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Abstract. In this paper we define the notion of nonlocal magnetic Sobolev spaces with non-
standard growth for Lipschitz magnetic fields. In this context we prove a Bourgain - Brezis -
Mironescu type formula for functions in this space as well as for sequences of functions. Finally,
we deduce some consequences such as the Γ−convergence of modulars and convergence of solutions
for some non-local magnetic Laplacian allowing non-standard growth laws to its local counterpart.

1. Introduction

The magnetic Laplacian ∆A := (∇−iA)2 plays a fundamental role in the description of particles
interacting with a magnetic field B = curl(A), where A : R3 → R3 is the magnetic potential.

This operator can be seen as the gradient of the convex functional

IA(u) :=
1

2

∫
Ω
|∇u− iAu|2 dx,

in the sense that the solution u : Ω→ C to the problem

−∆Au = f in Ω, u = 0 on ∂Ω,

is the unique minimizer of

JA(u) :=
1

2

∫
Ω
|∇u− iAu|2 dx−

∫
Ω
<(fū) dx,

where for a complex number z ∈ C, we denote by <z and =z the real and imaginary parts of z,
and z̄ denotes the complex conjugate of z.

Several nonlinear generalizations have been studied in the past years, such as the magnetic
p−Laplace operator (1 < p < ∞), denoted by −∆A

p and defined as the gradient of the convex
functional

IAp (u) :=
1

p

∫
Ω
|∇u− iAu|pp dx,

where, for z ∈ Cn, |z|pp := |<z|p + |=z|p, | · | is the euclidean norm in Rn and <z, =z denotes the
real an imaginary parts of z respectively. See for instance [13] for existence results for −∆A

p and
[1] for this operator in the context of graphs.

Again, the solution to
−∆A

p u = f in Ω, u = 0 on ∂Ω,

is the unique minimizer of

JAp (u) :=
1

p

∫
Ω
|∇u− iAu|pp dx−

∫
Ω
<(fū) dx.

On the other hand, when studying phenomena allowing behaviors more general than power laws,
such as anisotropic fluids with flows obeying nonstandard rheology [8, 17] or capillarity phenomena,
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these magnetic operators need to be extended to consider nonstandard growth different that powers
or different behaviors near zero and near infinity. In these cases, Orlicz-Sobolev spaces become the
natural framework to deal with.

Given an Orlicz function G : R+ → R+ (see next section for precise definitions), and g = G′,
the magnetic g−Laplace operator is defined as the gradient of the functional

(1.1) IAG(u) :=

∫
Ω

(G(|<(∇u+ iAu)|) +G(|=(∇u+ iAu)|)) dx

and again, the solution to

−∆A
g u = f in Ω, u = 0 on ∂Ω,

is the unique minimizer of

JAG (u) := IAG(u)−
∫

Ω
<(fū) dx.

In the last decades there has been an increasing interest in the study of equations driven by
nonlocal operators since they arise naturally in many important problems of nature. This fact
leaded up to consider operators describing nonlocal magnetic phenomena. For instance, in the
mid 80s a fractional relativistic generalization of the magnetic Laplacian in Rn was introduced in
[9, 11], [10, Section 3.1] by means of the so-called Weyl pseudo-differential operator defined with
mid-point prescription

HAu(x) =
1

(2π)n

∫
R2n

e
i(x−y)

(
ξ+A

(x+y
2

))√
|ξ|2 +m2u(y) dydξ,

where here, A : Rn → Rn is a measurable function.

When m = 0, in [10, Eq. (3.7)] it is shown that for u ∈ C∞c (Rn,C) the expression above can be
written as

HAu(x) =
Γ
(
n+1

2

)
π
n+1
2

p.v.

∫
Rn

(
u(x)− ei(x−y)A

(x+y
2

)
u(y)

)
|x− y|−(n+1) dy.

Furthermore, in [4], this nonlocal operator was generalized to admit a family of kernels depending
on a parameter s ∈ (0, 1) as

(−∆A)su := cn,s p.v.

∫
Rn

u(x)− ei(x−y)A
(x+y

2

)
u(y)

|x− y|n+2s
dy, x ∈ Rn,

which recovers the expression of HA for s = 1
2 and also recovers the fractional Laplacian when

A ≡ 0. This operator is the gradient of the functional

IAs (u) :=
1

2

∫∫
Rn×Rn

|u(x)− ei(x−y)A
(x+y

2

)
u(y)|2

|x− y|n+2s
dxdy,

up to some normalization constant.

The connection of this magnetic fractional laplacian (−∆A)s with the classical magnetic lapla-
cian −∆A was provided in [16] where it is proved that their corresponding energies converge as
the fractional parameter s converges to 1, much in the spirit of the celebrated result of Bourgain-
Brezis-Mironescu (BBM for short). See [2].

Recently, in [15] the authors introduce a fractional version of the magnetic p−Laplacian −∆A
p .

The magnetic fractional p−Laplacian considered in [15], denoted by (−∆A
p )s, is defined as the
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gradient of the functional

IAs,p(u) :=
1

p

∫∫
Rn×Rn

|u(x)− ei(x−y)A(x+y2 )u(y)|pp
|x− y|n+sp

dxdy, x ∈ Rn.

Observe that for p = 2 this definition agrees with the one given for (−∆A)s and in this case, when
the parameter s converges to 1, one recovers the magnetic p−Laplace operator −∆A

p . See [15] for
the details.

The purpose in this work is the analysis of a fractional version of the magnetic g−Laplace
operator (−∆A

g )s and the study of the limit as the fractional parameter s goes to 1.

This problem in the case of zero magnetic potential (i.e. A = 0) was addressed in [7]. In that
paper, the authors introduced what they called the fractional order Orlicz-Sobolev spaces, as

W s,G(Rn) :=
{
u ∈ LG(Rn) : Is,G(u) <∞

}
,

for 0 < s < 1, where

Is,G(u) :=

∫∫
Rn×Rn

G

(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|n

and

LG(Rn) :=

{
u ∈ L1

loc(Rn) :

∫
Rn
G(|u|) dx <∞

}
.

Then, in [7], they went on to define the fractional g−Laplace operator (−∆g)
s as the gradient of

the functional Is,G and prove the convergence of this fractional operator to the (by now) classical
g−Laplace operator −∆g.

To this end, we consider a Lipschitz magnetic potential A : Rn → Rn and an Orlicz function
G. Then, the magnetic fractional g−Laplace operator (−∆A

g )s is defined as the gradient of the
non-local energy functional

(1.2) IAs,G(u) :=

∫∫
Rn×Rn

(
G
(
|<(DA

s u(x, y))|
)

+G
(
|=(DA

s u(x, y))|
)) dxdy

|x− y|n
,

where DA
s u(x, y) is the magnetic Hölder quotient of order s defined as

(1.3) DA
s u(x, y) :=

u(x)− ei(x−y)A(x+y2 )u(y)

|x− y|s
.

Observe that when G(t) = 1
p t
p we recover the functional IAs,p.

In this manuscript we will be interested in the behavior of IAs,G as s ↑ 1 and its connection with

the local energy functional IAG which is closely related with the magnetic g−Laplace operator −∆A
g

as we mentioned above.

Our first result states a magnetic Bourgain-Brezis-Mironescu identity for fractional Orlicz-
Sobolev functions.

To this end, following [7], given an Orlicz function G, we define its spherical limit as

(S) G̃(a) := lim
s↑1

(1− s)
∫ 1

0

∫
Sn−1

G
(
a|zN |r1−s) dSz dr

r
.

provided that this limit exists.
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Theorem 1.1. Let 1 < p− ≤ p+ < ∞ be fixed and let G be an Orlicz function satisfying the
growth condition

(L) p− ≤
tG′(t)

G(t)
≤ p+,

and such that the limit in (S) exists. Let A : Rn → Rn be a Lipschitz continuous function. Then,
for any u ∈ LG(Rn;C), it holds that

(1.4) lim
s↑1

(1− s)IAs,G(u) = IA
G̃

(u),

where G̃ is defined by (S).

Remark 1.2. In view of [7, Proposition 2.16], whenever G̃ : R+ → R+ is well defined, there exist
positive constant c1 and c2 such that

c1G(t) ≤ G̃(t) ≤ c2G(t) for every t > 0.

We refer to [7] for the explicit computation of G̃ in some particular examples.

Remark 1.3. The limit in (1.4) is understood in the sense that if u ∈ W 1,G
A (Rn) then the limit is

finite and coincides with IA
G̃

(u) and, if

lim inf
s↑1

IAs,G(u) <∞,

then u ∈W 1,G
A (Rn) and (1.4) holds.

As a consequence of Theorem 1.1 we deduce some Γ−convergence results for the modulars and
therefore the convergence of the solutions of the magnetic fractional g−Laplace operator to its
the local magnetic counterpart. In fact, our result on the convergence of the operators (−∆A

g )s to

−∆A
g reads as follows.

Theorem 1.4. Let G be an Orlicz function satisfying (L) such that (S) exists and let A : Rn → Rn
be a Lipschitz continuous function. Let G∗ be the Legendre’s transform of G, Ω ⊂ Rn a bounded
open set and f ∈ LG∗

(Ω;C).

For each 0 < s < 1, let us ∈ LG(Ω;C) be the unique solution to

(−∆A
g )sus = f in Ω, us = 0 in Rn \ Ω.

Then us → u as s→ 1 in LG(Ω;C) where u is the unique solution to

−∆A
g̃ u = f in Ω, u = 0 in ∂Ω,

where g̃ = G̃′.

We observe that this last result seems to be new, even in the magnetic p−laplacian setting.

Organization of the paper. In section 2, we collect some preliminaries on Orlicz functions that
will be used throughout the paper, define the magnetic Orlicz-Sobolev spaces and prove some
elementary properties of these spaces.

In section 3 we prove some technical results needed in the proof of our main results.

Section 4 is devoted to the proof of Theorem 1.1.

Finally, in section 5, we derive some consequences of Theorem 1.1 and, in particular, we show
the proof of Theorem 1.4.
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2. Preliminaries

2.1. Orlicz functions. We start by recalling the definition of the well-known Orlicz functions.

Definition 2.1. G : R+ → R+ is called an Orlicz function if it can be written as

G(x) =

∫ x

0
g(t) dt

where the real-valued function g defined on R+ is positive, right continuous, nondecreasing and
g(0) = 0 and g(x)→∞ as x→∞.

It is easy to see that an Orlicz function G satisfies the following properties.

G is Lipschitz continuous, convex, increasing and G(0) = 0.(P1)

G(ab) ≤ bG(a) for any 0 < b < 1, a > 0.(P2)

G is super-linear at zero, that is lim
x↓0

G(x)

x
= 0.(P3)

We say that an Orlicz function G satisfies the ∆2 condition if there exists C > 2 such that

(∆2) G(2x) ≤ CG(x) for all x ∈ R+.

From (∆2) it is easy to see that for any a, b ≥ 0

(2.1) G(a+ b) ≤ C
2 (G(a) +G(b))

where C is the constant in the ∆2 condition.

In [12, Theorem 4.1] it is shown that the ∆2 condition is equivalent to

tg(t)

G(t)
≤ p+

for some p+ > 1 (then the constant in (∆2) is just 2p+).

For most of our computations we will require the stronger hypothesis

(L) 1 < p− ≤
tg(t)

G(t)
≤ p+ <∞.

The lower inequality in (L) is easily seen as being equivalent to the ∆2 condition of the comple-
mentary function (or Legendre’s transform) of G, which is defined as

G∗(s) := sup
t>0
{st−G(t)}.

Therefore, condition (L) is equivalent to the fact that both G and G∗ satisfy the ∆2 condition.
Let us recall that this is what is needed in order for the Orlicz space LG(Rn;C) to be reflexive.
See [12] and the next subsection for definitions and properties of Orlicz spaces.

Moreover, it is easy to check that (L) implies that

(2.2) min{ap+ , ap−}G(b) ≤ G(ab) ≤ max{ap+ , ap−}G(b), a, b ∈ R+.
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2.2. Magnetic Fractional Orlicz–Sobolev spaces. Given an Orlicz function G, a fractional

parameter 0 < s < 1 and a function A : Rn → Rn, we consider the spaces LG(Rn;C) and W s,G
A (Rn)

defined as

LG(Rn;C) := {u : Rn → C measurable : IG(u) <∞} ,

W s,G
A (Rn) :=

{
u ∈ LG(Rn;C) : IAs,G(u) <∞

}
,

where the modulars IG is defined as

IG(u) :=

∫
Rn
G(|<u|) +G(|=u|) dx,

and IAs,G is defined (1.2).

We also define the space W 1,G
A (Rn) as

W 1,G
A (Rn) := {u ∈W 1,1

loc (Rn;C) : IG(u), IAG(u) <∞},

where IAG(u) is defined in (1.1).

Along this paper we will always assume that A is a bounded and Lipschitz continuous function.

In these spaces we consider the Luxemburg norm defined through the modulars IAs,G, namely

‖u‖As,G = ‖u‖G + |u|As,G,
where

‖u‖G := inf{λ > 0: IG(uλ) ≤ 1}
is the usual (Luxemburg) norm on LG(Rn;C) and

|u|As,G := inf{λ > 0: IAs,G(uλ) ≤ 1}.

Remark 2.2. Observe that if z ∈ C, then

G(|<z|) +G(|=z|) ≤ 2G(|z|) and G(|z|) ≤ C(G(|<z|) +G(|=z|)),
where C is the constant in the ∆2 condition. Hence the functionals IAs,G and IG turn out to be
equivalent to

ĨAs,G(u) :=

∫∫
Rn×Rn

G(|DA
s u(x, y)|) dxdy

|x− y|n
and ĨG(u) :=

∫
Rn
G(|u|) dx

respectively.

3. Some technical results

In this section we establish some properties on magnetic Orlicz-Sobolev the spaces and prove

some useful properties on magnetic modulars. Finally we state a compactness result in W s,G
A (Rn).

Proposition 3.1. C∞c (Rn;C) is dense in W 1,G
A (Rn) provided that the Orlicz function G satisfies

the ∆2 condition.

Proof. The proof is completely analogous to that of [14, Theorem 7.22] with the obvious modifi-
cations and using the ∆2 condition. �

Proposition 3.2. Let G be an Orlicz function satisfying the ∆2 condition. Then the spaces

LG(Rn;C) and W 1,G
A (Rn) are separable Banach spaces.

If we further assume (L), then the dual space of LG(Rn;C) can be identified with LG
∗
(Rn;C).

Moreover, LG(Rn;C) and W 1,G
A (Rn) are reflexive spaces.



MAGNETIC FRACTIONAL ORDER ORLICZ-SOBOLEV SPACES 7

Proof. The proof is standard and it is omitted. �

3.1. Modular of convolutions. In this paragraph we analyze the behavior of the modular of
convolutions. As usual, we denote by ρ ∈ C∞c (Rn) the standard mollifier with supp(ρ) = B1(0)
and ρε(x) = ε−nρ(xε ) is the approximation of the identity. It follows that {ρε}ε>0 is a family of
positive functions satisfying

ρε ∈ C∞c (Rn), supp(ρε) = Bε(0),

∫
Rn
ρε dx = 1.

Given u ∈ LG(Rn;C) we define the regularized functions uε ∈ LG(Rn;C) ∩ C∞(Rn;C) as

(3.1) uε(x) = u ∗ ρε(x).

In this context we prove the following useful estimate on regularized functions.

Lemma 3.3. Given an Orlicz function G satisfying the ∆2 condition, let u ∈ LG(Rn;C) and
{uε}ε>0 be the family defined in (3.1). Then there exists a constant C depending on n, ‖A‖∞ and
C, the constant in (∆2), such that

IAs,G(uε) ≤ C
(
IAs,G(u) +

(
1

s
+

1

1− s

)
IG(u)

)
,

for all ε > 0 and 0 < s < 1.

Proof. By Remark 2.2, it is enough to prove the result for the functionals ĨAs,G and ĨG.

First, observe that the modular ĨAs,G(uε) can be expressed as

(3.2) ĨAs,G(uε) =

∫∫
Rn×Rn

G
(
|DA

s uε(x, x+ h)|
) dxdh
|h|n

.

Now, observe that

|DA
s uε(x, x+ h)| ≤

∫
Rn

∣∣∣∣∣u(x− y)− e−ihA(x+h
2

)u(x− y + h)

|h|2

∣∣∣∣∣ ρε(y) dy

≤
∫
Rn
|DA

s u(x− y, x− y + h)|ρε(y) dy

+

∫
Rn

|e−ihA(x+h
2

) − e−ihA(x−y+h
2

)||u(x− y + h)|
|h|s

ρε(y) dy.

Next, we use that |1− eit| ≤ |t| for |h| < 1 and |1− eit| ≤ 2 for |h| ≥ 1, and we obtain the bound

|DA
s uε(x, x+h)| ≤

∫
Rn
|DA

s u(x−y, x−y+h)|ρε(y) dy+C min{|h|s, |h|1−s}
∫
Rn
|u(x−y+h)|ρε(y) dy,

where C depends on ‖A‖∞.

Now, using (∆2) and Jensen’s inequality, we get

G
(
|DA

s uε(x, x+ h)|
)
≤C

∫
Rn
G(|DA

s u(x− y, x− y + h)|)ρε(y) dy

+ C

∫
Rn
G(C min{|h|s, |h|1−s}|u(x− y + h)|)ρε(y) dy

=C((i) + (ii)).
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Integrating (i) over Rn × Rn, using Fubini’s theorem and the fact that
∫
Rn ρε dy = 1, we find

that ∫∫
Rn×Rn

∫
Rn
G(|DA

s u(x− y, x− y + h)|)ρε(y) dy
dxdh

|h|n
= ĨAs,G(u).(3.3)

Now, we deal with the integral of (ii). First we observe that from (∆2) it follows that G(Ct) ≤
CκG(t) where κ ∈ N is such that 2κ−1 ≤ C < 2κ. Hence, integrate (ii) over Rn × Rn and obtain∫∫

Rn×Rn

∫
Rn
G(C min{|h|s, |h|1−s}|u(x− y + h)|)ρε(y) dy dx

dh

|h|n

≤Cκ

∫∫
Rn×Rn

∫
Rn
G(min{|h|s, |h|1−s}|u(x− y + h)|)ρε(y) dy dx

dh

|h|n

≤Cκ

∫
|h|<1

∫
Rn

∫
Rn
G(|u(x− y + h)|)ρε(y) dy dx

dh

|h|n−1+s

+ Cκ

∫
|h|≥1

∫
Rn

∫
Rn
G(|u(x− y + h)|)ρε(y) dy dx

dh

|h|n−s
.

Next, we use Fubini’s theorem and the fact that
∫
Rn ρε dy = 1 to find that∫∫

Rn×Rn

∫
Rn
G(C min{|h|s, |h|1−s}|u(x− y + h)|)ρε(y) dy dx

dh

|h|n
≤ C

(
1

s
+

1

1− s

)
ĨG(u).

The proof is now complete. �

3.2. Modular of truncations. Let us estimate the behavior of modulars of truncated functions.
Let η ∈ C∞c (Rn) such that η = 1 in B1(0), supp(η) = B2(0), 0 ≤ η ≤ 1 in Rn and ‖∇η‖∞ ≤ 2.
Given k ∈ N we define ηk(x) = η(xk ). Observe that {ηk}k∈N ∈ C∞c (Rn) and

0 ≤ ηk ≤ 1, ηk = 1 in Bk(0), supp(ηk) = B2k(0), |∇ηk| ≤
2

k
.

Given u ∈ LG(Rn;C) we define the truncated functions uk, k ∈ N as

(3.4) uk = ηku.

In the next lemma we analyze the behavior of the modular of truncated functions.

Lemma 3.4. Given an Orlicz function G satisfying (∆2), let u ∈ LG(Rn;C) and {uk}k∈N be the
functions defined in (3.4). Then there exists a constant C depending on n, ‖A‖∞ and C, the
constant in the ∆2 condition, such that

IAs,G(uk) ≤ C
(
IAs,G(u) +

(
1

s
+

1

k(1− s)

)
IG(u)

)
.

Proof. As in the previous proof, by Remark 2.2 is enough to prove the Lemma for the functionals
ĨAs,G and ĨG.

Observe first that DA
s uk(x, y) = ηk(y)DA

s u(x, y) + u(x)Dsηk(x, y), where

Dsηk(x, y) =
ηk(x)− ηk(y)

|x− y|s
.

Then, from (∆2) and since ηk ≤ 1 we have

G(|DA
s uk(x, y)|) ≤ C

2
G(|DA

s u(x, y)|) +
C

2
G(|u(x)||Dsηk(x, y)|).
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Then we get

ĨAs,G(uk) ≤
C

2
ĨAs,G(u) +

C

2

∫∫
Rn×Rn

G(|u(x)||Dsηk(x, y)|) dxdy

|x− y|n
.

The integral above can be splitted as follows(∫
Rn

∫
|x−y|≥1

+

∫
Rn

∫
|x−y|<1

)
G(|u(x)||Dsηk(x, y)|) dxdy

|x− y|n
:= I1 + I2.

The monotonicity of G and (2.2) allow us to bound I1 as follows

I1 ≤
∫
Rn

∫
|x−y|≥1

G(2|u(x)|)
|x− y|n+s

dxdy ≤ Cnωn

∫ ∞
1

1

rs+1
dr

∫
Rn
G(|u(x)|) dx =

Cnωn
s

ĨG(u).

We deal now with I2. Observe that, since |∇ηk| ≤ 2
k and (2.2) holds,

I2 ≤
∫
Rn

∫
|x−y|≤1

G

(
2

k

|u(x)|
|x− y|s−1

)
dxdy

|x− y|n
≤ nωnC

k

∫
Rn

∫ 1

0
G(|u(x)|) dr

rs
dx =

nωnC

k(1− s)
ĨG(u),

where we have used (∆2) in the last inequality.

From these estimates the conclusion of the lemma follows. �

3.3. A compactness result for W s,G
A (Rn) spaces. In this subsection we prove the compactness

of the immersion W s,G
A into LG. The proof lies on a variant of the well-known Frèchet-Kolmogorov

Compactness Theorem.

Theorem 3.5. Let 0 < s < 1 and G an Orlicz function satisfying (∆2). Then for every bounded

sequence {un}n∈N ⊂ W s,G
A (Rn), i.e., supn∈N(IAs,G(un) + IAG(un)) < ∞, there exists u ∈ W s,G

A (Rn)

and a subsequence {unk}k∈N ⊂ {un}n∈N such that unk → u in LGloc(Rn;C).

This theorem is an immediate consequence of the analogous compactness result for the inclusion
W s,G(Rn) ⊂ LGloc(Rn;C) proven in [7, Theorem 3.1] combined with the next result.

Lemma 3.6. Let G : R+ → R+ be an Orlicz function verifying the ∆2 condition and let A : Rn →
Rn be a bounded magnetic potential. Then

W s,G(Rn) = W s,G
A (Rn).

Moreover, there exists C > 0 depending on n, s, ‖A‖∞ and C such that

IAs,G(u) ≤ C
(
Is,G(u) +

(
1

s
+

1

1− s

)
IG(u)

)
,

Is,G(u) ≤ C
(
IAs,G(u) +

(
1

s
+

1

1− s

)
IG(u)

)
.

Proof. By Remark 2.2 is enough to prove the lemma for the functionals ĨAs,G, ĨG and Ĩs,G, where

Ĩs,G(u) :=

∫∫
Rn×Rn

G(|Dsu(x, y)|) dxdy

|x− y|n
,

and Dsu(x, y) := u(x)−u(y)
|x−y|n = D0

su(x, y).
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Assume first that u ∈W s,G(Rn). Then

|DA
s u(x, y)| ≤ |Dsu(x, y)|+ |1− e

i(x−y)A(x+y
2

)|
|x− y|s

|u(y)|.

Therefore, from (∆2) we obtain

G(|DA
s u(x, y)|) ≤ C

(
G(|Dsu(x, y)|) +G

(
|1− ei(x−y)A(x+y

2
)|

|x− y|s
|u(y)|

))
and so

ĨAs,G(u) ≤ C

(
Ĩs,G(u) +

∫∫
Rn×Rn

G

(
|1− ei(x−y)A(x+y

2
)|

|x− y|s
|u(y)|

)
dxdy

|x− y|n

)
.

Now, using that

|1− ei(x−y)A(x+y
2

)| ≤

{
2 if |x− y| ≥ 1

‖A‖∞|x− y| if |x− y| < 1,

the last integral is bounded as∫∫
Rn×Rn

G(|1− ei(x−y)A(x+y
2

)||u(y)|) dxdy

|x− y|n
≤∫

Rn

(∫
|x−y|<1

G(‖A‖∞|x− y|1−s|u(y)|) dx

|x− y|n
+

∫
|x−y|≥1

G(2|x− y|−s|u(y)|) dx

|x− y|n

)
dy

≤ C
∫
Rn
G(|u(y)|)

(∫
|x−y|<1

dx

|x− y|n+s−1
+

∫
|x−y|≥1

dx

|x− y|n+s

)
dy

= C

(
1

s
+

1

1− s

)
ĨG(u).

So we arrive at

ĨAs,G(u) ≤ C
(
Ĩs,G(u) +

(
1

s
+

1

1− s

)
ĨG(u)

)
.

On the other hand, if u ∈W s,G
A (Rn),

|Dsu(x, y)| ≤ |DA
s u(x, y)|+ |1− e

i(x−y)A(x+y
2

)|
|x− y|s

|u(y)|

and arguing exactly as before, we obtain

Ĩs,G(u) ≤ C
(
ĨAs,G(u) +

(
1

s
+

1

1− s

)
ĨG(u)

)
.

The proof is complete. �

4. A BBM formula in W s,G
A (Rn)

In this section we prove our first main results. Our proof makes use of the following two key
lemmas.
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Lemma 4.1. Let G be an Orlicz function satisfying (∆2) and let A be a Lipschitz magnetic field.
Then there exists a constant C depending on n, ‖A‖∞, ‖∇A‖∞ and C, the constant in the ∆2

condition, such that

IAs,G(u) ≤ C
((

1

1− s
+

1

s

)
IG(u) +

1

1− s
IAG(u)

)
.

Proof. Once again, by Remark 2.2 it is equivalent to prove the result for the functionals ĨAs,G, ĨG

and ĨAG .

Let us first assume that u ∈ C1
c (Rn;C) and split ĨAs,G(u) as follows∫∫

Rn×Rn
G(|DA

s u(x, y)|) dx dy

|x− y|n
:= I1 + I2,

where I1 denotes the integral over |x− y| < 1 and I2 over its complement.

Let us bound I1. For a fixed x ∈ Rn, let us denote for the moment φ(y) = ei(x−y)A(x+y
2

)u(y).
Therefore we can write

φ(x)− φ(y) =

∫ 1

0

d
dtφ(tx+ (1− t)y) dt =

∫ 1

0
∇φ(tx+ (1− t)y) · (x− y) dt.

A direct computation gives that for a.e. x, y ∈ Rn

∇φ(y) = ei(x−y)A(x+y2 )∇u(y)− i
(
A
(x+y

2

)
+ y−x

2 ∇A
(x+y

2

))
ei(x−y)A(x+y2 )u(y)

from where,

|∇φ(y)| ≤ |∇u(y)− iA(y)u(y)|+ (|A(x+y
2 )−A(y)|+ 1

2‖∇A‖∞|x− y|)|u(y)|
≤ |∇u(y)− iA(y)u(y)|+ ‖∇A‖∞|x− y||u(y)|.

Since |x− y| < 1, we get

|DA
s u(x, y)| ≤

∫ 1

0
|∇u(tx+ (1− t)y)− iA(tx+ (1− t)y)u(tx+ (1− t)y)||x− y|1−s dt

+ ‖∇A‖∞
∫ 1

0
|u(tx+ (1− t)y)||x− y|1−s dt.

Now, by using Jensen’s inequality and (∆2)

G(|DA
s u(x, y)|) ≤ C

(∫ 1

0
G
(
|∇u(tx+ (1− t)y)− iA(tx+ (1− t)y)u(tx+ (1− t)y)||x− y|1−s

)
dt

+

∫ 1

0
G
(
|u(tx+ (1− t)y)||x− y|1−s

)
dt

)
,

where C depends on C and ‖∇A‖∞.
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Then, since |x− y| < 1, from (P2)

I1 ≤C

(∫∫
|x−y|<1

∫ 1

0
G (|∇u(tx+ (1− t)y)− iA(tx+ (1− t)y)u(tx+ (1− t)y)|) dt dxdy

|x− y|n−1+s

+

∫∫
|x−y|<1

∫ 1

0
G (|u(tx+ (1− t)y)|) dt dxdy

|x− y|n−1+s

)

≤C

(∫
|z|<1

|z|1−s−n dz

)(∫
Rn
G (|∇u− iA(x)u|) dx+

∫
Rn
G(|u|) dx

)
.

Finally, by using polar coordinates we get

(4.1) I1 ≤ C
1

1− s

(
ĨA1,G(u) + ĨG(u)

)
,

with C depending on n, C and ‖∇A‖∞.

The term I2 can be bounded using (2.2) and (∆2). Indeed,

I2 ≤
∫∫
|x−y|≥1

G(|u(x)− ei(x−y)A(x+y
2

)u(y)|) dxdy

|x− y|n+s

≤ C

∫∫
|x−y|≥1

(G(|u(x))|) +G(|u(y)|)) dxdy

|x− y|n+s

= C

∫
|h|≥1

∫
Rn

(G(|u(x)|) +G(|u(x− h)|)) dx dh

|h|n+s

= 2C

∫ ∞
1

r−s−1 dr

∫
Rn
G(|u(x)|) dx

=
2Cnωn
s

ĨG(u).

This concludes the proof of the lemma for u ∈ C1
c (Rn).

Finally, by Lemma 3.1, given u ∈W 1,G
A (Rn) one can take a sequence {uk}k∈N ⊂ C1

c (Rn;C) such

that uk → u in W 1,G
A (Rn) and without loss of generality, we may assume that uk → u a.e. in Rn.

It implies that
G(|DA

s uk(x, y)|)→ G(|DA
s u(x, y)|) a.e. in Rn × Rn.

Therefore, by Fatou’s Lemma, we obtain that

ĨAs,G(u) ≤ lim inf
k→∞

ĨAs,G(uk) ≤ C lim
k→∞

((
1

s
+

1

1− s

)
ĨG(uk) +

1

1− s
ĨAG(uk)

)
= C

((
1

s
+

1

1− s

)
ĨG(u) +

1

1− s
ĨAG(u)

)
.

The proof is now complete. �

Lemma 4.2. Let G be an Orlicz function satisfying (∆2) such that the limit in (S) exists and
u ∈ C2

c (Rn;C). Then, for every fixed x ∈ Rn we have that

(4.2) lim
s↑1

(1− s)
∫
Rn
G(|<DA

s u(x, y)|) dy

|x− y|n
= G̃(|<(∇u(x)− iA(x)u(x))|)

and

(4.3) lim
s↑1

(1− s)
∫
Rn
G(|=DA

s u(x, y)|) dy

|x− y|n
= G̃(|=(∇u(x)− iA(x)u(x))|),
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where G̃ is defined in (S).

Proof. Let us prove (4.2). The formula (4.3) follows analogously.

For each fixed x ∈ Rn we split the integral∫
Rn
G(|<DA

s u(x, y)|) dx

|x− y|n
:= I1 + I2,

where I1 denotes the integral over the set {y ∈ Rn : |x− y| < 1}, and I2 over its complement.

For each fixed x ∈ Rn, let φ(y) = ei(x−y)A(x+y
2

)u(y). Since u ∈ C2
c (Rn;C), we have that

φ ∈ C2
c (Rn;C) and hence we have

(4.4) φ(y) = φ(x) +∇φ(x)(y − x) +O(|x− y|2),

where the big-O depends on the C2 norm of u, on ‖A‖∞ and on ‖∇A‖∞.

Observe that

(4.5) φ(x) = u(x) and ∇φ(x) = (∇u(x)− iA(x)u(x))(x− y).

Combining (4.4) and (4.5) we arrive at

DA
s u(x, y) = (∇u(x)− iA(x)u(x))

(x− y)

|x− y|s
+O(|x− y|2−s).

Hence, since G is Lipschitz continuous, for any x, y ∈ Rn, x 6= y we have that∣∣∣∣G(|<DA
s u(x, y)|)−G

(∣∣∣∣<((∇u(x)− iA(x)u(x))
x− y
|x− y|s

)∣∣∣∣)∣∣∣∣
≤ C

∣∣∣∣DA
s u(x, y)− (∇u(x)− iA(x)u(x))

(x− y)

|x− y|s

∣∣∣∣
≤ C|x− y|2−s.

From this estimate it immediately follows that

lim
s↑1

(1− s) I1 = lim
s↑1

(1− s)
∫
|x−y|<1

G

(∣∣∣∣<((∇u(x)− iA(x)u(x))
x− y
|x− y|s

)∣∣∣∣) dy

|x− y|n
.

Observe now the following. If z ∈ Cn,∫
|h|<1

G

(
|<(zh)|
|h|s

)
dh

|h|n
=

∫
|h|<1

G

(
|<z| |hn|
|h|s

)
dh

|h|n
=

∫ 1

0

∫
Sn−1

G(|<z||wn|r1−s)dSw
dr

r
.

Therefore, in view of definition (S), we get

(4.6) lim
s↑1

(1− s)I1 = G̃(|< (∇u(x)− iA(x)u(x)) |).

Finally, since G is increasing and (2.2) holds, I2 is bounded as

I2 ≤
∫
|x−y|≥1

G(2‖u‖∞)

|x− y|n+s
dy = G(2‖u‖∞)nωn

∫ ∞
1

1

r1+s
dr =

nωn
s
G(2‖u‖∞),(4.7)

from where we can derive that

(4.8) lim
s↑1

(1− s)I2 = 0.

Summing up, from (4.6) and (4.8) we obtain (4.2). �
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Proof of Theorem 1.1. Given u ∈ C2
c (Rn;C) with supp(u) ⊂ BR(0), in view of Lemma 4.2 it only

remains to show the existence of an integrable majorant for

(1− s)F<s (x) := (1− s)
∫
Rn
G(|<DA

s u(x, y)|) dy

|x− y|n

and for

(1− s)F=s (x) := (1− s)
∫
Rn
G(|=DA

s u(x, y)|) dy

|x− y|n
.

We perform all our computations for F<s , since the ones for F=s are completely analogous.
Without loss of generality we can assume that R > 1.

First, we analyze the behavior of F<s (y) for small values of y. When |y| < 2R we can write split
the integral F<s (x) as I1 + I2, where the first term corresponds to integrate over B1(x) and the
second one over its complement.

Arguing as in (4.1) and (4.7) we obtain that

I1 ≤ C
nωn
1− s

[G(‖∇u‖∞ + ‖A‖∞‖u‖∞) + ‖∇A‖∞G(‖u‖∞)](4.9)

and

I2 ≤
nωn
s
G(2‖u‖∞).(4.10)

When |x| ≥ 2R the function u vanishes and we have that

F<s (x) =

∫
BR(0)

G

(
|<(ei(x−y)A(x+y

2
)u(y)|

|x− y|s

)
dy

|x− y|n
.

Since |x− y| ≥ |x| −R ≥ 1
2 |x|, from the monotonicity of G, (∆2) and (P2) (since |x| ≥ 2) we get

|F<s (x)| ≤ 2n

|x|n

∫
BR(0)

G

(
2s|u(y)|
|x|s

)
dy ≤ C

|x|n

∫
BR(0)

G

(
|u(y)|
|x|s

)
dy

≤ C

|x|n+s

∫
BR(0)

G(|u(y)|) dy ≤ C

|x|n+ 1
2

∫
BR(0)

G(|u(y)|) dy,
(4.11)

for any s ≥ 1
2 .

From (4.9), (4.10) and (4.11), there is C = C(n,G, u) independent of s such that

(1− s)|F<s (x)| ≤ C

(
χ|x|≤R(x) +

1

|x|n+ 1
2

χ|x|≥R(x)

)
∈ L1(Rn).

Then, from Lemma 4.2 and the Dominated Convergence Theorem the result follows for any
u ∈ C2

c (Rn;C).

Let us extend the result for any u ∈ W 1,G
A (Rn). According to Proposition 3.1, let {uk}k∈N ⊂

C2
c (Rn;C) be a sequence such that uk → u in W 1,G

A (Rn). Then∣∣∣(1− s)IAs,G(u)− IA
G̃

(u)
∣∣∣ ≤(1− s)

∣∣IAs,G(u)− IAs,G(uk)
∣∣+
∣∣∣(1− s)IAs,G(uk)− IAG̃(uk)

∣∣∣
+
∣∣∣IA
G̃

(uk)− IAG̃(u)
∣∣∣ .(4.12)
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Let us fix ε > 0. Since the modular IA
G̃

is continuous on W 1,G
A (Rn) and since uk → u in W 1,G

A (Rn),

it follows that there exists k0 such that for k ≥ k0,

|IA
G̃

(uk)− IAG̃(u)| ≤ ε

2
,

and using [7, Lemma 2.6] one can take δ > 0 (to be fixed) such that

(4.13) (1− s)|IAs,G(u)− IAs,G(uk)| ≤ (1− s)δIAs,G(uk) + (1− s)CδIAs,G(u− uk).

Observe that from Lemma 4.1 we have that (1 − s)IAs,G(uk) ≤ K for some positive constant K.

Moreover, again from Lemma 4.1, there is some k1 such that for k ≥ k1 it holds that (1−s)IAs,G(u−
uk) ≤ ε

4Cδ
. Consequently, it follows that (4.13) can be bounded as

(1− s)|IAs,G(u)− IAs,G(u)| ≤ δK +
ε

4

for k ≥ k1. Hence, choosing δ = ε
4K we find that (4.12) is upper bounded as∣∣∣(1− s)IAs,G(u)− IA

1,G̃
(u)
∣∣∣ ≤ ε+

∣∣∣(1− s)IAs,G(uk)− IA1,G̃(uk)
∣∣∣

for all k ≥ max{k0, k1}. Finally, the desired result follows by fixing a value of k ≥ max{k0, k1}
and taking limit as s ↑ 1.

To finish the proof, let us see that if u ∈ LG(Rn;C) is such that

lim inf
s↑1

(1− s)IAs,G(u) <∞,

then u ∈W 1,G
A (Rn).

Given u ∈ LG(Rn;C), according to Lemmas 3.3 and 3.4, if we define the approximating family

uk,ε = ρε ∗ (uηk) ∈ C∞c (Rn;C),

it satisfies
lim inf
s↑1

(1− s)Is,G(uk,ε) < C,

with C independent on ε > 0 and k ∈ N.

The first part of this theorem gives that

IA
1,G̃

(uk,ε) = lim
s↑1

(1− s)IAs,G(uk,ε) < C,

then, from Remark 1.2, {uk,ε}k∈N,ε>0 is bounded in W 1,G
A (Rn). Consequently, from Proposition

3.2, there exists a sequence uj = ukj ,εj with kj → ∞ and εk ↓ 0 and ũ ∈ W 1,G
A (Rn) such that

uj ⇀ ũ weakly in W 1,G
A (Rn). Moreover, since uk,ε → u in LG(Rn;C) as k →∞, and ε ↓ 0, we can

conclude that ũ = u ∈W 1,G
A (Rn) as required. �

5. Some consequences and applications

In this final section, we show some immediate consequences of Theorem 1.1. This section can
be seen as a follow up of [7, Section 6] where the same type of applications were derived for the
case of A ≡ 0.

Throughout this section G will be an Orlicz function satisfying (L) such that the limit in (S)
exists.

When working on a domain Ω ⊂ Rn (bounded or not) it is useful to introduce the following
notations.
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The space W 1,G
A,0 (Ω) denotes, as usual, is defined as the closure of C∞c (Ω;C) with respect to the

‖ · ‖1,A,G−norm.

In the fractional setting, we use the following definitions

W s,G
A,0 (Ω) := {u ∈W s,G

A (Rn) : u = 0 a.e. in Rn \ Ω}.

Alternatively, one can consider

W̃ s,G
A (Ω) := C∞c (Ω)

‖·‖s,A,G
.

In the classical case, i.e. when G(t) = tp and A = 0, these spaces W s,p
0 (Ω) and W̃ s,p(Ω) are

known to coincide when s < 1
p or when 0 < s < 1 and Ω has Lipschitz boundary. See [5].

In this paper, we shall not investigate the cases where these spaces W s,G
A,0 (Ω) and W̃ s,G

A (Ω)

coincide and use the space W s,G
A,0 (Ω) to illustrate our applications.

In what follows, every function u ∈ LG(Ω;C) it will be assumed to be extended by 0 to Rn \Ω.

Finally, observe that the inclusions

W s,G
A,0 (Ω) ⊂W s,G

A (Rn) ⊂ LG(Rn;C)

imply

LG
∗
(Ω;C) ⊂ LG∗

(Rn;C) ⊂W−s,G
∗

A (Rn) ⊂W−s,G
∗

A (Ω),

where W−s,G
∗

A (Ω) denotes the (topological) dual space of W s,G
A,0 (Ω).

5.1. Poincaré’s inequality. A first consequence that we get is the Poincaré’s inequality.

Poincaré’s inequality in the magnetic setting is a straightforward consequence of the so-called
diamagnetic inequality. This inequality for the classical setting is well-known (see for instance [14,
Theorem 7.21])

Theorem 5.1. Let A : Ω → Rn be a measurable magnetic potential such that |A| < ∞ a.e. in Ω

and let u ∈W 1,1
loc (Rn;C). Then the following diamagnetic inequality holds

(5.1) |∇|u|(x)| ≤ |∇u(x)− iA(x)u(x)|,

for a.e. x ∈ Ω.

The fractional analog of (5.1) was provided in [4, Lemma 3.1 and Remark 3.2], namely:

Theorem 5.2. Let A : Rn → Rn be a measurable magnetic potential such that |A| <∞ a.e. in Rn
and let u : Rn → C be a measurable function such that |u| < ∞ a.e. in Rn. Then, the following
fractional diamagnetic inequality holds

(5.2) ||u(x)| − |u(y)|| ≤ |e−i(x−y)A(
x+y

2 )u(x)− u(y)|,

for a.e. x, y ∈ Rn.

Remark 5.3. Observe that the fractional diamagnetic inequality (5.2) can be stated as

(5.3) |Ds|u|(x, y)| ≤ |DA
s u(x, y)|,

a.e. x, y ∈ Rn, where Dsv(x, y) = v(x)−v(y)
|x−y|s .
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With the help of these diamagnetic inequalities (5.1) and (5.2) it is easy to prove a Poincaré
inequality in the context of Orlicz-Sobolev and fractional Orlicz-Sobolev spaces.

First recall the classical Poincaré inequality in Orlicz-Sobolev spaces. Even though it is well
known, we include a proof here for the reader convenience and to recall a precise estimate of the
constant.

Theorem 5.4. Let Ω ⊂ Rn be a bounded domain and G : R→ R be an Orlicz function. Then, for

every u ∈W 1,G
0 (Ω),

IG(u) ≤ IG(d|∇u|),
where d = diam(Ω).

Proof. The proof is standard. Let assume first that u ∈ C∞c (Ω), x0 ∈ ∂Ω be fixed and for any
x ∈ Ω we get the estimate

u(x) = u(x)− u(x0) =

∫ 1

0

d

dt
u(x0 + t(x− x0)) dt ≤ |x− x0|

∫ 1

0
|∇u(x0 + t(x− x0))| dt.

Now we use that |x− x0| ≤ d and Jensen’s inequality to obtain

G(|u(x)|) ≤
∫ 1

0
G(d|∇u(x0 + t(x− x0))|) dt.

Finally, we integrate in Rn with respect to x and apply Fubini’s theorem to conclude the desired
result.

The proof for general u ∈W 1,G
0 (Ω) follows by a density argument. �

The Poincaré inequality for fractional order Orlicz-Sobolev spaces was proved in [6, Theorem
2.12].

Theorem 5.5. Let Ω ⊂ Rn be a bounded domain and G : R→ R be an Orlicz function satisfying

(L). Then, for every 0 < s < 1 and every u ∈W s,G
0 (Ω),

IG(|u|) ≤ Is,G((1− s)Cdsu),

where d = diam(Ω) and C depends on n, p+ and p−.

Combining the Poincaré’s inequalities of Theorems 5.4 and 5.5 together with the diamagnetic
inequalities (5.1) and (5.2) we can easily prove the Poincaré inequalities for the Magnetic Orlicz-
Sobolev and fractional Orlicz-Sobolev spaces.

Theorem 5.6. Let Ω ⊂ Rn be a bounded domain, G : R→ R be an Orlicz function satisfying (L)
and 0 < s < 1. Then, there exists a constant C = C(n, p−, p+) such that

IG(u) ≤ IAs,G((1− s)Cdsu),

for every u ∈W s,G
A,0 (Ω), where d = diam(Ω).

Moreover, for every u ∈W 1,G
A,0 (Ω), it holds

IG(u) ≤ IAG(du).

Proof. First let us deal with the case s = 1.

In this case we use Theorem 5.4 and (5.1) to conclude that

IG(u) ≤ IG(d|∇|u||) ≤ IG(d|∇u− iAu|) = IAG(du).
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Now, for the case 0 < s < 1, we use Theorem 5.5 and (5.3) to conclude that

IG(u) ≤ Is,G((1− s)Cds|u|) ≤ IAs ((1− s)Cdsu).

This finishes the proof. �

As a simple corollary we obtain the Poincaré inequality for Luxemburg norms.

Corollary 5.7. Under the previous assumptions, there exist a constant C = C(n, p−, p+,d) such
that

‖u‖G ≤ (1− s)C|u|As,G,

for every u ∈W s,G
A,0 (Ω), 0 < s ≤ 1.

5.2. Γ−convergence. Let us recall the definition of Γ−convergence.

Definition 5.8. Let (X, d) be a metric space and F, Fk : X → R̄. We say that Fk Γ−converges to
F if for every x ∈ X the following conditions are valid.

(i) (lim inf inequality) For every sequence {xk}k∈N ⊂ X such that xk → x in X,

F (x) ≤ lim inf
k→∞

Fk(xk).

(ii) (lim sup inequality). For every x ∈ X, there is a sequence {yk}k∈N ⊂ X converging to x
such that

F (x) ≥ lim sup
k→∞

Fk(yk).

This sequence {yk}k∈N is usually called as the recovery sequence.

The functional F is called the Γ−limit of the sequence {Fk}k∈N and it is denoted by Fk
Γ→ F

and

F = Γ−lim
k→∞

Fk.

Remark 5.9. In the case where the functions are indexed by a continuous parameter, {Fε}ε>0, we
say that

F = Γ−lim
ε↓0

Fε,

if and only if for every sequence εk ↓ 0, it follows that Fεk
Γ→ F .

Now, let us fix Ω ⊂ Rn open, and an Orlicz function G.

For any 0 < s < 1, we define the functional Js : LG(Ω;C)→ R̄ by

Js(w) =

{
(1− s)IAs,G(w) if w ∈W s,G

A,0 (Ω)

+∞ otherwise,

and the limit functional J : LG(Ω;C)→ R̄

J (w) =

{
IA

1,G̃
(w) if w ∈W 1,G̃

A,0 (Ω)

+∞ otherwise.

Theorem 5.10. With the previous notation we have that

J = Γ−lim
ε↓0

J1−ε.



MAGNETIC FRACTIONAL ORDER ORLICZ-SOBOLEV SPACES 19

The proof of Theorem 5.10 is a direct consequence of our previous results. Indeed, the limsup
inequality follows just by choosing the constant sequence as the recovery sequence, whilst the
liminf is is the content of the next proposition.

Proposition 5.11. Let G be an Orlicz function such that the limit in (S) exists. Let {uε}ε>0 ⊂
LG(Ω;C) such that uε → u in LG(Ω;C). Then

J(u) ≤ lim inf
ε→0

Jε(uε).

Proof. Let εk ↓ 0 and denote uk := uεk . Since uk → u in LG(Ω;C), we can assume that uk → u
a.e. in Rn.

We can also assume, without loss of generality, that supk Jεk(uk) <∞ and therefore, by Lemma

3.6 and [7, Theorem 5.1], we obtain that u ∈W s,G̃
A (Rn).

Therefore, we can apply Theorem 1.1 to the function u to conclude that, for any δ > 0, there
exists sδ ∈ (0, 1) such that

(5.4) (1− δ)IA
G̃

(u) ≤ (1− s)IAs,G(u),

for every s ∈ (sδ, 1).

Observe that by Fatou’s lemma we have that, for any s ∈ (0, 1)

(5.5) (1− s)IAs,G(u) ≤ lim inf
k→∞

(1− s)IAs,G(uk).

Combining (5.4) and (5.5), we obtain the existence of kδ such that

(5.6) (1− δ)IA
G̃

(u) ≤ (1 + δ)(1− s)IAs,G(uk),

for every k ≥ kδ and every sδ < s < 1. So from (5.6) we conclude that

1− δ
1 + δ

IA
G̃

(u) ≤ lim inf
k→∞

(1− sk)IAsk,G(uk) = lim inf
k→∞

Jεk(uk).

Now the result follows taking δ ↓ 0. �

The main feature of the Γ−convergence is that it implies the convergence of minima.

Theorem 5.12. Let (X, d) be a metric space and let F, Fk : X → R̄, k ∈ N, be such that Fk
Γ−converges to F . Assume that for each k ∈ N there exist xk ∈ X such that Fk(xk) = infX Fk
and suppose that the sequence {xk}k∈N ⊂ X is precompact.

Then every accumulation point of {xk}k∈N is a minimum of F and

inf
X
F = lim

k→∞
inf
X
Fk.

The proof of Theorem 5.12 is elementary. For a comprehensive study of Γ−convergence and its
properties, see [3].

Consider now f ∈ LG∗
(Ω;C) and define the functionals F ,Fε as

(5.7) Fε(u) := J1−ε(u)−
∫

Ω
<(fū) dx and F(w) := J (u)−

∫
Ω
<(fū) dx.

Since u 7→
∫

Ω<(fū) dx is continuous in LG(Ω;C), Theorem 5.10 implies that Fε
Γ→ F . See [3,

Proposition 6.21].

Let us apply Theorem 5.12 to the family Fε. With this aim, let us verify that, given εk ↓ 0,
there exists a sequence {uk}k∈N ∈ LG(Ω;C) of minimizers of Fεk which is precompact in LG(Ω;C).
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The proof of the next lemma is standard. We state it for future references and leave the proof
to the reader.

Lemma 5.13. Let ε > 0, G be a uniformly convex Orlicz function and f ∈ LG∗
(Ω;C). Then there

exists a unique function u ∈W s,G
A,0 (Ω) such that

Fε(u) = inf
v∈W s,G

A,0 (Ω)
Fε(v) = min

v∈W s,G
A,0 (Ω)

Fε(v).

Now, a simple consequence of Lemma 3.6 and [7, Theorem 5.1] gives the compactness of the
sequence of minima. Again, the details of the proof are left to the readers.

Lemma 5.14. Let εk ↓ 0, and Ω ⊂ Rn be an open bounded subset. Given k ∈ N, let uk ∈ LG(Ω;C)
be the minimum of Fεk . Then {uk}k∈N ⊂ LG(Ω;C) is precompact.

As a corollary of Lemmas 5.13 and 5.14 and Theorem 5.12 we obtain the following result.

Theorem 5.15. Let G be a uniformly convex Orlicz function, Ω ⊂ Rn be open and bounded and
let uε ∈ LG(Ω;C) be the minimum of Fε. Then there exists u ∈ LG(Ω;C) such that

u = lim
ε↓0

uε in LG(Ω;C) and F(u) = min
v∈LG(Ω;C)

F(v).

Finally, Theorem 1.4 is a trivial consequence of Theorem 5.15.
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