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Abstract. In this paper we study the existence of nontrivial solutions for

the problem, ∆pu = |u|p−2u in a bounded smooth domain Ω ⊂ RN , with a
nonlinear boundary condition given by |∇u|p−2∂u/∂ν = f(u) on the boundary

of the domain. The proofs are based on variational and topological arguments.

1. Introduction.

In this paper we study the existence of nontrivial solutions for the following
problem

(1.1)


∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= f(u) on ∂Ω.

Here Ω is a bounded domain in RN with smooth boundary, ∆pu = div(|∇u|p−2∇u)
is the p-Laplacian and ∂

∂ν is the outer normal derivative.

Problems of the form (1.1) appears in a natural way when one considers the
Sobelev trace inequality

S1/p‖u‖Lq(∂Ω) ≤ ‖u‖W 1,p(Ω), 1 ≤ q ≤ p∗ =
p(N − 1)
N − p

.

In fact, the extremals (if there exists) are solutions of (1.1) for f(u) = λ|u|q−2u.
See [10] for a detailled analysis of the behaviour of extremals and best Sobolev
constants in expanding domains for p = 2 in the subcritical case, 1 < q < 2(N−1)

N−2 .
Also, one is lead to nonlinear boundary conditions in the study of conformal

deformations on Riemannian manifolds with boundary, see for example [5], [11]
and [12].

The study of existence when the nonlinear term is placed in the equation, that is
when one consider a quasilinear problem of the form −∆pu = f(u) with Dirichlet
boundary conditions, has received considerable attention, see for example [15], [16],
[21], etc.

However, nonlinear boundary conditions have only been considered in recent
years. For the Laplace operator with nonlinear boundary conditions see for example
[7], [8], [10], [17], [25]. For elliptic systems with nonlinear boundary conditions
see [13], [14]. For previous work for the p−Laplacian with nonlinear boundary
conditions of different type see [6] and [22].
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In this work, for solutions of (1.1) we understand critical points of the associated
energy functional

(1.2) F(u) =
1
p

∫
Ω

|∇u|p + |u|p dx−
∫

∂Ω

F (u) dσ,

where F ′(u) = f(u) and dσ is the measure on the boundary.
Along this paper we fix 1 < p < N and look for conditions on the nonlinear term

f(u) that provide us with the existence of nontrivial solutions of (1.1).
This functional F is well defined and C1 in W 1,p(Ω) if f has a critical or sub-

critical growth, namely |f(u)| ≤ C(1 + |u|q) with 1 ≤ q ≤ p∗ = p(N−1)
N−p . Moreover,

in the subcritical case 1 < q < p∗, the immersion W 1,p(Ω) ↪→ Lq(∂Ω) is compact
while in the critical case q = p∗ is only continuous.

First, we deal with a superlinear and subcritical nonlinearity. For simplicity we
will consider

(1.3) f(u) = λ|u|q−2u,

where q verifies

1 < q < p∗ =
p(N − 1)
N − p

.

In these cases we prove the following Theorems using standard variational argu-
ments together with the Sobolev trace immersion that provide the necessary com-
pactness. See [16] for similar results for the p−Laplacian with Dirichlet boundary
conditions.
Theorem 1.1. Let f satisfy (1.3) with p < q < p∗, then there exists infinitely
many nontrivial solutions of (1.1) which are unbounded in W 1,p(Ω).
Theorem 1.2. Let f satisfy (1.3) with 1 < q < p, then there exists infinitely many
nontrivial solutions of (1.1) which form a compact set in W 1,p(Ω).
Theorem 1.3. Let f satisfy (1.3) with p = q, then there exists a sequence of
eigenvalues λn of (1.1) such that λn → +∞ as n → +∞.

In the case p = q, the equation and the boundary condition are homogeneous
of the same degree, so we are dealing with a nonlinear eigenvalue problem. In
the linear case, that is for p = 2, this eigenvalue problem is known as the Steklov
problem, [2].

Next we consider the critical growth on f . As we have pointed out, in this case
the compactness of the immersion W 1,p(Ω) ↪→ Lp∗(∂Ω) fails, so in order to recover
some sort of compactness, in the same spirit of [3], we consider a perturbation of
the critical power, that is

(1.4) f(u) = |u|p
∗−2u + λ|u|r−2u = |u|

p(N−1)
N−p −2u + λ|u|r−2u.

Here we use the compensated compactness method introduced in [19], [20] and
follow ideas from [15]. We prove the following two Theorems.
Theorem 1.4. Let f satisfy (1.4) with p < r < p∗, then there exists a constant
λ0 > 0 depending on p, r,N and Ω, such that if λ > λ0, problem (1.1) has at least
a nontrivial solution in W 1,p(Ω).
Theorem 1.5. Let f satisfy (1.4) with 1 < r < p, then there exists a constant
λ1 > 0 depending on p, r,N and Ω such that if 0 < λ < λ1, problem (1.1) has
infinitely many nontrivial solutions in W 1,p(Ω).
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Next, we deal with supercritical growth on f . More precisely, we study a sub-
critical perturbation of the supercritical power, that is, we consider

(1.5) f(u) = λ|u|q−2u + |u|r−2u,

with q ≥ p∗ > r > p. In this case, not only the compactness fails but also the
functional F given in (1.2) is not well defined in W 1,p(Ω), so we have to perform
a truncation in the nonlinear term λ|u|q−2u following ideas from [4]. For this case
we have,
Theorem 1.6. Let f satisfy (1.5) with q ≥ p∗ > r > p, then there exists a
constant λ2 depending on p, q, r,N and Ω such that if 0 < λ < λ2, problem (1.1)
has a nontrivial positive solution in W 1,p(Ω) ∩ L∞(∂Ω).

Finally, we end this article with a nonexistence result for (1.1) in the half-space
RN

+ = {x1 > 0} that shows that existence may fail when one consider critical or sub-
critical growth in an unbounded domain. This nonexistence result is a consequence
of a Pohozaev type identity.

Theorem 1.7. Let f satisfies (1.3) with q ≤ p∗. Let u ∈ W 1,p(RN
+ ) ∩ C2(RN

+ ) ∩
Lq(∂RN

+ ) be a nonnegative solution of (1.1) such that

|∇u(x)||x|
N
p → 0, as |x| → +∞.

Then u ≡ 0.
We remark that the decay hypothesis at infinity is necessary, because for p = 2

u(x) = e−x1 is a solution of (1.1) for every q.

The rest of the paper is organized as follows, in §§2,3 and 4 we deal with the
subcritical case. In §2 we prove Theorem 1.1, in §3 Theorem 1.2 and in §4 Theorem
1.3. Next, in §§5 and 6 we consider the critical case. In §5 we prove Theorem 1.4
and in §6 Theorem 1.5. In §7 we deal with the supercritical problem, Theorem 1.6
and finally in §8 we prove our nonexistence result, Theorem 1.7.

2. Proof of Theorem 1.1. The subcritical case I

In this section we study (1.1) with f(u) = λ|u|q−2u with p < q < p∗.

Let us begin with the following Lemma that will be helpful in order to prove the
Palais-Smale condition.
Lemma 2.1. Let φ ∈ W 1,p(Ω)′. Then there exists a unique weak solution u ∈
W 1,p(Ω) of

(2.1) −∆pu + |u|p−2u = φ.

Moreover, the operator Ap : φ 7→ u is continuous.

Proof. Let us observe that weak solutions u ∈ W 1,p(Ω) of (2.1) are critical points
of the functional

I(u) =
1
p

∫
Ω

|∇u|p + |u|p dx− 〈φ, u〉,

where 〈·, ·〉 denotes the duality paring in W 1,p(Ω). Hence, existence and uniqueness
are a consequence of the fact that I is a weakly lower semi-continuous, strictly
convex and bounded below functional.
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For the continuous dependence, let us first recall the following inequality (cf.
[24])

(2.2) (|x|p−2x− |y|p−2y, x− y) ≥

{
Cp|x− y|p if p ≥ 2
Cp

|x−y|2
(|x|+|y|)2−p if p ≤ 2,

where (·, ·) denotes the usual scalar product in Rm.
Now, given φ1, φ2 ∈ W 1,p(Ω)′ let us consider u1, u2 ∈ W 1,p(Ω) the corresponding

solutions of problem (2.1). Then, for i = 1, 2 we have,∫
Ω

|∇ui|p−2∇ui(∇u1 −∇u2) + |ui|p−2ui(u1 − u2)− φi(u1 − u2) dx = 0.

Hence, substracting and using inequality (2.2) we obtain, for p ≥ 2,

Cp

∫
Ω

|∇u1 −∇u2|p + |u1 − u2|p dx ≤ 〈(φ1 − φ2), (u1 − u2)〉

≤ ‖φ1 − φ2‖W 1,p(Ω)′‖u1 − u2‖W 1,p(Ω).

Therefore,

‖Ap(φ1)−Ap(φ2)‖W 1,p(Ω) ≤ C
(
‖φ1 − φ2‖W 1,p(Ω)′

) 1
p−1 .

Now, for the case p ≤ 2, we first observe that∫
Ω

|∇(u1 − u2)|p dx ≤
(∫

Ω

|∇(u1 − u2)|2

(|∇u1|+ |∇u2|)2−p
dx

) p
2
(∫

Ω

(|∇u1|+ |∇u2|)p dx

) 2−p
2

and ∫
Ω

|u1 − u2|p dx ≤
(∫

Ω

|u1 − u2|2

(|u1|+ |u2|)2−p
dx

) p
2
(∫

Ω

(|u1|+ |u2|)p dx

) 2−p
2

.

As in the previous case, we get,

(2.3)
‖u1 − u2‖W 1,p(Ω)

(‖u1‖W 1,p(Ω) + ‖u2‖W 1,p(Ω))2−p
≤ C‖φ1 − φ2‖W 1,p(Ω)′ .

Now we observe that

‖ui‖p
W 1,p(Ω) ≤ ‖φi‖W 1,p(Ω)′‖ui‖W 1,p(Ω).

Hence, (2.3) becomes

‖Ap(φ1)−Ap(φ2)‖W 1,p(Ω) ≤

C

(
‖φ1‖

1
p−1

W 1,p(Ω)′ + ‖φ2‖
1

p−1

W 1,p(Ω)′

)2−p

‖φ1 − φ2‖W 1,p(Ω)′

and the proof is finished. �

With this Lemma we can verify the Palais-Smale condition for F .
Lemma 2.2. The functional F satisfies the Palais-Smale condition.

Proof. Let (uk)k≥1 ⊂ W 1,p(Ω) be a Palais-Smale sequence, that is a sequence such
that

(2.4) F(uk) → c and F ′(uk) → 0.
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Let us first prove that (2.4) implies that (uk) is bounded. From (2.4) it follows
that there exists a sequence εk → 0 such that

|F ′(uk)w| ≤ εk‖w‖W 1,p(Ω), ∀w ∈ W 1,p(Ω).

Now we have,

c + 1 ≥ F(uk)− 1
q
F ′(uk)uk +

1
q
F ′(uk)uk

=
(

1
p
− 1

q

)
‖uk‖p

W 1,p(Ω) +
1
q
F ′(uk)uk

≥
(

1
p
− 1

q

)
‖uk‖p

W 1,p(Ω) −
1
q
‖uk‖W 1,p(Ω)εk

≥
(

1
p
− 1

q

)
‖uk‖p

W 1,p(Ω) −
1
q
‖uk‖W 1,p(Ω)

hence, uk is bounded in W 1,p(Ω).
By compactness we can assume that uk ⇀ u weakly in W 1,p(Ω) and uk → u

strongly in Lq(∂Ω) and a.e. in ∂Ω. Then, as p < q < p∗, it follows that, |uk|q−2uk →
|u|q−2u in Lp∗

′

(∂Ω) and hence in W 1,p(Ω)′. Therefore, according to Lemma 2.1,

uk → Ap(|u|q−2u), in W 1,p(Ω).

This completes the proof. �

Now we introduce a topological tool, the genus, that was introduced in [18] but
we will use an equivalent definition due to [9].

Given a Banach Space X, we consider the class

Σ = {A ⊂ X : A is closed, A = −A}.

Over this class we define the genus, γ : Σ → N ∪ {∞}, as

γ(A) = min{k ∈ N : there exists ϕ ∈ C(A, Rk − {0}), ϕ(x) = −ϕ(−x)}.

For the proof of Theorem 1.2, we will use the following Theorem whose proof
can be found in [1],
Theorem 2.1. ([1], Theorem 2.23) Let F : X → R verifying

(1) F ∈ C1(X) and even.
(2) F verifies the Palais-Smale condition.
(3) There exists a constant r > 0 such that F(u) > 0 in 0 < ‖u‖X < r, and

F(u) ≥ c > 0 if ‖u‖X = r.
(4) There exists a closed subspace Em ⊂ X of dimension m, and a compact set

Am ⊂ Em such that F < 0 on Am and 0 lies in a bounded component of
Em −Am in Em.

Let B be the unit ball in X, we define

Γ = {h ∈ C(X, X) : h(0) = 0, h is an odd homeomorphism and F(h(B)) ≥ 0},

and

Km = {K ⊂ X : K = −K, K is compact, and γ(K ∩ h(∂B)) ≥ m for all h ∈ Γ}.

Then,
cm = inf

K∈Km

max
u∈K

F(u)
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is a critical value of F , with 0 < c ≤ cm ≤ cm+1 < ∞. Moreover, if cm = cm+1 =
· · · = cm+r then γ(Kcm) ≥ r + 1 where Kcm = {u ∈ X : F ′(u) = 0, F(u) = cm}.

Now we are ready to prove the main result of this section.

Proof of Theorem 1.1 We need to check the hypotheses of Theorem 2.1.
The fact that F is C1 is a straightforward adaptation of the results in [23]. The

Palais-Smale condition was already checked in Lemma 2.2.
Let us now check 3. From the Sobolev immersion theorem, we obtain

F(u) =
1
p
‖u‖p

W 1,p(Ω)−
λ

q
‖u‖q

Lq(∂Ω) ≥
1
p
‖u‖p

W 1,p(Ω)−C
λ

q
‖u‖q

W 1,p(Ω) = g(‖u‖W 1,p(Ω))

where g(t) = 1
p tp − C λ

q tq. As q > p, 3 follows for r = r(C, λ, p, q) small.
Finally, to verify 4, let us consider a sequence of subspaces Em ⊂ W 1,p(Ω) of

dimension m such that Em ⊂ Em+1 and u |∂Ω 6≡ 0 for u 6= 0, u ∈ Em. Hence,

min
u∈Bm

∫
∂Ω

|u|q dσ > 0

where Bm = {u ∈ Em : ‖u‖W 1,p(Ω) = 1}. Now we observe that

F(tu) ≤ tp

p
‖u‖W 1,p(Ω) −

λtq

q
min

u∈Bm

∫
∂Ω

|u|q dσ < 0

for all u ∈ Bm and t ≥ t0. Therefore, 4 follows by taking Am = t0Bm. �

In order to see that the critical points of F that we have found are unbounded
in W 1,p(Ω), we need the following result,
Lemma 2.3. Let (cm) ⊂ R be the sequence of critical values given by Theorem 2.1.
Then limm→∞ cm = ∞.

Proof. Let M = {u ∈ W 1,p(Ω)−{0} : 1
λp‖u‖

p
W 1,p(Ω) ≤ ‖u‖q

Lq(∂Ω)}. By the Sobolev
trace Theorem, there exists a constant r > 0 such that

(2.5) r < ‖u‖q
Lq(∂Ω), ∀u ∈ M.

Let us define
bm = sup

h∈Γ
inf

{u∈∂B∩Ec
m−1}

F(h(u))

It is proved in [1] that bm ≤ cm, hence to prove our result it is enough to show
that bm →∞.

Now, bm+1 ≥ infu∈∂B∩Ec
m
F(h(u)) for all h ∈ Γ. We will construct h̃m ∈ Γ

such that limm→∞ infu∈∂B∩Ec
m
F(h̃m(u)) = ∞. First, let us define the following

sequence
dm = inf{‖u‖W 1,p(Ω) : u ∈ M ∩ Ec

m}
and observe that dm →∞. In fact if not, there exists a sequence um ∈ M∩Ec

m such
that um ⇀ 0 weakly in W 1,p(Ω) and therefore um → 0 in Lq(∂Ω), a contradiction
with (2.5).

Next, let us consider hm(u) = R−1dmu where R > 1 is to be fixed. From hm we
will construct h̃m.

Given u ∈ W 1,p(Ω) such that u |∂Ω 6≡ 0, pick β = β(u) such that
1
λp
‖βu‖p

W 1,p(Ω) = ‖βu‖q
Lq(∂Ω),

so βu ∈ M .
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If we consider g(t) = F(tu) with u |∂Ω 6≡ 0, it is easy to see that g is increasing
in [0, β(u)] so g achieves its maximum on that interval for t = β(u).

Take u0 ∈ Ec
m ∩B such that u0 |∂Ω 6≡ 0, then for R > 1,

R−1dm ≤ dm ≤ ‖βu0‖W 1,p(Ω) = β(u0).

This inequality implies that for every R > 1 and for every u0 ∈ Ec
m ∩ B such that

u0 |∂Ω 6≡ 0 it holds

F(hm(u0)) = F(R−1dmu0) ≥ 0.

As hm(0) = 0, it follows that

hm(Ec
m ∩B) ⊂ {u ∈ W 1,p(Ω) : F(u) ≥ 0},

therefore, hm |Ec
m

satisfies the requirements needed in order to belong to Γ so it
comes natural try to extend hm to W 1,p(Ω) so it belongs to Γ.

Given ε > 0, consider Zε = dmR−1(Ec
m ∩B) + ε(Em ∩B). Let us see that for ε

small, Zε ⊂ M c. If not, there exists a sequence εj → 0 and a sequence (uj) ⊂ M
such that uj ∈ Zεj

. In particular, uj is bounded in W 1,p(Ω) so we can assume that

uj ⇀ u weakly in W 1,p(Ω),

uj → u in Lq(∂Ω).

Moreover, as uj ∈ M it follows that u |∂Ω 6≡ 0. On the other hand, as ‖ · ‖W 1,p(Ω)

is weakly lower semi-continuous, we have that u ∈ M and, as εj → 0, u ∈
dmR−1(Ec

m ∩B) a contradiction.
So we have proved that there exists ε0 > 0 such that Zε0 ⊂ M c. This fact allows

us to define

h̃m(u) =
{

hm(u) = dmR−1u if u ∈ Ec
m,

ε0u if u ∈ Em.

Now, if u ∈ Em ∩B we have

h̃m(u) = ε0u ∈ Zε0 ⊂ M c,

then

F(h̃m(u)) = F(ε0u) =
1
p
‖ε0u‖p

W 1,p(Ω) −
λ

q
‖ε0u‖q

Lq(∂Ω)

=
λ

q

(
q − 1
λp

‖ε0u‖p
W 1,p(Ω) + (

1
λp
‖ε0u‖p

W 1,p(Ω) − ‖ε0u‖q
Lq(∂Ω))

)
≥ 0,

that is, given u ∈ B if we decompose u = u1 + u2 with u1 ∈ Ec
m and u2 ∈ Em ∩B,

we obtain h̃m(u) = h̃m(u1) + h̃m(u2) = dmR−1u1 + ε0u2 ∈ Zε0 ⊂ M c from where
it follows that F(h̃m(u)) ≥ 0 and hence h̃m ∈ Γ.

Finally, we need to prove that F(h̃m(u)) →∞ as m →∞ for u ∈ ∂B ∩Ec
m, but

this follows from the facts that dm →∞, that dm ≤ β(u) for u ∈ B ∩Ec
m and that

we can choose R large enough.
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If u ∈ ∂B ∩ Ec
m, h̃m(u) = dmR−1u and

F(h̃m(u)) =
(dmR−1)p

p
‖u‖p

W 1,p(Ω) −
λ(dmR−1)q

q
‖u‖q

Lq(∂Ω)

= (dmR−1)p

(
1
p
− λ

q
(dmR−1)q−p‖u‖q

Lq(∂Ω)

)
≥ (dmR−1)p

(
1
p
− λ

q
(β(u)R−1)q−p‖u‖q

Lq(∂Ω)

)
= (dmR−1)p

(
1
p
− Rp−q

pq

)
As q > p we conclude that if R is large enough, then F(h̃m(u)) → +∞. �

3. Proof of Theorem 1.2. The subcritical case II

Now we deal with f(u) = λ|u|q−2u in the case 1 < q < p. In this case, we look
for nonpositive critical values of F .

We begin by the following Lemma.

Lemma 3.1. For every n ∈ N there exists a constant ε > 0 such that

γ(F−ε) ≥ n,

where Fc = {u ∈ W 1,p(Ω) : F(u) ≤ c}.

Proof. Let En ⊂ W 1,p(Ω) be a n−dimensional subspace such that u |∂Ω 6≡ 0 for all
u ∈ En, u 6= 0 (cf. Section 2).

Hence we have, for u ∈ En, ‖u‖W 1,p(Ω) = 1,

(3.1) F(tu) =
tp

p
− λtq

q

∫
∂Ω

|u|q dσ ≤ tp

p
− an

λtq

q
,

where an = inf{
∫

∂Ω
|u|q dσ : u ∈ En, ‖u‖W 1,p(Ω) = 1}. Observe that an > 0

because En is finite dimensional. As q < p we obtain from (3.1) that there exists
positive constants ρ and ε such that

F(ρu) < −ε for u ∈ En, ‖u‖W 1,p(Ω) = ρ.

Therefore, if we set Sρ,n = {u ∈ En : ‖u‖W 1,p(Ω) = ρ}, we have that Sρ,n ⊂ F−ε.
Hence by the monotonicity of the genus

γ(F−ε) ≥ γ(Sρ,n) = n,

as we wanted to show. �

Lemma 3.2. The functional F is bounded below and verifies the Palais-Smale
condition.

Proof. First, by the Sobolev-trace inequality, we have

F(u) ≥ 1
p
‖u‖p

W 1,p(Ω) − C
λ

q
‖u‖q

W 1,p(Ω) ≡ h(‖u‖W 1,p(Ω)),

where h(t) = 1
p tp−C λ

q tq. As h(t) is bounded below we conclude that F is bounded
below.
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Now to prove the Palais-Smale condition, let uj ∈ W 1,p(Ω) a Palais-Smale se-
quence. As c = limj→∞ F(uj), using that F ′(uj) = εj → 0 in W 1,p(Ω)′ we have
that, for j large enough,

c− 1 ≤
(

1
p
− 1

q

)
‖uj‖p

W 1,p(Ω) +
1
q
〈εj , uj〉

≤
(

1
p
− 1

q

)
‖uj‖p

W 1,p(Ω) +
1
q
‖εj‖(W 1,p(Ω))′‖uj‖W 1,p(Ω)

≤
(

1
p
− 1

q

)
‖uj‖p

W 1,p(Ω) +
1
q
‖uj‖W 1,p(Ω),

from where it follows that ‖uj‖W 1,p(Ω) ≤ C (recall that p > q).
Therefore, for a subsequence,

uj ⇀ u weakly in W 1,p(Ω),

uj → u in Lq(∂Ω),

and the result follows as in Lemma 2.2. �

Finally, the followings two Theorems give us the proof of Theorem 1.2.
Theorem 3.1. Let

Σ = {A ⊂ W 1,p(Ω)− {0} : A is closed, A = −A},
Σk = {A ⊂ Σ : γ(A) ≥ k},

where γ stands for the genus.
Then

ck = inf
A∈Σk

sup
u∈A

F(u)

is a negative critical value of F and moreover, if c = ck = · · · = ck+r, then
γ(Kc) ≥ r + 1, where Kc = {u ∈ W 1,p(Ω) : F(u) = c, F ′(u) = 0} .

Proof. According to Lemma 3.1 for every k ∈ N there exists ε > 0 such that
γ(F−ε) ≥ k. As F is even and continuous it follows that F−ε ∈ Σk therefore
ck ≤ −ε < 0. Moreover by Lemma 3.2, F is bounded below so ck > −∞. Let us
now see that ck is in fact a critical value for F . To this end let us suppose that
c = ck = · · · = ck+r. As F is even it follows that Kc is symmetric. The Palais-
Smale condition implies that Kc is compact, therefore if γ(Kc) ≤ r by the continuity
property of the genus (see [23]) there exists a neighborhood of Kc, Nδ(Kc) = {v ∈
W 1,p(Ω) : d(v,Kc) ≤ δ}, such that γ(Nδ(Kc)) = γ(Kc) ≤ r.

By the usual deformation argument, we get

η(1,Fc+ε/2 −Nδ(Kc)) ⊂ Fc−ε/2.

On the other hand, by the definition of ck+r there exists A ⊂ Σk+r such that
A ⊂ Fc+ε/2 hence

(3.2) η(1, A−Nδ(Kc)) ⊂ Fc−ε/2.

Now by the monotonicity of the genus (see [23]), we have

γ(A−Nδ(Kc)) ≥ γ(A)− γ(Nδ(Kc)) ≥ k.

As η(1, ·) is an odd homeomorphism it follows that (see [23])

γ(η(1, A−Nδ(Kc))) ≥ γ(A−Nδ(Kc)) ≥ k.
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But as η(1, A−Nδ(Kc)) ∈ Σk then

sup
u∈η(1,A−Nδ(Kc))

F(u) ≥ c = ck,

a contradiction with (3.2). �

We end the section showing that the critical points of F are a compact set of
W 1,p(Ω).
Theorem 3.2. The set K = {u ∈ W 1,p(Ω) : F ′(u) = 0} is compact in W 1,p(Ω).

Proof. As F is C1 it is immediate that K is closed. Let uj be a sequence in K. We
have that

0 = F ′(uj)uj = ‖uj‖p
W 1,p(Ω) − λ

∫
∂Ω

|uj |q dσ ≥ ‖uj‖p
W 1,p(Ω) − Cλ‖uj‖q

W 1,p(Ω).

As 1 < q < p, we conclude that uj is bounded in W 1,p(Ω). Now we can use
Palais-Smale condition to extract a convergent subsequence. �

4. Proof of Theorem 1.3. A nonlinear eigenvalue problem

In this section we deal with f(u) = λ|u|p−2u, which is a nonlinear eigenvalue
problem.

Let us consider Mα = {u ∈ W 1,p(Ω) : ‖u‖p
W 1,p(Ω) = pα} and

ϕ(u) =
1
p

∫
∂Ω

|u|p dσ.

We are looking for critical points of ϕ restricted to the manifold Mα using a minimax
technique.

Let us define ρ : W 1,p(Ω)− {0} → (0,+∞) by

ρ(u) =

(
pα

‖u‖p
W 1,p(Ω)

) 1
p

.

This function ρ is even, bounded away the origin and verifies that ρ(u)u ∈ Mα if
u 6= 0. Moreover, we have that the derivative of ρ is given by

(4.1) 〈ρ′(u), v〉 = −(pα)1/p‖u‖−(p+1)
W 1,p(Ω)

(∫
Ω

|∇u|p−2∇u∇v + |u|p−2uv dx

)
.

We observe that ρ′ is odd and continuous uniformly over bounded sets away from
the origin. It is straightforward to check, from (4.1), that 〈ρ′(u), v〉 = 0 if and only
if
∫
Ω
|∇u|p−2∇u∇v + |u|p−2uv dx = 0.

As p > 1, it follows that W 1,p(Ω) is a reflexive uniformly convex Banach space so
given ϕ ∈ W 1,p(Ω)′ there exists a unique element in W 1,p(Ω), that we will denote
by J(ϕ) such that

〈ϕ, J(ϕ)〉 = ‖ϕ‖2
W 1,p(Ω)′ ,

‖J(ϕ)‖W 1,p(Ω) = ‖ϕ‖W 1,p(Ω)′ .

Therefore we define J : W 1,p(Ω)′ → W 1,p(Ω) the duality mapping which is odd
and uniformly continuous over bounded sets.
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Let us now define

〈Pu; v〉 =

∫
∂Ω

|u|p dσ

‖u‖p
W 1,p(Ω)

(∫
Ω

|∇u|p−2∇u∇v + |u|p−2uv dx

−
∫

∂Ω

|∇u|p−2 ∂u

∂ν
v dσ

)
,

〈Du; v〉 =
∫

∂Ω

|u|p−2uv dσ − 〈Pu; v〉,

and
Tu = J(Du)−Au,

where A is given by

A =
〈ρ′(u); J(Du)〉〈Pu + Du;u〉+ 〈Pu; J(Du)〉

(〈ρ′(u);u〉+ 1)〈Pu + Du;u〉
.

This application, T , is uniformly continuous and odd. Moreover, it is bounded
in Mα, so there exists constants τ0, γ0 > 0 such that, for every τ ∈ [−τ0, τ0] and
every u ∈ Mα it holds

‖u + τTu‖W 1,p(Ω) ≥ γ0 > 0.

Now, we are able to define the flow

H(u, τ) = ρ(u + τTu)(u + τTu),

so we obtain a well defined application, H, which is odd in u, uniformly continuous
and verifies H(u, 0) = u.

The main property of H is that defines trajectories in Mα along which the
functional ϕ is increasing.
Lemma 4.1. There exists an application r(u, τ) such that r(u, τ) → 0 as τ → 0
uniformly in u ∈ Mα and

ϕ(H(u, τ)) = ϕ(u) +
∫ τ

0

‖Du‖2
W 1,p(Ω)′ + r(u, s) ds

for every u ∈ Mα, τ ∈ [−τ0, τ0].

Proof. An elementary computation gives us

ϕ(H(u, τ)) = ϕ(u) +
∫ τ

0

〈ϕ′(H(u, s));
∂H

∂s
(u, s)〉ds

= ϕ(u) +
∫ τ

0

‖Du‖2
W 1,p(Ω)′ + 〈ϕ′(H(u, s));

∂H

∂s
(u, s)〉 − 〈Du; J(Du)〉ds.

Hence, if we call r(u, τ) = 〈ϕ′(H(u, s)); ∂
∂sH(u, s)〉− 〈Du; J(Du)〉, by our choice of

A it holds that r(u, 0) = 0, and the result follows as T (and therefore H) is bounded
in Mα. �

Now we are ready to prove the Deformation Lemma needed in order to apply
the mini-max technique.
Lemma 4.2. Given β > 0, we denote ϕβ = {u ∈ Mα : ϕ(u) ≥ β}. Let β > 0
be fixed, and suppose that there exists a relatively open set U ⊂ Mα and positive
constants δ < ρ such that

‖Du‖W 1,p(Ω)′ ≥ δ, if u ∈ Vρ = {u ∈ Mα : u 6∈ U, and |ϕ(u)− β| ≤ ρ}.
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Then, there exists an ε > 0 and a continuous, odd operator Hε such that

Hε(ϕβ−ε − U) ⊂ ϕβ+ε.

Proof. First, we take τ1 > 0 such that |r(u, τ)| ≤ 1
2δ2 for all u ∈ Mα, τ ∈ [−τ1, τ1].

By Lemma 4.1 we have that ϕ(H(u, τ)) ≥ ϕ(u) + 1
2δ2τ for every u ∈ Vρ and

0 < τ < τ1.
Let ε = min{ρ, 1

4δ2τ1}, and from the definition of Vρ, if u ∈ Vρ∩ϕβ−ε, we obtain

ϕ(H(u, τ1)) ≥ ϕ(u) + 2ε ≥ β + ε.

Again by Lemma 4.1, given u ∈ Vρ, we have that ϕ(H(u, τ)) is strictly increasing
for τ small, and hence we can define

tε(u) = min{τ ≥ 0 : ϕ(H(u, τ)) = β + ε}.

This tε(u) is well defined, continuous and verifies 0 < tε(u) ≤ τ1. Now, we choose
Hε as

Hε(u) =
{

H(u, tε(u)) if u ∈ Vε,
u if u ∈ ϕβ−ε − (U ∪ Vε).

Finally it is straightforward to check that Hε satisfies all our requirements. �

Now we prove the Palais-Smale condition for the functional ϕ on Mα.
Lemma 4.3. Let β > 0 and (uj) ⊂ Mα be a Palais-Smale sequence on Mα above
level β, that is

ϕ(uj) ≥ β, Duj → 0.

Then there exists a subsequence that converges strongly in W 1,p(Ω).

Proof. As Mα is bounded, we can assume that uj ⇀ u weakly in W 1,p(Ω). Also,
as ϕ is compact, we can assume that ϕ(uj) → ϕ(u) and hence ϕ(u) ≥ β and

µj ≡
∫

∂Ω
|uj |p dσ

‖uj‖p
W 1,p(Ω)

→ µ ≡
∫

∂Ω
|u|p dσ

αp
,

therefore u 6≡ 0 and ϕ′(u) 6= 0.
Now, as ϕ′ is compact and Duj → 0 we have

0 = lim
j

Duj = lim
j

ϕ′(uj)− Puj = ϕ′(u)− µ lim
j

P0uj ,

where

〈P0uj ; v〉 =
∫

Ω

|∇u|p−2∇u∇v + |u|p−2uv dx−
∫

∂Ω

|∇u|p−2 ∂u

∂ν
v dσ.

Therefore P0uj → µ−1ϕ′(u) and the result follows applying Lemma 2.1 as Ap =
P−1

0 . �

Theorem 4.1. Let Ck = {C ⊂ Mα : C is compact, symmetric and γ(C) ≤ k}
and let

(4.2) βk = sup
C∈Ck

min
u∈C

ϕ(u).

Then βk > 0 and there exists uk ∈ Mα such that ϕ(uk) = βk and uk is a weak
solution of (1.1) with λk = α/βk.
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Proof. First, let us see that βk > 0. It is immediate that γ(Mα) = +∞, hence βk is
well defined in the sense that for every k, Ck 6= ∅. As we can choose a set C ∈ Ck

with the property u |∂Ω 6≡ 0 if u ∈ C, we conclude that βk = supC∈Ck
minu∈C ϕ(u) >

0.
Now, for a fixed k let us prove the existence of the solution uk. First, let us see

that there exists a sequence (uj) ∈ Mα such that ϕ(uj) → βk and Duj → 0. To see
this fact, assume that it is false, then there exists positive constants δ and ρ such
that

‖Du‖ ≥ δ, if u ∈ Mα and |ϕ(u)− βk| ≤ ρ.

We can assume that δ < βk. By the deformation Lemma 4.2 there exists a constant
ε > 0 and a continuous and odd Hε such that Hε(ϕβk−ε) ⊂ ϕβk+ε. By the definition
of βk there exists Cε ∈ Ck such that ϕ(u) ≥ βk − ε for every u ∈ Cε, then ϕ(u) ≥
βk + ε for every u ∈ Hε(Cε). But we have that γ(Hε(Cε)) ≥ k a contradiction
with the definition of βk. So we have proved that there exits a sequence (uj) ∈
Mα such that ϕ(uj) → βk and Duj → 0. From Lemma 4.3 we can extract a
converging subsequence uj → uk that gives us the desired solution that must verify,
by continuity of ϕ, ϕ(uk) = βk. �

This Theorem proves the existence of nontrivial solutions for (1.1) but we can
prove the following
Theorem 4.2. Let Kj = {u ∈ Mα ; ϕ(u) = βj , Du = 0}. If βj = βj+1 = · · · =
βj+r, then γ(Kj) ≥ r + 1.

Proof. The proof is analogous to that of Theorem 3.1. �

In this way we have proved the existence of infinitely many solutions. The next
Theorem gives us the existence of infinitely many eigenvalues.
Theorem 4.3. Let βk be as in (4.2), then

lim
k

βk = 0,

and therefore
lim

k
λk = +∞.

Proof. Let Ej be a sequence of subspaces of W 1,p(Ω), such that Ei ⊂ Ei+1, ∪Ei =
W 1,p(Ω) and dim(Ei) = i. Let Ec

i the topological complementary of Ei.
Let

β̃k = sup
C∈Ck

min
u∈C∩Ec

k−1

ϕ(u).

β̃k is well defined and β̃k ≥ β > 0. Let us prove that limk β̃k = 0. Assume, by
contradiction, that there exists a constant κ > 0 such that β̃k > κ > 0 for all k.
Then for every k there exists Ck such that

β̃k > min
u∈Ck∩Ec

k−1

ϕ(u) > κ.

Hence there exists uk ∈ Ck ∩ Ec
k−1 such that

β̃k > ϕ(uk) > κ.

As Mα is bounded, we can assume, taking a subsequence if necessary, that uk ⇀ u
weakly in W 1,p(Ω) and uk → u strongly in Lp(∂Ω). Hence ϕ(u) ≥ κ > 0 but this
is a contradiction with the fact that u ≡ 0 because uk ∈ Ec

k−1. �
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5. Proof of Theorem 1.4. The critical case I

In this section we study the critical case with a perturbation. We consider
f(u) = |u|p∗−2u + λ|u|r−2u with p < r < p∗.

To prove our existence result, since we have lost the compactness in the inclusion
W 1,p(Ω) ↪→ Lp∗(∂Ω), we can no longer expect the Palais-Smale condition to hold.
Anyway we can prove a local Palais-Smale condition that will hold for F(u) below
a certain value of energy.

The technical result used here, the concentrated compactness method, is mainly
due to [19], [20].

Let uj be a bounded sequence in W 1,p(Ω) then there exists a subsequence that
we still denote uj , such that

uj ⇀ u weakly in W 1,p(Ω),

uj → u strongly in Lr(∂Ω), 1 ≤ r < p∗,

|∇uj |p ⇀ dµ, |uj |∂Ω |p
∗

⇀ dη,

* weakly in the sense of measures. We observe that dη is a measure supported on
∂Ω.

If we consider φ ∈ C∞(Ω), from the Sobolev trace inequality we obtain, passing
to the limit,(∫

∂Ω

|φ|p
∗
dη

) 1
p∗

S1/p ≤
(∫

Ω

|φ|pdµ +
∫

Ω

|u|p|∇φ|p dx +
∫

Ω

|φu|p dx

)1/p

,(5.1)

where S is the best constant in the Sobolev trace embedding Theorem.
¿From (5.1), we observe that, if u = 0 we get a reverse Holder type inequality

(but it involves one integral over ∂Ω and one over Ω) between the two measures µ
and η.

Now we state the following Lemma due to [19], [20].

Lemma 5.1. Let uj be a weakly convergent sequence in W 1,p(Ω) with weak limit
u such that

|∇uj |p ⇀ dµ and |uj |∂Ω |p
∗

⇀ dη,

* weakly in the sense of measures. Then there exists x1, ..., xl ∈ ∂Ω such that

(1) dη = |u|p∗ +
∑l

j=1 ηjδxj
, ηj > 0,

(2) dµ ≥ |∇u|p +
∑l

j=1 µjδxj
, µj > 0,

(3) (ηj)
p

p∗ ≤ µj

S

Next, we use Lemma 5.1 to prove a local Palais-Smale condition.

Lemma 5.2. Let uj ⊂ W 1,p(Ω) be a Palais-Smale sequence for F , with energy

level c. If c <
(

1
p −

1
p∗

)
S

p∗
p∗−p , where S is the best constant in the Sobolev trace

inequality, then there exists a subsequence ujk
that converges strongly in W 1,p(Ω).

Proof. From the fact that uj is a Palais-Smale sequence it follows that uj is bounded
in W 1,p(Ω) (see Lemma 2.2). By Lemma 5.1 there exists a subsequence, that we
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still denote uj , such that

uj ⇀ u weakly in W 1,p(Ω),

uj → u in Lr(∂Ω), 1 < r < p∗, and a.e. in ∂Ω,

|∇uj |p ⇀ dµ ≥ |∇u|p +
l∑

k=1

µkδxk
,

|uj |∂Ω |p
∗

⇀ dη = |u |∂Ω |p
∗

+
l∑

k=1

ηkδxk
.

(5.2)

Let φ ∈ C∞(RN ) such that

φ ≡ 1 in B(xk, ε), φ ≡ 0 in B(xk, 2ε)c, |∇φ| ≤ 2
ε
,

where xk belongs to the support of dη.
Consider {ujφ}. Obviously this sequence is bounded in W 1,p(Ω). As F ′(uj) → 0

in W 1,p(Ω)′, we obtain that

lim
j→∞

〈F ′(uj);φuj〉 = 0.

By (5.2) we obtain,

lim
j→∞

∫
Ω

|∇uj |p−2∇uj∇φuj dx =
∫

∂Ω

φ dη + λ

∫
∂Ω

|u|rφ dσ −
∫

Ω

φ dµ−
∫

Ω

|u|pφdx.

Now, by Hölder inequality and weak convergence, we obtain

0 ≤ lim
j→∞

∣∣∣∣∫
Ω

|∇uj |p−2∇uj∇φuj dx

∣∣∣∣
≤ lim

j→∞

(∫
Ω

|∇uj |pdx

)(p−1)/p(∫
Ω

|∇φ|p|uj |pdx

)1/p

≤ C

(∫
B(xk,2ε)∩Ω

|∇φ|p|u|pdx

)1/p

≤ C

(∫
B(xk,2ε)∩Ω

|∇φ|Ndx

)1/N (∫
B(xk,2ε)∩Ω

|u|pN/(N−p)dx

)(N−p)/pN

≤ C

(∫
B(xk,2ε)∩Ω

|u|pN/(N−p)dx

)(N−p)/pN

→ 0 as ε → 0.

Then

(5.3) lim
ε→0

[∫
∂Ω

φdη + λ

∫
∂Ω

|u|rφdσ −
∫

Ω

φdµ−
∫

Ω

|u|pφdx

]
= ηk − µk = 0.

By Lemma 5.1 we have that (ηk)
p

p∗ S ≤ µk, therefore by (5.3) we obtain

(ηk)
p

p∗ S ≤ ηk.

Then, either ηk = 0 or

(5.4) ηk ≥ S
p∗

p∗−p .



16 J. FERNANDEZ BONDER AND J.D. ROSSI

If (5.4) does indeed occur for some k0 then, from the fact that uj is a Palais-Smale
sequence, we obtain

c = lim
j→∞

F(uj) = lim
j→∞

F(uj)−
1
p
〈F ′(uj);uj〉

≥
(

1
p
− 1

p∗

)∫
∂Ω

|u|p
∗
dσ +

(
1
p
− 1

p∗

)
S

p∗
p∗−p + λ

(
1
p
− 1

r

)∫
∂Ω

|u|r dσ

≥
(

1
p
− 1

p∗

)
S

p∗
p∗−p .

(5.5)

As c <
(

1
p −

1
p∗

)
S

p∗
p∗−p , it follows that

∫
∂Ω

|uj |p
∗
dσ →

∫
∂Ω

|u|p∗ dσ and therefore

uj → u in Lp∗(∂Ω). Now the proof finishes using the continuity of the operator
Ap. �

Proof of Theorem 1.4: In view of the previous result, we seek for critical values
below level c. For that purpose, we want to use the Mountain Pass Lemma. Hence
we have to check the following conditions:

1) There exist constants R, r > 0 such that if ‖u‖W 1,p(Ω) = R, then F(u) > r.

2) There exists v0 ∈ W 1,p(Ω) such that ‖v0‖W 1,p(Ω) > R and F(v0) < r.

Let us first check 1). By the Sobolev trace Theorem we have,

F(u) =
1
p
‖u‖p

W 1,p(Ω) −
1
p∗

∫
∂Ω

|u|p
∗
dσ − λ

r

∫
∂Ω

|u|r dσ

≥ 1
p
‖u‖p

W 1,p(Ω) −
1
p∗

Sp∗‖u‖p∗

W 1,p(Ω) −
λ

r
C‖u‖r

W 1,p(Ω).

Let

g(t) =
1
p
tp − 1

p∗
Sp∗tp

∗
− λ

r
Ctr.

It is easy to check that g(R) > r for some R, r > 0.

2) is immediate as for a fixed w ∈ W 1,p(Ω) with w |∂Ω 6≡ 0 we have

lim
t→∞

F(tw) = −∞.

Now the candidate for critical value according to the Mountain Pass Theorem is

(5.6) c = inf
φ∈C

sup
t∈[0,1]

F(φ(t)),

where C = {φ : [0, 1] → W 1,p(Ω) ; continuous and φ(0) = 0, φ(1) = v0}. The

problem is to show that c <
(

1
p −

1
p∗

)
S

p∗
p∗−p in order to apply the local Palais-

Smale condition.

We fix w ∈ W 1,p(Ω) with ‖w‖Lp∗ (∂Ω) = 1, and define h(t) = F(tw). We want
to study the maximum of h. As limt→∞ h(t) = −∞ it follows that there exists a
tλ > 0 such that supt>0 F(tw) = h(tλ). Differentiating we obtain,

(5.7) 0 = h′(tλ) = tp−1
λ ‖w‖p

W 1,p(Ω) − tp
∗−1

λ − tr−1
λ λ‖w‖r

Lr(∂Ω),

from where it follows that

‖w‖p
W 1,p(Ω) = tp

∗−p
λ + tr−p

λ λ‖w‖r
Lr(∂Ω).
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Hence tλ ≤ ‖w‖
p

p∗−p

W 1,p(Ω), then from (5.7) as tp
∗−r

λ +λ‖w‖r
Lr(∂Ω) →∞ as λ →∞, we

obtain that

(5.8) lim
λ→∞

tλ = 0.

On the other hand, it is easy to check that if λ > λ̃ it must be F(tλ̃w) ≥ F(tλw),
so by (5.8) we get

lim
λ→∞

F(tλw) = 0.

But this identity means that there exists a constant λ0 > 0 such that if λ ≥ λ0,
then

sup
t≥0

F(tw) <

(
1
p
− 1

p∗

)
S

p∗
p∗−p ,

and the proof is finished if we choose v0 = t0w with t0 large in order to have
F(t0w) < 0. �

6. Proof of Theorem 1.5. The critical case II

In this section we deal with problem (1.4) when 1 < q < p that is we are
considering f(u) = |u|p∗−2u + λ|u|r−2u. Applying a mini-max technique we will
show the existence of infinitely many nontrivial critical points of the asociated
functional F when λ is small enough.

We begin, as in the previous section, using Lemma 5.1 to prove a local Palais-
Smale condition.
Lemma 6.1. Let (uj) ⊂ W 1,p(Ω) be a Palais-Smale sequence for F , with energy

level c. If c <
(

1
p −

1
p∗

)
S

p∗
p∗−p −Kλ

p∗
p∗−r , where K depends only on p, r, N , and

|∂Ω|, then there exists a subsequence (ujk
) that converges strongly in W 1,p(Ω).

Proof. From the fact that uj is a Palais-Smale sequence it follows that uj is bounded
in W 1,p(Ω) (see Lemma 2.2 and Lemma 5.2).

Now the proof follows exactly as in Lemma 5.2 until we get to

c ≥
(

1
p
− 1

p∗

)∫
∂Ω

|u|p
∗
dσ +

(
1
p
− 1

p∗

)
S

p∗
p∗−p + λ

(
1
p
− 1

r

)∫
∂Ω

|u|r dσ,

where u is the weak limit of uj in W 1,p(Ω).
Applying now Hölder inequality, we find

c ≥
(

1
p
− 1

p∗

)
S

p∗
p∗−p +

(
1
p
− 1

p∗

)
‖u‖p∗

Lp∗ (∂Ω)
+ λ

(
1
p
− 1

r

)
|∂Ω|1−

r
p∗ ‖u‖r

Lp∗ (∂Ω).

Now, let f(x) = c1x
p∗ − λc2x

r. This function reaches its absolute minimum at
x0 = (λc2r

p∗c1
)

1
p∗−r , that is

f(x) ≥ f(x0) = −Kλ
p∗

p∗−r ,

where K = K(p, q,N, |∂Ω|).
Hence c ≥

(
1
p −

1
p∗

)
S

p∗
p∗−p −Kλ

p∗
p∗−r , which contradicts our hypothesis. There-

fore
lim

j→∞

∫
∂Ω

|uj |p
∗
dσ =

∫
∂Ω

|u|p
∗
dσ,

and the rest of the proof is as that of Lemma 5.2. �
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We now observe, using the Sobolev trace Theorem, that

F(u) ≥ 1
p
‖u‖p

W 1,p(Ω) − c1‖u‖p∗

W 1,p(Ω) − λc2‖u‖r
W 1,p(Ω) = j(‖u‖W 1,p(Ω)),

where j(x) = 1
pxp − c1x

p∗ − λc2x
r. As j attains a local but not a global minimum

(j is not bounded below), we have to perform some sort of truncation. To this end
let x0, x1 be such that m < x0 < M < x1 where m is the local minimum of j and
M is the local maximum and j(x1) > j(m). For these values x0 and x1 we can
choose a smooth function τ(x) such that τ(x) = 1 if x ≤ x0, τ(x) = 0 if x ≥ x1 and
0 ≤ τ(x) ≤ 1. Finally, let ϕ(u) = τ(‖u‖W 1,p(Ω)) and define the truncated functional
as follows

F̃(u) =
1
p

∫
Ω

|∇u|p + |u|p dx− 1
p∗

∫
∂Ω

|u|p
∗
ϕ(u) dσ − λ

r

∫
∂Ω

|u|r dσ.

As above, F̃(u) ≥ j̃(‖u‖W 1,p(Ω)) where j̃(x) = 1
pxp−c1x

p∗τ(x)−λc2x
r. We observe

that if x ≤ x0 then j̃(x) = j(x) and if x ≥ x1 then j̃(x) = 1
pxp − λc2x

r.

Now we state a Lemma that contains the main properties of F̃ .
Lemma 6.2. F̃ is C1, if F̃(u) ≤ 0 then ‖u‖W 1,p(Ω) < x0 and F(v) = F̃(v) for
every v close enough to u. Moreover there exists λ1 > 0 such that if 0 < λ < λ1

then F̃ satisfies a local Palais-Smale condition for c ≤ 0.

Proof. We only have to check the local Palais-Smale condition. Observe that every
Palais-Smale sequence for F̃ with energy level c ≤ 0 must be bounded, therefore by
Lemma 6.1 if λ verifies 0 <

(
1
p −

1
p∗

)
S

p∗
p∗−p −Kλ

p∗
p∗−r then there exists a convergent

subsequence. �

The following Lemma gives the final ingredients needed in the proof of Theorem
1.3.

Lemma 6.3. For every n ∈ N there exists ε > 0 such that

γ(F̃−ε) ≥ n,

where F̃−ε = {u , F̃(u) ≤ −ε}.

Proof. The proof is analogous to that of Lemma 3.1. �

Finally, we are ready to prove the main result of this section.

Proof of Theorem 1.5: The proof is analogous to that of Theorem 1.2, here we
use Lemma 6.1 and Lemma 6.3 instead of Lemma 3.2 and Lemma 3.1 respectively
to work with the functional F̃ and Lemma 6.2 to conclude on F . �

7. Proof of Theorem 1.6. The supercritical case

In this section we will consider a nonlinearity f of the form

f(u) = λ|u|q−2u + |u|r−2u,

where q ≥ p∗ > r > p. In this case the functional F is not well defined in
W 1,p(Ω), so in order to apply variational arguments we perform a truncation on
the supercritical term, find a solution of the truncated problem and finally show
that this solution lies below the truncation level so it is a solution of our original
problem.
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Proof of Theorem 1.6: We follow ideas from [4]. Let us consider the following
truncation of |u|q−2u

h(u) =

 0 u < 0,
uq−1 0 ≤ u < K,
Kq−rur−1 u ≥ K.

Then h verifies h(u) ≤ Kq−rur−1.
So we consider the truncated problem

(7.1)


∆pu = up−1 in Ω,

|∇u|p−2 ∂u

∂ν
= λh(u) + ur−1 on ∂Ω,

and we look a positive nontrivial solution of (7.1) that satisfies u ≤ K. Such a
solution will be a nontrivial positive solution of (1.1).

To this end, we consider the truncated functional

(7.2) Fλ(u) =
1
p

∫
Ω

|∇u|p + |u|p dx− λ

∫
∂Ω

H(u) dσ −
∫

∂Ω

|u|r

r
dσ,

where H(u) verifies H ′(u) = h(u).
By the results of §2 there exists a Mountain Pass solution u = uλ for (7.1),

that is a critical point of Fλ with energy level cλ. One can easily check that this
least energy solution u is positive. Moreover the energy level cλ is a decreasing
function of λ, so we have that Fλ(u) = cλ ≤ c0. Now using (7.2), (7.1) and that
H(u) ≤ 1

r h(u)u we have that

c0 ≥ Fλ(u) =
1
p

∫
Ω

|∇u|p + |u|p dx− λ

∫
∂Ω

H(u) dσ −
∫

∂Ω

|u|r

r
dσ

≥ 1
p

∫
Ω

|∇u|p + |u|p dx− 1
r

(
λ

∫
∂Ω

h(u)u dσ +
∫

∂Ω

|u|r dσ

)
=
(

1
p
− 1

r

)∫
Ω

|∇u|p + |u|p dx.

So, as r > p we obtain

‖u‖W 1,p(Ω) ≤ C = C(c0, p, r).

Now by the Sobolev trace inequality we get

(7.3) ‖u‖Ls(∂Ω) ≤ S−1/p‖u‖W 1,p(Ω) ≤ C = C(c0, p, r, s, Ω).

Let us define

uL(x) =
{

u(x) u(x) ≤ L,
L u(x) > L.

Multiplying the equation (7.1) by upβ
L u we get∫

Ω

|∇u|p−2∇u∇(upβ
L u) dx +

∫
Ω

upupβ
L dx = λ

∫
∂Ω

h(u)uupβ
L dσ +

∫
∂Ω

urupβ
L dσ.

Therefore, using that h(u)u ≤ Kq−rur and the definition of uL, we obtain∫
Ω

|∇u|pupβ
L dx +

∫
Ω

upupβ
L dx ≤

(
λKq−r + 1

) ∫
∂Ω

urupβ
L dσ.
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Now we set wL = uuβ
L. Then, we obtain

‖wL‖p
W 1,p(Ω) =

∫
Ω

|∇wL|p + |wL|p dx

≤ C

(∫
Ω

|∇u|pupβ
L dx +

∫
Ω

upβpu
p(β−1)
L |∇uL|p dx +

∫
Ω

upupβ
L dx

)
≤ C

(∫
Ω

|∇u|pupβ
L dx +

∫
Ω

upupβ
L dx

)
≤ C

(
λKq−r + 1

) ∫
∂Ω

urupβ
L dσ.

Therefore, by Holder and Sobolev trace inequalities, we get

‖wL‖p

Lp∗ (∂Ω)
≤ S−1‖wL‖p

W 1,p(Ω) ≤ C
(
λKq−r + 1

) ∫
∂Ω

urupβ
L dσ

≤ C
(
λKq−r + 1

)(∫
∂Ω

up∗ dσ

) r−p
p∗
(∫

∂Ω

wα∗

L dσ

) p
α∗

,

where α∗ = pp∗

p∗−r+p < p∗. So by (7.3),

‖wL‖p

Lp∗ (∂Ω)
≤ C

(
λKq−r + 1

)
‖u‖r−p

Lp∗ (∂Ω)
‖wL‖p

Lα∗ (∂Ω)

≤ C
(
λKq−r + 1

)
‖wL‖p

Lα∗ (∂Ω)
.

Now if uβ+1 ∈ Lα∗(∂Ω) by the dominated convergence Theorem and Fatou’s
Lemma we get

‖uβ+1‖p

Lp∗ (∂Ω)
≤ C

(
λKq−r + 1

)
‖uβ+1‖p

Lα∗ (∂Ω)
,

that is,

‖u‖Lp∗(β+1)(∂Ω) ≤ C
(
λKq−r + 1

) β+1
p ‖u‖Lα∗(β+1)(∂Ω).

Let κ = p∗

α∗ , iterating the last inequality we have

‖u‖Lκjα∗ (∂Ω) ≤ C
(
λKq−r + 1

)θ ‖u‖Lα∗ (∂Ω).

Using again (7.3) we get

‖u‖L∞(∂Ω) ≤ C
(
λKq−r + 1

)θ
.

Hence, if K0 > C, for every K ≥ K0 there exists λ(K) such that if λ < λ(K) then

‖u‖L∞(∂Ω) ≤ K.

This finishes the proof. �

8. Proof of Theorem 1.7. A nonexistence result

In this Section we prove a nonexistence result for positive regular decaying so-
lutions for (1.1) in RN

+ = {x1 > 0}. That is we are dealing with a positive regular
solution of

(8.1)


∆pu = up−1 in RN

+ ,

|∇u|p−2 ∂u

∂ν
= uq−1 on ∂RN

+ ,

that satisfies the hypotheses of Theorem 1.7.
We observe that in the special case p = 2 there exists a solution if we drop the

decaying assumption, namely u(x) = e−x1 is a solution for every q.
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Proof of Theorem 1.7. First we multiply the equation in (8.1) by u and integrate
by parts to obtain

(8.2)
∫

RN
+

|∇u|p + up dx−
∫

∂RN
+

uq dx′ = 0.

Note that our decaying and integrability assumptions on u justify all the integra-
tions by parts made along this proof.

Now we multiply by x∇u and integrate by parts to obtain

−
∫

RN
+

|∇u|p−2∇u∇(x∇u) dx +
∫

∂RN
+

uq−1x∇u dx′ =
1
p

∫
RN

+

x∇up dx.

Hence further integrations by parts gives us(
−1 +

N

p

)∫
RN

+

|∇u|p dx− N − 1
q

∫
∂RN

+

uq dx′ =
N

p

∫
RN

+

up dx.

Using (8.2) we arrive at(
−1 +

N

p
− N − 1

q

)∫
∂RN

+

uq dx′ =
(
−1 +

2N

p

)∫
RN

+

up dx > 0.

Therefore, if u is not identically zero, we must have

−1 +
N

p
− N − 1

q
> 0

that is

q > p∗ =
p(N − 1)
N − p

,

as we wanted to show. �
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