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Abstract. In this paper, we study the dynamic behaviour of pos-
itive solutions of the heat equation in one space dimension with a
nonlinear flux boundary condition of the type ux = up−u at x = 1.
We analyze the behaviour of a semidiscrete numerical scheme in or-
der to approximate the stable manifold of the only positive steady
solution. We also obtain some stability properties of this positive
steady solution and a description of its stable manifold.

1. Introduction.

In this paper, we study the long time behaviour of semidiscretizations
in space of positive solutions of the following parabolic problem

ut = uxx in (0, 1)× [0, T ),
ux(1, t) = g(u(1, t)) on [0, T ),
ux(0, t) = 0 on [0, T ),
u(x, 0) = u0(x) ≥ 0 on [0, 1],

(1.1)

where g(s) = sp − s with p > 1.
Parabolic reaction-diffusion problems like (1.1) or of a more general

form, allowing for example source terms or with different boundary
conditions, appear in several branches of applied mathematics. They
have been used to model, for example, chemical reactions, heat transfer
or population dynamics and have been studied by several authors. See
[19] and the references therein.

For this type of problems, existence and regularity of solutions has
been proved in [2], [3], [4], [13], [15] for an initial datum that satisfies a
compatibility condition. In the general case one can obtain a solution
in H1 by a standard approximation procedure. Therefore in the rest
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of our work we will assume that our solution lies in H1 and by a result
of [4], (1.1) defines a compact local semiflow (Lemma 2.1).

First, we want to describe the behaviour of positive solutions of (1.1).
For many differential equations or systems the solutions can become

unbounded in finite time (a phenomenum that is known as blow up).
Typical examples where this happens are problems involving reaction
terms in the equation (see for example [1], [6], [7], [10], [11], [19]).
When the nonlinear term that appears at the boundary is of power
type then it is well known that if the power involved is greater than 1,
one has this blow up phenomenum (see [15], [17], [18], [20]), so in our
case we have some solutions that blow up in finite time.

It is easy to see that problem (1.1) has two solutions that do not
depend on t, u ≡ 1 and u ≡ 0. Also, it was shown in [12] that the
following alternative holds: the solution has finite blow up time or it
is bounded in H1 norm (Lemma 2.3). If one takes the initial datum
u0 greater than 1 the solution must blow up in finite time, but if we
take 0 ≤ u0 < 1 then the solution must go to zero uniformly (in
fact in H1). By a simple linearization we can see that the fixed point
u ≡ 1 is hyperbolic and has a stable manifold of codimension one.
Therefore there exists initial data (different from u0 ≡ 1) such that the
corresponding solution goes to u ≡ 1. Then we want to describe this
stable manifold.

Using ideas from [6] and [7], in section 2 we prove an interesting
property of the stable manifold of the point u ≡ 1: for a fixed u0 if one
considers the family of solutions uλ that have initial data of the form
λu0 then there exists only one critical value λc such that λcu0 lies in
the stable manifold of u ≡ 1 (Theorem 2.2)(see [8] for a similar result).
We also show that λc = λc(u0) is continuous with respect to initial
data (Theorem 2.3).

On the other hand, there exist several papers which deal with the
numerical approximation of the blow up time an the blow up profile
(see for example, [5] for the semilinear case and [9] for a problem similar
to (1.1)).

After all this, we arrive at the main point of this paper: one can
try to estimate this value λc numerically. Our second result solves this
problem, we prove that if one considers a semidiscretization of (1.1) and
replace the problem by a system of ordinary differential equations, then
the new semidiscrete problem also shows the existence and uniqueness
of a critical value λc,h (Theorem 3.2) and moreover this critical value
λc,h goes to λc as the mesh parameter h goes to zero (Theorem 3.4).
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We want to remark that the existence and uniqueness of the critical
value, λc,h is easier and shorter than its continuous counterpart.

The numerical semidiscrete version of (1.1) proposed here comes from
a first degree finite element approximation on the variable x keeping t
continuous (from a well known fact this case coincides with a classical
finite difference second order scheme on x). A further mass lumping
technique simplifies the scheme and preserves the maximum principle,
allowing us to use comparison arguments (Lemma 3.1).

The paper is organized as follows, in section 2 we analyze the con-
tinuous problem, in section 3 the semidiscrete approximations and in
the last section we present some numerical experiments.

2. The continuous equation.

We begin by stating a Lemma that says that (1.1) defines a compact
local semiflow.

Lemma 2.1. The problem (1.1) defines a local semiflow in C+ = {v ∈
H1 : v ≥ 0} and bounded orbits are relatively compact. If, in addition,

sup
0≤t<tmax(u0)

‖u(·, t)‖H1 < ∞

then the orbit through u0 exist globally, that is, tmax(u0) = ∞.

Proof. As the maximum principle applies, if u0 ∈ C+ then u(·, t) ∈ C+

for all t ∈ (0, tmax(u0)). For the rest of the proof, we observe that we
fall into the hypotheses of Theorem 14.5 of [4] �

The following Lemma shows that (1.1) has a Lyapunov functional.

Lemma 2.2. Let

V (u(·, t)) =
1

2

∫ 1

0
(ux(x, t))2dx−G(u(1, t)), (2.1)

where G(s) = sp+1

p+1
− s2

2
is a primitive of g. Then V is a Lyapunov

functional for (1.1).

Proof. The Lemma is an immediate consequence of

dV (u(·, t))
dt

= −
∫ 1

0
(ut(x, t))2dx. (2.2)

�

Next, we state a Lemma, that can be found in [12] that says that
global solutions of (1.1) are bounded in H1.
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Lemma 2.3. Let u0 ∈ C+, then if u(·, t) is the solution of (1.1) with
u0 as initial datum, the following alternative holds: u(·, t) blows up in
finite time (i.e. tmax(u0) < ∞), or it remains bounded in H1.

As a consequence of these results we have, by a well known fact (see
[14]), the following Corollary.

Corollary 2.1. The possible ω-limits of a global solution of (1.1) are
u ≡ 0 or u ≡ 1 (those are the only steady states of (1.1)).

Proof. This is a consequence of Lemma 2.1, Lemma 2.2 and Lemma
2.3 (see [14]) �

Remark . From the well known energy identity∫ t

0

∫ 1

0
u2

t dxdt + V (u(·, t)) = V (u0),

and Lemma 2.3 it follows that if tmax(u0) < ∞ then u(1, t) →∞ when
t ↗ tmax(u0).

Lemma 2.4. If u is a solution of (1.1) different from 0, such that
there exists t0 with

V (u(·, t0)) ≤ 0,

then u blows up in finite time.

Proof. First, we observe that by (2.2) we can assume that V (u(·, t0)) <
0.

Suppose that u is globally defined, then by Corollary 2.1, u → 0 in
H1 or u → 1 in H1, and by continuity of V , we must have V (u(·, t)) ↘
V (0) = 0 or V (u(·, t)) ↘ V (1) = 1

2
− 1

p+1
> 0, which is a contradiction

and the Lemma is proved �

For a fixed u0 we consider the family of solutions uλ that has initial
data λu0. Let us define

λ+ ≡ inf{λ : uλ blows up }

and

λ− ≡ sup{λ : uλ → 0}
It is immediate to see that these sets are not empty so these numbers

are well defined.
The following result shows that the steady solution u ≡ 1 is unstable

and that λ+ = λ−.
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Theorem 2.1. Let u0 be an initial datum for (1.1) such that u(·, t) → 1
in H1

(1) If v0 ≤ u0, v0 6= u0, then v(·, t) → 0 in H1.
(2) If v0 ≥ u0, v0 6= u0, then v(·, t) blows up in finite time.

Proof. We prove (1), (2) follows in a similar way.
We start by making the following remark, which is an immediate

consequence of the maximum principle: If v ≤ u, and u is globally
defined, then v is globally defined.

Now, by the preceding remark, v is globally defined, and then, v
must converge to a stationary positive solution of (1.1).

Then v → 1 or v → 0 in H1. Suppose then that v → 1.
Now, let w = u− v, then w is a solution of

wt = wxx,
wx(0, t) = 0,
wx(1, t) = g(u(1, t))− g(v(1, t)),
w(x, 0) = u0 − v0 ≡ w0 ≥ 0 w0 6= 0.

Now, g(u(1, t)) − g(v(1, t)) = g′(ξ(t))w(1, t), with v(1, t) ≤ ξ(t) ≤
u(1, t), then ξ(t) → 1 as t →∞.

Then there exists α > 0 and t0 such that g′(ξ(t)) > α if t ≥ t0, and
then w verifies


wt = wxx in (0, 1)× (t0, +∞),

wx(0, t) = 0 on (t0, +∞),
wx(1, t) ≥ αw(1, t) on (t0, +∞),
w(x, t0) = u(x, t0)− v(x, t0) > 0 on (0, 1),

which contradicts the fact that w → 0 and proves our claim. �

By Theorem 2.1 we have that λ− = λ+ ≡ λc so we want to prove
that uλc lies on the stable manifold of u ≡ 1.

To prove this fact, we need some auxiliary results to get bounds on
the L∞ norms of global solutions of (1.1).

First we will control a global solution by its Lyapunov functional
(Proposition 2.1), and then we will observe that if the initial datum is
uniformly bounded, so is the Lyapunov functional (Lemma 2.8).

Lemma 2.5. Let u be a global solution of (1.1), then∫ 1

0
u2(x, t2)dx−

∫ 1

0
u2(x, t1)dx ≥ −4V (u(·, t1))(t2 − t1)

+ 2
∫ t2

t1
(g(u(1, t))u(1, t)− 2G(u(1, t))) dt
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Proof. If we multiply (1.1) by u and integrate, we get

1

2

∫ 1

0

(
u2(x, t2)− u2(x, t1)

)
dx = −

∫ t2

t1

∫ 1

0
(ux(x, t))2dxdt

+
∫ t2

t1
g(u(1, t))u(1, t)dt. (2.3)

Then, by (2.1) and by Lemma 2.2∫ 1

0

(
u2(x, t2)− u2(x, t1)

)
dx =

= −4
∫ t2

t1
V (u(·, t))dt + 2

∫ t2

t1
(g(u(1, t))u(1, t)− 2G(u(1, t))) dt

≥ −4V (u(·, t1))(t2 − t1) + 2
∫ t2

t1
(g(u(1, t))u(1, t)− 2G(u(1, t))) dt

as we wanted to show �

Lemma 2.6. Let u0 be an initial datum such that ‖u0‖∞ ≤ A and that
the corresponding solution of (1.1) is globally defined. Then, for any
t0 > 0 there exists C > 0 depending only on p and A such that∫ 1

0
u2(x, t)dx ≤ C

(
V (u(·, t0))

2
p+1 + 1

)
, ∀t ≥ t0.

Proof. First, let us observe that, by the maximum principle and by
Hopf’s Lemma, maxx∈[0,1] u(x, t) ≤ max{sup0<s<t u(1, s), maxx∈[0,1] u0(x)},
then if

max
x∈[0,1]

u(x, t) ≤ max
x∈[0,1]

u0(x) ∀t ≥ t0,

it is enough to take C = A2 to prove the Lemma (we observe that by
Lemma 2.4 V (u(·, t0)) > 0).

Then, we can suppose that maxx∈[0,1] u(x, t) ≤ sup0<s<t u(1, s).
Again, by the maximum principle, we can assume that

u(1, t) ≥ u(x, t)− C

with C depending only on p and A, therefore, we get

u2(1, t) ≥ 1

2
u2(x, t)− C

and thus

u2(1, t) ≥ 1

2

∫ 1

0
u2(x, t)dx− C. (2.4)

Let h(t) =
∫ 1
0 u2(x, t)dx. Then we have, by Lemma 2.5

h(t2)−h(t1) ≥ −4V (u(·, t1))(t2−t1)+2
∫ t2

t1
(g(u(1, t))u(1, t)−2G(u(1, t)))dt
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but g(u)u − 2G(u) = p−1
p+1

up+1, then replacing in the latter inequality

we get, by (2.4),

h(t2)− h(t1) ≥ −4V (u(·, t1))(t2 − t1) + C
∫ t2

t1

(
u2(1, t)

) p+1
2 dt

≥ −4V (u(·, t1))(t2 − t1) + C
∫ t2

t1
h(t)

p+1
2 dt− C(t2 − t1).

Now, if we divide by (t2 − t1) and take t2 → t1, we get

h′(t1) ≥ −4V (u(·, t1))− C + Ch
p+1
2 (t1).

Now, if the statement of the Lemma is false, then the latter inequality
implies that h(t) blows up in finite time, which contradicts the fact that
u is global. �

Lemma 2.7. Let u be a global solution of (1.1) with ‖u0‖∞ ≤ A, then
for any t0 > 0 there exists a constant C = C(p,A) > 0 such that

(1)
∫ 1
0 u2(x, t2)dx −

∫ 1
0 u2(x, t1)dx ≤ C(t2 − t1)

1/2(V (u(·, t1))
p+3
2p+2 +

V (u(·, t1))
1
2 )

(2)
∫ t2
t1

(g(u(1, t))u(1, t)− 2G(u(1, t)))dt ≤
C
[
(t2 − t1)V (u(·, t1)) + (t2 − t1)

1/2

(
V (u(·, t1))

p+3
2p+2 + V (u(·, t1))

1
2

)]
for any t2 > t1 > t0.

Proof. By Hölder’s inequality, we have∫ 1

0
u2(x, t2)dx−

∫ 1

0
u2(x, t1)dx =

=
∫ 1

0

∫ t2

t1

∂u2(x, t)

∂t
dtdx = 2

∫ 1

0

∫ t2

t1
u(x, t)ut(x, t)dtdx

≤ 2
(∫ 1

0

∫ t2

t1
u2(x, t)dtdx

)1/2 (∫ 1

0

∫ t2

t1
u2

t (x, t)dtdx
)1/2

.

(2.5)

Now, by Lemma 2.6(∫ 1

0

∫ t2

t1
u2(x, t)dtdx

)1/2

≤ C
(∫ t2

t1
(V (u(·, t1))

2
p+1 + 1)dt

)1/2

≤ C(t2 − t1)
1/2(V (u(·, t1))

1
p+1 + 1)

and, by (2.2)(∫ 1

0

∫ t2

t1
u2

t (x, t)dtdx
)1/2

=

(∫ t2

t1
−dV (u(·, t))

dt
dt

)1/2

= (V (u(·, t1))− V (u(·, t2)))1/2 ≤ V (u(·, t1))1/2.
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Then, (2.5) is bounded by

CV (u(·, t1))1/2(t2 − t1)
1/2(V (u(·, t1))

1
p+1 + 1) =C(t2 − t1)

1/2(V (u(·, t1))
p+3
2p+2

+ V (u(·, t1))
1
2 )

which proves (1).
Now∫ 1

0
u2(x, t2)dx−

∫ 1

0
u2(x, t1)dx = 2

∫ 1

0

∫ t2

t1
u(x, t)ut(x, t)dtdx

= 2
∫ 1

0

∫ t2

t1
u(x, t)uxx(x, t)dtdx

= −2
∫ t2

t1

∫ 1

0
(ux(x, t))2dtdx + 2

∫ t2

t1
g(u(1, t))u(1, t)dt

= −4
∫ t2

t1
V (u(·, t))dt + 2

∫ t2

t1
(g(u(1, t))u(1, t)− 2G(u(1, t)))dt

and (2) follows from (1) and Lemma 2.2. �

The following Corollary is an immediate consequence of Lemma 2.7

Corollary 2.2. Let u be a global solution of (1.1) with ‖u0‖∞ ≤ A,
then for any t0 > 0 it holds∫ t2

t1
u(1, t)p+1dt ≤C

[
(t2 − t1)V (u(·, t1)) + (t2 − t1)

1/2
(
V (u(·, t1))

p+3
2p+2

+ V (u(·, t1))
1
2

)]
.

for any t2 > t1 > t0 and C = C(p,A).

Now we are ready to prove the key Proposition.

Proposition 2.1. Let u be a global solution of (1.1) with ‖u0‖∞ ≤ A,
then for any t0 > 0 there exists C = C(p,A) > 0 such that

‖u(·, t)‖∞ ≤ C
(
V (u(·, t0))α + V (u(·, t0))β + V (u(·, t0))γ

)
∀ t ≥ t0

where α, β and γ are positive constants which depend only on p.

Proof. By the maximum principle, we have that

‖u(·, t)‖∞ ≤ ‖u0‖∞ + sup
0<s<t

u(1, s) ≤ A+ sup
0<s<t

u(1, s),

so to finish the proof, we only need to control u(1, t).
Now, by Corollary 2.2, we have (for t2 > t1 > t0 > 0)
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∫ t2

t1
u(1, t)p+1dt ≤C

[
(t2 − t1)V (u(·, t0)) + (t2 − t1)

1/2
(
V (u(·, t0))

p+3
2p+2

+ V (u(·, t0))
1
2

)]
.

Then, if δ = |t2 − t1| is small (say δ ≤ V (u(·, t0))
p+3
p+1

−2 ≡ δ0)∫ t2

t1
u(1, t)p+1dt ≤ Cδ1/2

(
V (u(·, t0))

p+3
2p+2 + V (u(·, t0))

1
2

)
.

Therefore, for any interval [t1, t2] of length δ ≤ δ0, there exists a
point t3 ∈ [t1, t2] such that

u(1, t3) ≤ C
V (u(·, t0))

p+3

2(p+1)2 + V (u(·, t0))
1

2(p+1)

δ
1

2(p+1)

≡ D

δ
1

2(p+1)

.
(2.6)

To finish the proof of the proposition, we need to control the growth
of u(1, t) in intervals of the form [t3, t3 + 2δ], with t3 and δ as in (2.6).

Let u(x, t) = φ(a(x) + b(t)) where

φ′(s) = φp(s), i.e. φ(s) =
M(p)

(s0 − s)1/(p−1)
,

with M(p) = ( 1
p−1

)
1

p−1

b(t) = δ−1/2t,

a(x) =


s0 − δ

p
2(p+1) 0 ≤ x ≤ 1− δ

p
2(p+1)

(s0 − δ
p

2(p+1) ) + 1

3δ
p

p+1
(x− 1 + δ

p
2(p+1) )3 1− δ

p
2(p+1) ≤ x ≤ 1.

Now it is easy to check that we can choose δ1 = δ1(p), such that
if δ < δ1, then u is a super solution of (1.1) which is well defined
∀t ∈ [0, 2δ], then

u(x, t3 + t) ≤ u(x, t) ∀ t ∈ [0, 2δ]

and by simple computation, we get

u(1, t) ≤ CDδ−
3p+2

2(p+1) ∀ t ∈ [t3, t3 + 2δ]

and the Proposition is proved �

Lemma 2.8. Let u be a global solution of (1.1) with ‖u0‖∞ ≤ A. Then
for any t0 > 0 there exists C = C(t0, p,A) such that V (u(·, t0)) ≤ C.
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Proof. To prove this Lemma, let v be the solution of (1.1) with v0 ≡ A.
We observe that if t is small (t < T/2 where v is defined in [0, T )) then

‖u(·, t)‖∞ ≤ ‖v(·, t)‖∞ ≤ C (2.7)

where C only depends on T which only depends on p and A.
The standard energy estimate (2.3) gives us

1

2
(‖u(·, t0)‖2

L2 − ‖u(·, 0)‖2
L2) = −

∫ t0

0
‖ux(·, s)‖2

L2ds +
∫ t0

0
g(u)u(1, s)ds.

Using (2.7) we get ∫ t0

0
‖ux(·, s)‖2

L2ds ≤ C.

Then by the mean value theorem, there exist t1 ≤ t0 such that

t0‖ux(·, t1)‖2
L2 ≤ C.

Finally we observe that

V (u(·, t0)) ≤ V (u(·, t1)) ≤ C

�

Now we are ready to prove the main result of the Section.

Theorem 2.2. Let u0 be a positive function in [0, 1], and let uλ be the
solution of (1.1) with uλ(x, 0) = λu0(x).

Then, there exists a critical value λc such that

(1) if λ < λc then uλ → 0 in H1.
(2) if λ > λc then uλ blows up in finite time.
(3) if λ = λc then uλ → 1 in H1.

Proof. Let us start by defining the following sets

I0 = {λ > 0 : uλ → 0},
I∞ = {λ > 0 : uλ blows up in finite time},
Ig = {λ > 0 : uλ is globally defined}.

Then R>0 = Ið ∪ I∞
In order to prove the Theorem, it is enough to show that I0 and I∞

are open, or equivalently, that I0 is open and Ig is closed.

Let us start by showing that I0 is open. If λ ∈ I0, then there exists
t0 such that ‖uλ(·, t)‖∞ < 1/2 if t ≥ t0.

Now, by continuity with respect to the initial data, there exists ε > 0
such that

∀ µ > 0 : |λ− µ| < ε, ‖uµ(·, t0)‖∞ < 3/4 < 1.
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Therefore, by Theorem 2.1, uµ → 0 in H1, and hence µ ∈ I0.

On the other hand, let (λk)k≥1 ⊂ Ig be a sequence such that λk ↗ λ0.
Then, there exists T > 0 such that uλ0 is defined in [0, T ]. In order

to show that λ0 ∈ Ig, by Lemma 2.1 and Lemma 2.2, it is enough to
show that for every t1 < T there exists a constant C independent of
t1 such that, ‖uλ0(·, t)‖∞ ≤ C ∀ t ≤ t1. By Proposition 2.1 and by
Lemma 2.8, taking t0 < t1 there exists C = C(t0, p, λ0‖u0‖∞) such that

‖uλk
(·, t)‖∞ ≤ C ∀ t > t0 ∀ k ≥ 1.

The fact that ‖uλ0(·, t)‖∞ ≤ C ∀ t0 < t < t1 follows from the
continuous dependence on the initial data. �

We end this section by showing that λc is continuous with respect to
the initial data. First we will need the following Lemma

Lemma 2.9. Let u be a solution of (1.1). Then, for every M > 1
there exists L > 0 such that if u(1, t) > M ∀t ∈ [0, L], then there
exists T0 < L such that u(x, T0) > 1 ∀x ∈ [0, 1] and hence u blows up.

Proof. Let v the solution of the following auxiliary problem


vt = vxx,

vx(1, t) = σ(p),
vx(0, t) = 0,
v(x, 0) = 0,

(2.8)

where σ(p) = Mp −M > 0.
Now the proof follows by a comparison argument. In fact if u(x, t)

is a solution of (1.1) for which u(1, t) > M ∀t ∈ [0, L], then we claim
that

v(x, t) ≤ u(x, t) ∀t ∈ [0, L] ∀x ∈ [0, 1].

To prove the claim we observe that w = u− v verifies

wt = wxx,
wx(0, t) = 0,
wx(1, t) = g(uλ(1, t))− σ(p),
w(x, 0) ≥ 0.

But g(u(1, t)) − σ(p) > 0 implies w(x, t) > 0, giving v(x, t) ≤
u(x, t) ∀t ∈ [0, L] ∀x ∈ [0, 1]. At this point we just observe that the
solution of (2.8) overcome 1 in finite time T0, depending only on p and
M , so taking L > T0, v(x, T0) > 1 and the same holds for u(x, t). �
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Theorem 2.3. λc = λc(u0) is continuous with respect to the initial
data (with the L∞ norm).

Proof. Let ε > 0 and let λ ≡ λc(u0) − ε. Now, uλ must go to zero
uniformly, so there exists a time T such that ‖uλ(·, T )‖∞ ≤ 1/2. If
‖u0 − v0‖∞ < δ, by continuity of (1.1) with respect to the initial data
we must have that ‖vλ(·, T )‖∞ ≤ 3/4, and then, by Theorem 2.1,
vλ → 0 uniformly. So λc(v0) > λ = λc(u0)− ε.

For the other inequality, let now λ ≡ λc(u0) + ε. Now, as uλ blows
up in finite time, for M > 1 there exists T > 0 and η > 0 such that

2M ≤ uλ(1, t) < ∞ ∀t ∈ [T, T + η].

η can be taken to be half of the blow up time of the solution of (1.1)
with initial datum ‖uλ(·, T )‖∞.

By continuity of (1.1) with respect to the initial data we have vλ(1, t) >
M for t ∈ [T, T + η] if ‖u0 − v0‖∞ ≤ δ1.

Let now λc(u0) < λ2 < λ such that

2M ≤ uλ2(1, t) < ∞ ∀t ∈ [T + η, T + 2η].

Again, by continuity of (1.1) with respect to the initial data we have
vλ2(1, t) > M for t ∈ [T + η, T + 2η] if ‖u0 − v0‖∞ ≤ δ2 and by the
maximum principle, vλ ≥ vλ2 , so

vλ(1, t) > M ∀t ∈ [T, T + 2η].

Iterating this argument, we can find a sequence δk > 0, such that

vλ(1, t) > M ∀t ∈ [T, T + kη]

if ‖u0 − v0‖∞ < δk.
So, by Lemma 2.9, if k0η > L we have that vλ blows up in finite time

if ‖u0 − v0‖∞ ≤ δ0 ≡ δk0 so λc(v0) < λ = λc(u0) + ε. �

3. The semidiscrete case

We begin by a description of our numerical scheme.
Let xi = i

N
0≤i≤N be a partition of the interval (0, 1) into subin-

tervals Ii = (xi, xi+1), of length h = 1
N

. Let Vh the set of continuous
functions which are affine on each Ii. We consider the basis functions
of Vh taking as usual ϕi, with ϕi(xj) = δj

i . Now let

uh(x, t) =
N∑

i=0

ui(t)ϕi(x). (3.1)

For a fixed t, uh belongs to H1(0, 1) so in order to construct an
approximate solution of (1.1) we proceed as follows: replacing (3.1) in
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the weak formulation of (1.1) we get a system of ordinary differential
equations for U = (u0(t), ..., uN(t)),

MU ′ = −AU + g(U), (3.2)

where M is the mass matrix, A is the stiffness matrix, and g(U) =
g(uN)eN with eN = (0, ..., 1).

Mass lumping upon the matrix M in (3.2) gives

u′0 = 2h−2(−u0 + u1),
u′i = h−2(ui+1 − 2ui + ui−1),

u′N = 2h−2(−uN + uN−1 + hg(uN)).
(3.3)

So, from now on, we will suppose that M is diagonal and Mii = h if
1 ≤ i ≤ N − 1 and M00 = MNN = h/2.

In order to study the asymptotic behaviour of (3.3) we need the
following results.

Lemma 3.1. (Maximum principle) Let h > 0 be fixed, and let U =
(u0, ..., uN) be a solution of

u′0 ≤ 2h−2(−u0 + u1),
u′i ≤ h−2(ui+1 − 2ui + ui−1),

u′N ≤ 2h−2(−uN + uN−1 + hg(uN)).
(3.4)

Then
max

k=0,...,N
uk(t) ≤ max{ max

k=0,...,N
uk(0); sup

0<τ<t
uN(τ)}

Proof. Let us first suppose that U = (u0, ..., uN) verifies

u′0 < 2h−2(−u0 + u1),
u′i < h−2(ui+1 − 2ui + ui−1),

u′N < 2h−2(−uN + uN−1 + hg(uN)).
(3.5)

Now, if the maximum is attained in an interior node, say 0 < j < N ,
let t0 be the first time when this happens, then we have

u′j(t0) ≥ 0 and uj(t0) ≥ uk(t0) 0 ≤ k ≤ N.

On the other hand, by (3.5) we get u′j(t0) < 0 which leads to a
contradiction.

Now, it is easy to see from (3.5) that the maximum cannot be reached
at u0 and so the “maximum principle” follows.

To complete the proof, we just observe that if Z = h2(0, ..., k2, ..., N2),
then Uε(t) ≡ U(t)+εZ verifies (3.5) whenever U verifies (3.4). As ε > 0
is arbitrary, the Lemma follows �
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Lemma 3.2. Let h > 0 be fixed, U a global solution of (3.3). Then,
U is bounded in RN+1.

Proof. If a global solution of (3.3) is not bounded, then, by Lemma 3.1,
necesarilly uN(t) →∞ as t →∞, but uN satisfies

u′N = 2h−2(−uN + uN−1 + hg(uN)) ≥ C1(h)up
N − C2(h)uN ≥ C3(h)up

N

so uN cannot be globally defined �

Next, we show that the semidiscrete version of problem (1.1) also has
a Lyapunov functional and hence, by Lemma 3.2, every global solution
must converge to a stationary one.

Lemma 3.3. Let h > 0 be fixed, U a solution of (3.3), and G(s) =
sp+1

p+1
− s2

2
a primitive of g. Then

Vh(U(t)) =
1

2
< A1/2U(t), A1/2U(t) > −G(uN(t)) (3.6)

is a Lyapunov functional for the system (3.3).

Proof. This is just a discrete analogous of Lemma 2.2. �

In the same spirit of the continuous case (see Theorem 2.1), we have

Theorem 3.1. Let h > 0 be fixed, U0 = (u0, u1, ..., uN) be a positive
initial datum, and let U(t) be the solution of (3.3) with U(0) = U0,
suppose that U(t) → (1, ..., 1)

(1) If V0 ≤ U0, V0 6= U0, then V (t) → 0.
(2) If V0 ≥ U0, V0 6= U0, then V (t) blows up in finite time.

Here V (t) denotes the solution such that V (0) = V0.

Proof. We will only sketch the proof of (1). By comparison with U
we have that U ≥ V so we obtain global existence for V , and then
Lemma 3.2 and the Lyapunov functional given in Lemma 3.3 implies
that V (t) → 0 or V (t) → (1, ..., 1), but the latter can not occur, other-
wise Z = U − V should tend to zero and satisfies

MZ ′ = −AZ + g′(η)zNeN

with g′(η) > δ > 0 which contradicts the fact Z → 0. �

The proof of the existence and uniqueness of the critical value λc,h

is much easier than its continuous counterpart.

Theorem 3.2. Let h > 0 be fixed, U0 = (u0, u1, ..., uN) be a positive
initial datum, and let Uλ(t) be the solution of (3.3) with Uλ(0) = λU0.

Then, there exists a critical value λc,h, depending on h such that
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(1) if λ < λc,h then Uλ(t) → 0.
(2) if λ > λc,h then Uλ(t) blows up in finite time.
(3) if λ = λc,h then Uλ(t) → (1, ..., 1).

Proof. As in Theorem 2.2 we define the following sets

I0,h = {λ > 0 : Uλ → 0},
I∞,h = {λ > 0 : Uλ blows up in finite time},
Ig,h = {λ > 0 : Uλ is globally defined}.

Then R>0 = Ið,h ∪ I∞,h.
Now, it is enough to show that I0,h and I∞,h are open, so let λ0 ∈ I0,h

, then Uλ0 → 0 and for t0 large enough Uλ0(t0) < 1/2. The continuous
dependence on the initial condition allows us to conclude. In fact there
exist an ε > 0 such that if |λ − λ0| < ε then ‖Uλ(t0)‖∞ < 3/4 < 1,
and I0,h is open. To prove the same for I∞,h we use similar arguments.
From (3.3) we obtain

u′N ≥ 2h−2(−uN + hg(uN)),

then ‖Uλ(t)‖∞ cannot be globally bounded if (Uλ)N(t0) > K(h), with
K(h) large enough (it is enough to choose the last positive root of
−s + hg(s) as K(h)). Let λ0 ∈ I∞,h then there exists t0 such that
(Uλ0)N(t0) > K(h) + 1, and by continuity respect to the initial con-
dition, (Uλ)N(t) > K(h) provided λ is closed to λ0, this implies the
desired result. �

In order to obtain the convergence of this critical values λc,h to the
critical value λc we need the following convergence Theorem for regular
solutions whose proof can be found in [9].

Theorem 3.3. Let u ∈ C2,1([0, 1]× [0, T ]), T < tmax(u0), be a solution
of (1.1) and uh its semidiscrete approximation given by (3.1). Then
there exists a constant C depending on T and u such that, for h small
enough:

‖u− uh‖L∞([0,1]×[0,T ]) ≤ Ch
3
2 .

Remark . The required regularity of u can be obtained by taking ini-
tial data that are compatible with the boundary conditions (see [15]),
namely

u′0(0) = 0 u′0(1) = g(u0(1)).

We observe that this type of initial data are dense in H1.

Now we prove the discrete version of Lemma 2.9
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Lemma 3.4. Let uh(x, t) be the semidiscrete approximation of u given
by (3.1). Then for every M > 1 there exists h0 > 0 and L > 0 such
that if uh(1, t) > M ∀t ∈ [0, L], then there exists T0 < L such that if
h < h0, then uh(x, T0) > 1 and hence uh blows up, ∀h < h0.

Proof. By Lemma 2.9, there exists M > 0, L > 0 and T0 < L such
that if u(1, t) > M ∀t ∈ [0, L] then u(x, T0) > 1 ∀x ∈ [0, 1]. Now we
choose a compatible initial datum v0, such that v0 ≤ u0 and v(x, T0) >
1 ∀x ∈ [0, 1]. Now by Theorem 3.3 and a comparison argument, if h
is small enough, uh(x, T0) > vh(x, T0) > 1 ∀x ∈ [0, 1] which proves the
Lemma. �

Now we are ready to prove the main result of this section.

Theorem 3.4. Let λc and λc,h as in Theorems 2.2 and 3.2 respectively,
then λc,h → λc as h → 0.

Proof. Let ε > 0, if we take λ ≡ λc − ε, we have that uλ → 0, then
taking t0 large enough uλ(x, t0) < 1/2.

Now we pick a compatible initial datum v0 such that v0 ≥ λu0 and
v(x, t0) < 1/2.

As vh → v in L∞([0, 1] × [0, t0]) (by Theorem 3.3) it holds by a
comparison argument, uλ,h(x, t0) < vh(x, t0) < 3/4 if h < h0, then
Theorem 3.1 implies that uλ,h(x, t) → 0, and then λc − ε = λ ≤ λc,h.

On the other hand let λ ≡ λc + ε. If λ < λ the blow up time T of uλ

is uniformly bounded (below) by the blow up time T of uλ. Now we
can choose uλ in order to obtain uλ(1, T ) = M + 2 and we can take a
fixed value τ (independent of h) such that

2M > uλ(1, T + t) > M + 1 ∀t ∈ [0, τ ].

Now, as in the previous case, we pick a compatible initial datum v0

such that v0 < λu0 and

2M > v(1, T + t) > M + 1 ∀t ∈ [0, τ ].

Choosing h1 small enough, for all h < h1,

‖vh − v‖L∞([0,T+τ ]×[0,1]) < 1

in particular

|vh(1, T + t)− v(1, T + t)| < 1 ∀t ∈ [0, τ ],

which gives

2M + 1 > vh(1, T + t) > M ∀t ∈ [0, τ ].
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Taking another λ and repeating inductively the last argument we ob-
tain a finite number of decreasing h = hk, λk < λc + ε and compatible
initial data v0,k such that v0,k < λu0 and

2M + 1 > vk,h(1, T + t) > M ∀t ∈ [0, kτ ] ∀h ≤ hk.

This implies, using a comparison argument between vk,h and uλ,h

uλ,h(1, T + t) > M ∀t ∈ [0, kτ ]

and if kτ in big enough (kτ > L) we fall into the hypothesis of Lemma
3.4 then we can conclude that uλ,h has finite blow up time and then
λc,h < λ = λc + ε for all h < hk. �

We end this section by showing that the steady solution U = (1, ..., 1)
is hyperbolic and its stable manifold has dimension N − 1 as can be
expected.

Theorem 3.5. Let U = (1, ..., 1) be the only positive steady solution of
(3.3). Then U is hyperbolic and its stable manifold is an hypersurface.

Proof. The linearized problem of (1.1) at 1, has the form


vt = vxx,

vx(0, t) = 0,
vx(1, t) = g′(1)v(1, t).

Now, it is enough to observe that all the eigenvalues but one of the
linearization of (1.1) at 1 are negatives, and the last one is positive.

On the other hand, using standard techniques, we have an uniform
bound in H1 norm for the error of the discrete approximation of the
following problem


vxx = f,

vx(0, t) = 0,
vx(1, t) = g′(1)v(1, t),

i.e. we have an inequality of the form,

‖v − vh‖H1 ≤ Ch‖f‖H1 .

Then we only have to observe that, from a well known fact (see [16]),
the discrete eigenvalues converge to the continuous ones. �
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N λc,h

10 0.9755
20 0.9766
50 0.9770
100 0.9770
Table 1

4. Numerical experiments

In this section we show some numerical experiments for the semidis-
crete version of (1.1) with g(s) = s2 − s and

u0(x) =
1

2
cos(2πx) + 1

The results were obtained integrating the ODE system (3.3) by using
an adaptive Runge-Kutta method.

Table 1 gives the approximate λc,h with four exact decimals. The
values obtained suggest that the convergence rate is of order h2 however
we were not able to prove it.

In Fig. 1, we show the evolution of the solution with h = 1/100,
λ = 0.9771 > λc,h.

It is worth remarking that in Fig. 1 we observe that the solution
stays close to 1 for a long period of time, after which it rapidly goes
to infinity (this happens because we have chosen a value of lambda
greater but close to the critical one).
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