈ ∂B+
r , x̄N > 0 and 0 < δ0 < 1.

Then there exists 0 < γ < 1 and 0 < ε ≤ 1, depending only on r and N , such that u(x) ≤
γαxN in B+

ε .

Proof. By homogeneity of the p−laplacian we can suppose that r = 1.

Let ψ be a p-harmonic function in B+
1 , with smooth boundary data, such that

ψ = xN on ∂B+
1 \Br0(x̄)

δ0xN ≤ ψ ≤ xN on ∂B+
1 ∩Br0(x̄)

ψ = δ0xN on ∂B+
1 ∩Br0/2(x̄).

Therefore, by comparison u ≤ αψ in B+
1 . Let us see that there exist 0 < γ < 1 and ε > 0,

independent of α, such that ψ ≤ γxN in B+
ε .

First, ψ ∈ C1,β(B+
1 ) for some β > 0. Then, (cf. [11]) ψ is a viscosity solution of

|∇ψ|p−4
{
|∇ψ|2∆ψ + (p− 2)

N∑
i,j=1

ψxiψxjψxixj

}
= 0.

If |∇ψ| ≥ µ > 0 in some open set U , we have that ψ is a solution of the linear uniformly elliptic
equation

(A.1)
N∑

i,j=1

aijψxixj = 0 in U,

where

min{1, p− 1}|∇ψ|2|ξ|2 ≤
N∑
i,j

aijξiξj ≤ max{1, p− 1}|∇ψ|2|ξ|2.

Therefore, ψ ∈ C2,β(U) and is a classic solution of (A.1).

Let w = xN − ψ then w ∈ C1,β(B+
1 ) and is a solution of

Lw =
N∑

i,j=1

aijwxixj = 0

in any open set U where |∇ψ| ≥ µ > 0.

On the other hand, as ψ ≤ xN in ∂B+
1 and both functions are solutions of the p−laplacian

we have, by comparison, that ψ ≤ xN in B+
1 . Therefore w ≥ 0 in B+

1 .

Moreover, we have w > 0 in B+
1 . In fact, suppose that there exists x0 such that ψ(x0) = x0,N .

As ψ ≤ xN , we have that ∇ψ(x0) = eN . Then |∇ψ(x0)| = 1 and by continuity, |∇ψ| ≥ 1
2 > 0

in a neighborhood U of x0. Therefore w ≥ 0, w(x0) = 0 and Lw = 0 in U with L uniformly
elliptic in U . Then by the strong maximum principle, w ≡ 0 in U .

So, we have that the set
A = {x ∈ B+

1 / ψ(x) = xN},
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is a relative open and close subset of B+
1 . Then if there exists x0 such that ψ(x0) = x0,N , we

have that ψ ≡ xN . Since this is not the case in some part of ∂B+
1 , we arrive at a contradiction.

Therefore ψ < xN , and this implies that w > 0.

On the other hand, since ψ ≤ xN and ψ = 0 on B+
1 ∩ {xN = 0}, we have that ψxN ≤ 1 on

B+
1 ∩ {xN = 0}. Let us see that ψxN < 1 in B+

1 ∩ {xN = 0}.
Assume that there exists x0 ∈ B+

1 ∩ {xN = 0} such that ψxN (x0) = 1 (so that wxN (x0) = 0).
Then, |∇ψ| ≥ 1/2 in a neighborhood of x0. But w is a positive solution of Lw = 0 in B+

1 ∩Br0(x0)
for some r0 > 0, with L uniformly elliptic and w = 0 on {xN = 0}. Thus, by Hopf’s Lemma,
wxN (x0) > 0, a contradiction.

Therefore ψxN < 1 in B+
1 ∩ {xN = 0}. This implies that there exists 0 < γ < 1 and ε > 0

such that ψxN < γ in B+
ε . From this, ψ ≤ γxN in B+

ε , and then we have u ≤ γαxN in B+
ε ,

where ε and γ only depend on ψ. �

Lemma A.2. Let w be a function that satisfies,

(1) w is a Lipschitz function in RN with constant L.
(2) w ≥ 0 in RN , ∆pw = 0 in {w > 0}.
(3) {xN < 0} ⊂ {w > 0}, w = 0 in {xN = 0}.

(4) There exists 0 < λ0 < 1 such that
|{w = 0} ∩B1(0)|

|B1(0)|
> λ0.

(5) There exists 0 ≤ α ≤ L such that w(x) ≤ αxN in B1(0) ∩ {xN > 0}.

Then there exists 0 < γ < 1 and 0 < ε ≤ 1 depending only on λ0 and N , such that w(x) ≤ γαxN

in Bε(0) ∩ {xN > 0}.

Proof. Let β = λ0

2N−1 < 1, then by (3) and (4) there exists x0 ∈ B1(0), with x0,N > β such
that w(x0) = 0. By (1), w(x) ≤ L|x − x0|, then if we take r0 = αβ

4L , we have w(x) ≤ αβ
4 for

|x− x0| < r0. As α/L ≤ 1, in that set there holds that xN ≥ 3β
4 . Then we have that

w(x) ≤ αxN

3
in ∂B+

r ∩Br0(x0),

where r = |x0| > β. Taking in Lemma A.1 δ0 = 1/3 and x̄ = x0 we have that there exists
0 < γ < 1 and 0 < ε ≤ 1, depending on r and N , such that w(x) ≤ γαxN in B+

ε .

As r > β what we obtain is that γ and ε only depend on λ0. Therefore the result follows. �

Now we are ready to proceed with the proof of the theorem.

Proof of Theorem A.1. Once we have proved Lemma A.2 we consider the same iteration as
in Theorem A.1, step 2 in [13] and the result follows. �

As a remark we mention that with Lemma A.1 we can also prove the asymptotic development
of p−harmonic functions. This result was originally proved in [7].

Lemma A.3. Let u be Lipschitz continuous in B+
1 , u ≥ 0 in B+

1 , p−harmonic in {u > 0} and
vanishing on ∂B+

1 ∩ {xN = 0}. Then, in B+
1 , u has the asymptotic development

u(x) = αxN + o(|x|),
with α ≥ 0.
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Proof. Let
αj = inf{l / u ≤ lxn in B+

2−j}.
Let α = limj→∞ αj .

Given ε0 > 0 there exists j0 such that for j ≥ j0 we have αj ≤ α + ε0. From here, we have
u(x) ≤ (α+ ε0)xN in B+

2−k so that

u(x) ≤ αxN + o(|x|) in B+
1 .

If α = 0 the result follows. Assume that α > 0 and let us suppose that u(x) 6= αxN + o(|x|).
Then there exists xk → 0 and δ̄ > 0 such that

u(xk) ≤ αxk,N − δ̄|xk|.

Let rk = |xk| and uk(x) = r−1
k u(rkx). Then, there exists u0 such that, for a subsequence that

we still call uk, uk → u0 uniformly in B+
1 and

uk(x̄k) ≤ αx̄k,N − δ̄

uk(x) ≤ (α+ ε0)xN in B+
1 ,

where x̄k = xk
rk

, and we can assume that x̄k → x0.

In fact, u(x) ≤ (α+ ε0)xN in B+
2−j0

, therefore uk(x) ≤ (α+ ε0)xN in B+
rk / 2−j0

, and if k is big

enough rk / 2−j0 ≥ 1.

If we take ᾱ = α+ ε0 we have
∆puk ≥ 0 in B+

1

uk = 0 on {xN = 0}
0 ≤ uk ≤ ᾱxN on ∂B+

1

uk ≤ δ0ᾱxN on ∂B+
1 ∩Br̄(x̄),

for some x̄ ∈ ∂B+
1 , x̄N > 0 and some small r̄ > 0.

In fact, as uk are continuous with uniform modulus of continuity, we have

uk(x0) ≤ αx0,N − δ̄

2
, if k ≥ k̄.

Moreover there exists r0 > 0 such that uk(x) ≤ αxN − δ̄
4 in B2r0(x0). If x0,N > 0 we take x̄ = x0,

if not, we take x̄ ∈ B2r0(x0) with x̄N > 0 and

uk(x) ≤ αxN − δ̄

4
, in Br0(x̄) ⊂⊂ {xN > 0}.

As Br0(x̄) ⊂⊂ {xN > 0} there exists δ0 such that αxN − δ̄
4 ≤ δ0αxN ≤ δ0ᾱxN in Br̄(x̄) for some

small r̄, and the claim follows.

Now, by Lemma A.1, there exists 0 < γ < 1, ε > 0 independent of ε0 and k, such that
uk(x) ≤ γ(α+ ε0)xN in B+

ε . As γ and ε are independent of k and ε0, taking ε0 → 0, we have

uk(x) ≤ γαxN in B+
ε .

So that,
u(x) ≤ γαxN in B+

rkε.
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Now if j is big enough we have γα < αj and 2−j ≤ rkε. But this contradicts the definition of
αj . Therefore,

u(x) = αxN + o(|x|),
as we wanted to prove. �

Appendix B. Blow-up limits

Now we give the definition of blow-up sequence, and we collect some properties of the limits
of these blow-up sequences for certain classes of functions that are used throughout the paper.

Let u be a function with the following properties,

(B1) u is Lipschitz in Ω with constant L > 0, u ≥ 0 in Ω and ∆pu = 0 in Ω ∩ {u > 0}.
(B2) Given 0 < κ < 1, there exist two positive constants Cκ and rκ such that for every ball

Br(x0) ⊂ Ω and 0 < r < rκ,

1
r

(
–
∫
–

Br(x0)
uγ dx

)1/γ

≤ Cκ implies that u ≡ 0 in Bκr(x0).

(B3) There exist constants r0 > 0 and 0 < λ1 ≤ λ2 < 1 such that, for every ball Br(x0) ⊂ Ω
x0 on ∂{u > 0} and 0 < r < r0

λ1 ≤
|Br(x0) ∩ {u > 0}|

|Br(x0)|
≤ λ2.

Definition B.1. Let Bρk
(xk) ⊂ Ω be a sequence of balls with ρk → 0, xk → x0 ∈ Ω and

u(xk) = 0. Let

uk(x) :=
1
ρk
u(xk + ρkx).

We call uk a blow-up sequence with respect to Bρk
(xk).

Since u is locally Lipschitz continuous, there exists a blow-up limit u0 : RN → R such that
for a subsequence,

uk → u0 in Cα
loc(RN ) for every 0 < α < 1,

∇uk → ∇u0 ∗ −weakly in L∞loc(RN ),

and u0 is Lipschitz in RN with constant L.

Lemma B.1. If u satisfies properties (B1), (B2) and (B3) then,

(1) u0 ≥ 0 in Ω and ∆pu0 = 0 in {u0 > 0}

(2) ∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

(3) χ{uk>0} → χ{u0>0} in L1
loc(RN ),

(4) If K ⊂⊂ {u0 = 0}, then uk = 0 in K for big enough k,

(5) If K ⊂⊂ {u0 > 0} ∪ {u0 = 0}◦, then ∇uk → ∇u0 uniformly in K,
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(6) There exists a constant 0 < λ < 1 such that,

|BR(y0) ∩ {u0 = 0}|
|BR(y0)|

≥ λ, ∀R > 0,∀y0 ∈ ∂{u0 > 0}

(7) ∇uk → ∇u0 a.e in Ω,

(8) If xk ∈ ∂{u > 0}, then 0 ∈ ∂{u0 > 0}

Proof. As uk are p-harmonic and uk → u0 uniformly in compacts subsets of RN then (1) holds.
For the proof of (2)–(8) see [13]. �
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While this paper was under review we found out that similar results where obtained in [14].
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Departamento de Matemática, FCEyN
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