STABILITY OF SOLUTIONS FOR NONLOCAL PROBLEMS
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ABSTRACT. In this paper we deal with the stability of solutions to fractional
p—Laplace problems with nonlinear sources when the fractional parameter
s goes to 1. We prove a general convergence result for general weak solu-
tions which is applied to study the convergence of ground state solutions of
p—fractional problems in bounded and unbounded domains as s goes to 1.
Moreover, our result applies to treat the stability of p—fractional eigenvalues
as s goes to 1.

1. INTRODUCTION

In this paper we analyze the stability of solutions for fractional p—laplace equa-
tions when the fractional parameter goes to 1. This is the transition from nonlocal-
to-local equations. This phenomena has been studied by several authors in the
past, but as far as we are concerned, the problem for general solutions of nonlinear
equations is, prior to this work, missing in the literature.

Our results rely deeply in the seminal papers of Bourgain-Brezis-Mironescu [4, 5],
where the authors study the behavior of p—fractional energies as s 1+ 1 (see also
14)).

In this line of research, in [6] the authors dealt with the asymptotic behavior
of eigenfunctions of the Dirichlet fractional p—Laplacian, i.e., a right hand side
being a multiple of a p—power. Also, for the linear setting, in [2] the authors
studied the behavior as s T 1 of solutions of the Poisson equation to its local
counterpart. See also [9] for a similar result in the context of fractional Sobolev-
Orlicz spaces. Moreover, in [3] the same task was done for ground state solutions
of the fractional semilinear Schrodinger equation. Nevertheless, in the quasilinear
case several technical difficulties arise and up to our knowledge this situation was
not contemplated with general right hand side and that is the main aim of this
manuscript.

To be precise, we analyze the asymptotic behavior as s T 1 of any family of
solutions of the problem

(1.1) {(—Ap)su = f(z,u) inQ

u=0 in R™\ Q,

where the nonlinear term f(x,u) is required to have a subcritical growth in the
sense of the Sobolev embeddings, and prove that any accumulation point of the
sequence of solutions is in fact a solution to the local limit problem

{Apu = f(z,u) in€

1.2
(12) u=~0 on 0.
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As a consequence of our result, under appropriate further structural assumptions
on f, we prove that any accumulation point of a sequence of ground state solutions
to the fractional Schrédinger equation

(A u+ V(x)|ulP~?u = f(z,u) inQ
u=0 in R™\ Q,

is a ground state solution to the corresponding local Schrodinger equation

—Apu+ V(x)|ulP~2u = f(z,u) inQ
u=20 on 0N.

For this problem, our method allow us to treat almost without changes the bounded
and the unbounded domain cases.
Finally, we apply our general result to deal with the eigenvalue problem

(—Ap)*u = NulP~2u  in Q
w=0 in R\,

and get some mild generalization of the results in [6].

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we collect some preliminaries needed in the course of the work. This
material is well-known to experts (with the only possible exception of Lemma 2.8),
but we choose to include it in order to make the paper as self contained as possible.
In Section 3 we prove our main result (Theorem 3.3) about the asymptotic behavior
of any family of solutions to (1.1) that has some uniform (in s) bound. Finally,
in Sections 4 and 5 we apply the result in Section 3 to deal with the problem of
ground state solutions to the nonlinear fractional Schrodinger equation and to the
fractional eigenvalue problem respectively.

2. PRELIMINARIES

2.1. Fractional Sobolev spaces. Given s € (0,1) and 1 < p < oo, for any
u € L (R™) we define the Gagliardo (s, p)fseminorm as

lu(z) —u(y)” )I”

The constant K (n, s, p) is a normalizing constant that is defined as
K(na S,p) = (1 - S)’C(nvp)a
where

/C(n,p)_l = %‘/Sn_l wﬁ dSw

and S"! is the unit sphere in R”.
The main property of this constant is that, for any u € LP(R™), one has that

lim[ul?,, = |Vulf,

where the above limit is understood as equality if u € W1P(R") and lim inf 41 [u? , =
oo otherwise. See [4].
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Given 2 C R™ an open set, we then define the fractional order Sobolev spaces as
WP(R™) := {u € LP(R"™): [u]s’p < oo},
WeP(Q) := {u € W*P(R"): u =0 ae. in R"\ Q}.

Remark 2.1. Another way to define the fractional order Sobolev spaces is to consider
the Gagliardo energy in )

()P
(W] i = K nsp//QXQ Iz —y |n+spddy
and then define

WS”’(Q) ={u € LP(Q): [u]s po < oo}, WOS”’(Q) = C0(Q),

wmer = (lullpo +[lf 0)7-

It is a known fact that, in general, st P(2) € W§P(£2), but one has equality, for
instance, if © is a Lipschitz domain. Moreover WN/(f’p(Q) =W5P(Q) = WeP(Q) =
WeP(RM)|q if 0 < s < %. See [8].

where the closure is taken with respect to the norm |u|

It is convenient to introduce the notation, for 0 < s <1 < p < oo,

Tep: WEP(Q) - R

Liy)p fo<s<l1
— D S$,p
Foplt) {gwwgﬁs—L

A fundamental fact that will be used throughout this paper is the following
theorem due to [4] (see also [14]).

Theorem 2.2. For any sequence 0 < s — 1, the sequence {Js, p }ren I'—converges
to jl,p'

Recall that I'—convergence is the notion of convergence suitable for minimization
problems and it is defined as follows

Definition 2.3. Let X be a metric space and F,Fj,: X — R. We say that F}
I'—converges to F' if for every u € X the following conditions are valid.

(i) (lim inf inequality) For every sequence {ux}ren C X such that ux — w in
X

9

F(u) < liminf Fy(ug).

k—o0

(ii) (lim sup inequality). For every u € X, there is a sequence {uy}reny C X
converging to u such that

F(u) > limsup Fy(ug).

k—o0
The functional F is called the I'—limit of the sequence {F}}ren and it is denoted
r
by Fy — F and
F =T—lim Fy.

k—o0

Another well-known fact that will be used throughout is the Sobolev immersion
theorem, a proof of which can be found, for instance, in [8].



4 J. FERNANDEZ BONDER AND A. SALORT

Theorem 2.4. Assume that Q0 has finite measure. Define the critical Sobolev
exponent as

. nf’;p if sp<n
° 00 otherwise.
(we will denote p} = p*).
Then, W3'P(2) C L) with compact inclusion for every 1 < q < p%.

The following notation will be enforced.

Definition 2.5. Given 0 < s < 1 < p < o0, the (topological) dual space of W (£2)
will be denoted by W' (Q).

2.2. Weak solutions. Recall that, for any 0 < s < 1 < p < o0, the functional
Jsp is Fréchet differentiable and 77 ,: WP (Q) — W= (Q) is continuous and is
given by

iyt = K28 [ Rn|u<x>—-u<y>w-2<u<x>—-u(y»<v<x>—-v<y>>dwdy,

o=y

<\71/,p(u)vru> = / |Vu|p72Vu -Voudz.
Q

Therefore, for 0 < s < 1 < p we define the fractional p— Laplace operator as
(=Ap)® := J!,. Hence we say that u € W3*(Q) is a weak solution of (1.1) if

(=Ap)°u,v) = / f(z,u)vde
Q
for all v € WP (Q). Similarly, u € Wy (Q) is a weak solution of (1.2) if
(-0 = [ fawpda
Q

for all v € Wol’p(Q).
It is worth of mention that this operator is monotone in the sense that for any
u,v € WP(2) it holds that

0<((=Ap)°u—(=Ap)°v,u—v).

Remark 2.6. Although it will not be used in this work, the operator (—A,)® is in
fact strictly monotone. This is a consequence of a well known inequality proved by
[15]
_plp :
(JaP~2a — [b[P=2b) - (a — b) > {C|“ |aﬂ|2 ifp=2

CUalEN==" ifl<p<?2,

for any a,b € RN (N € N), where the constant ¢ depends on p and N.
This immediately implies that

cTs p(u—v) ifp>2

“A) U — (A, u— ) > 3
(F8p)u = (=8p)vu—v) 24 g,wub — ifl<p<?
(Tep(W)+Tep(0) 7

for 0 < s <1 < p < o0, the constant ¢ depending only on p and n.

The next lemma gives us some uniform asymptotic development for the func-
tionals Js.p-
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Lemma 2.7. Let u € Wy (Q) be fized and for any s € (0,1], let v, € WSP(Q) be
such that [vg]s, < C for any s € (0,1]. Then, fort >0,

Tsp(u+tvs) = Tsp(u) + 1((=Ap) u, vs) + o(t),
where o(t) depends only on C.

Proof. The proof is a direct consequence of the elementary estimate

o = 31 F tpla[P=2ab+ O(t*) ifp>2
la|P + tpla|P~2ab + o(tP) if p < 2,

where O(t?) (or o(t?) respectively) is uniform in |b|. O

With the help of Lemma 2.7 we can prove a key lemma that can be though as
an extension of Theorem 2.2.

Lemma 2.8. Let s T 1 and vy, € W3HP(Q) be such that supyey[vpl?, , < o00.

SkyD
Assume, without loss of generality, that vi, — v strongly in LP(Q2). Then, for every

w e WyP(Q), we have
(=Ap)™ u, vp) = (=Apu,v).

Proof. First, observe that from the results in [4], it follows that v € Wy?(Q) and
so everything is well defined.
Now, it is enough to show that

(2.1) (—Apu,v) < likminf((—Ap)s’“u,vk>.
— 00

In fact, if (2.1) holds for every u € Wy ?(Q), then apply (2.1) to —u to get the
reverse inequality.
Now, by a refinement of Section 3 in [4] (see also [7], [9] or [14]), we have

T p(u+tv) < likrgior.}f Tsr.p(u + tog).
The previous expression together with [4] gives that
Tupl+10) = Fuplan) < Bint(Tog 0+ ) = Ty (1),
Applying now Lemma 2.7, we obtain

(—Apu,v) +0(1) < likminf<(—Ap)S’“u,vk> + o(1),
—o00
from where (2.1) follows. O

3. STABILITY OF WEAK SOLUTIONS

In this section, we prove our main result on the convergence of solutions of
problems (1.1) to solutions of (1.2).
In this section we ask the nonlinearity f to satisfy the following hypotheses:
(f1) f: @xR — Ris a Carathéodory function, i.e. f(-,z) is measurable for any
z € R and f(z,-) is continuous a.e. x € Q.
(f2) There exist a constant C' > 0 such that |f(z, z)] < C(1 + |2])?7! for some
q€[1,p).

Remark 3.1. Observe that if ¢ € [1,p*), then there exists so € (0,1) such that
q < p* for any s € [sg, 1).
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Remark 3.2. Hypotheses (f1) and (f2) are the natural requirements to define the
notion of weak solutions for (1.1) and (1.2).

Theorem 3.3. Let 0 < s — 1 and let up, € WiP(Q) be a sequence of solutions

of (1.1) such that supyey(ulh, , < oo. Then, any accumulation point u of the

sequence {uy }ren in the LP(2)—topology verifies that u € W, P(Q) and it is a weak
solution of (1.2).

Proof. Assume that ur — w in LP(€2). Then, since {uk }ren is uniformly bounded
in Wg*P(Q), by [4] we obtain that u € W,?(Q). Passing to a subsequence, if
necessary, we can also assume that up — u a.e. in Q.

On the other hand, if we define 7 1= (=A,)%u;, € W=+ (Q) ¢ W1 (Q),
then {nx }ren is bounded in W‘l’p,(Q) and hence, up to a subsequence, there exists
n € Wb (Q) such that n;, — n weakly in W12 (Q).

Since uy, solves (1.1), for any v € C°(Q)

0= ((—Ap) " ug,v) — /Qf(x,uk)v dx

using the convergences, taking the limit £ — oo we get

0=(n,v) —/ f(z,w)vdx.
Q
We want to identify 7, more precisely, we will prove that

(3.1) (n,v) = (—Apu,v).

For that purpose we use the monotonicity of the operator and the fact that uy is
solution of (1.1), Indeed,

0 < ((=Ap)*up,ur — v) — ((=Ap)" v, ux — v)
= /Qf(at:,uk)(w.c —v)dr — ((—Ap)** v, u, — v).
Hence taking the limit £ — oo and using Lemma 2.8 one finds that
0< / flz,uw)(u—v) — (=Apv,u—v)

= (;z,u —v) — (—Apv,u — v).

Consequently, if we take v = u — tw, w € Wol’p(Q) given and ¢ > 0, we obtain that
0 < (n,w) = (=Ap(u—tw),w)
taking ¢ — 07 gives that
0 < (n,w) — (—Apu,w).

From this it is easy to see that (3.1) holds and the proof concludes. O

Remark 3.4. The results of Theorem 3.3 can be easily improved by considering
(—Ap)°u = fs(z,u) inQ
u=0 in R™\ ©,

where fq(x,2z) — f(x,2) uniformly on compact sets of z € R. The proof of this fact
is completely analogous to that of Theorem 3.3 and is left to the reader.
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4. CONVERGENCE OF GROUND STATES

This section is devoted to study the behavior of ground state (or least-energy)
solutions of the nonlocal Schrodinger problem

{(—Ap)su + V() |ulP~2u = f(x,u) inQ

4.1
(4.1) uw=0 in R™ \ Q,

to the limit problem

49 —Apu+ V(x)|ulP~?u = f(z,u) inQ
(42) u=20 on 0f).

In the semilinear case, that is when p = 2, this problem was addressed in [3]. The
methods used in that paper heavily use the linearity of the operator. Here we show
how applying the results in the previous section, we can extend the main theorem in
[3] to the more general quasilinear case. Moreover, in [3] only the bounded domain
case is considered. Here we will consider both the bounded and unbounded domain
cases.

Recall that ground state solutions are minimizers of the energy functional

1
T.pfu) = Toplu) + / PV () d — / F(z,u) de,
Q Q
restricted to the so-called Nehari manifold
Nop = {u e WP () \ {0} (Z( , (u), u) = 0}.

Here F(z,2) = [ f(x,7)dr is the primitive of f.

From Theorem 3.3, we know that if {us}se(0,1) is a sequence of solutions to (4.1),
then any accumulation point (in LP(Q2)) u is a solution to (4.2). The natural ques-
tion now is to see if u is a ground state solution whenever the sequence {us}sec(0,1)
are also ground states.

4.1. The bounded domain case. In this subsection, we assume that €2 is bounded.
On the nonlinearity f, besides (f1) and (f3) will be assumed to fulfill the follow-
ing further structural hypothesis that are standard when consider ground state
solutions in nonlinear problems (see, for instance, [16])

(fs) F(x,z)|z|? = oo as |z| = oo uniformly with respect to x € Q.
(f1) f(z,2) =o(|z|P71) as z — 0 uniformly with respect to z € .
(fs) For almost every x €

f(z, 2)

|2[P—1

is strictly increasing on (—oo,0) U (0, 00).

(fs) There exists p > p such that

uF(x, 2) < zf(x, 2).
On the potential function V' we assume:
(V1) 0<V € L"(Q) for some r > .

Remark 4.1. From hypotheses (f1) and (f4) it follows that for every € > 0 there is
C. > 0 such that

(4.3) (2, 2)] < elofP™h + Celz]1™
for every z € R and a.e. x € €.
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Remark 4.2. Hypothesis (fs) is the fundamental structural hypothesis needed in
variational arguments for the existence of ground state solutions to (4.1) and (4.2).
This is the well-known Ambrosetti-Rabinowitz condition first introduced in [1]. See
also [17] for the quasilinear case in the local setting.

It is well-known that under (f1)—(fs) a ground states actually exists. Indeed,
for every s € (0,1] a ground state solution is a mountain pass solution and hence
it fulfills the formula

4.4 Lo p(us) = inf sup Zs,(tv) > 0.
(4.4) plus) vEWS P (D\{0} 1(0,1] ()

Moreover, the Nehari manifold N, is homeomorphic to the unit sphere Ss,, in
WyP(£2) with homeomorphism is given by

ms(u) =tou

where 9 is the unique positive number such that tSu € N .
See, for instance, [12] for a good introduction to this subject and a proof of all
of these facts in the local setting.

It will be convenient to introduce the notation for s € (0, 1)

lalloy = lulls = ([u}f;p 4 /Q PV (2) dx)

and

el = (||Vu||z+ [ v dx)

Observe that with this notation, we have

1
() = Sl - / F(e,u) de.

Our first lemma shows that the mountain pass levels of the ground state solutions
of (4.1) are uniformly bounded.

Lemma 4.3. Under the above notation and assumptions, it holds that c; > limsup4q ¢s.

Proof. Let u € N7 ;. Then have that there exists t; > 0 such that tsu € N, and
hence

limsup¢s < limsupZ; ,,(tsu)
sT1 sT1

1
= lim sup (Is,p(tsu) - —{T! p(tsu),tsu>>
sT1 p ’

1
=5 (/Q [z, tsu)tsu — pF (2, tsu) da:) .

In view of (fs) we have that

1
/ [z, tsu)tsude
Q

t

F(x,ts
> p/F(x,tsu)dzzp/ Mm\pdx.
Q Q

& t¥]ul?

[ully =

Since the left hand side of the inequality above tends to [|ull} , ,, < oo, (f3) implies
that {ts}s is bounded.
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Let tg > 0 be any accumulation point of {t,}, and {ts, }ren C {ts}s be such that
ts, — to as k — co. Let us see that in fact ¢y # 0. In view of the Nehari identity

flz, ts, u)
o, = [ 20 o g
ats, |ulP~

But again, the left hand side tends to [lul[} ,;, > 0 and so, by (fs) we get that
tog > 0.
Furthermore, in view of (4.3) we have that

|f (@, s, u)ts, ul < elts,ul” + Celts, ul? < C(lul? + [u]?),
where C' > 0 is independent of k, then by using the dominated convergence theorem,

/f x,ts utskudx%/f(x,tou)toudm.
Q

In view of the computations above, as k — co we get

t%wmv—/f@mwwm%
Q

but since u € Nj ,, we deduce that to = 1 and then ¢5 71 as s 1 1.
Moreover, due to (fs) we can apply again the dominated convergence theorem
in the limit as s 1 1 in the integral fQ F(z,tsu) dx giving that

limsup Z; ,, (tsu) = limsup — {/ flz,tsu)tsu — pF (2, tsu) dm}

sT1 sT1
1
= - {/ flz,u)u — pF(x,u) dz}
P UJa
=71 p(u)
and the proof concludes by taking infimum over u € Ny . O

Our next lemma proves that any sequence of ground state solutions to (4.1) is
uniformly bounded with respect to s away from zero and infinity.

Lemma 4.4. Let us € WP () be a ground state solution of (4.1) with s € (0,1).
Then there exist two constants 0 < ¢ < C' < oo independent on s such that

¢ < uslls < C.

Proof. Let us € W5P(£2) be a ground state solution to (4.1).
By Lemma 4.3, there exists a constant C' > 0 independent of s € (0, 1) such that

s plus) < C.
But, since us € N, it follows that

1
C > T p(us) — ;(I‘;,p(us)7us>

1 1 1

(3= 2 bl = [ (Faw = Lot ) de
1 1

z(—)wm&
p M

where we have used (fs) in the last inequality.
Hence, sup ¢ o,1y [lusl[s < oo.
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For the lower bound, we simply observe that since us € N ,, we have, by (4.3),
Jus|ls = / [z us)us dx < 5”“«9”% + OEHUSHZ-
Q

By Theorem 2.4, it follows that
[us]? < Cellus]g + CC: [Jus 2.
From this inequality the lower bound follows easily. ([

We are now in position to prove the main result of the section.

Theorem 4.5. Let s € (0,1) and let us € WP (Q) be a ground state solution of
(4.1). Then, any accumulation point u of {us}s in the LP(2)—topology verifies that
we WyP(Q) and is a ground state solution of (4.2).

Proof. Let s 71 be a sequence such that us, — u in LP(€2).

From Lemma 4.4 we obtain that supey|us,]s,p < 0o and hence, by [4], u €
WyP(€) and us, — u strongly in L7 (2) for any 1 <7 < p*.

We claim that u # 0. Indeed, since u,, € Nj, ,, we have that

0<c< lus,lt, = / fzyus,)us, de — | f(z,u)udz.
Q

Let us see now that u is a ground state solution of (4.2). Since u,, € N, p and
since, by Theorem 3.3, u is a weak solution to (4.2), we obtain that

likrggf Cop = hmmfl’sk plus,) = hmmf( srop(Usy, ) — %(I;pusk,usk»

Ehkrggf (/ fz, us, )us, —p/ﬂF(w,usk)dx>
= » (/Q f(x,u)ufp/QF(:c,u) d:z:) =T p(u) > c1.

Therefore, as a consequence of Lemma 4.3 and the inequality above we get

lim 1nf cs, > ¢1 > limsupes > limsupecs, ,
k— sT1 k—o0

resulting in limg_,o0 €5, = €1 = Z1 p(u). O

4.2. The unbounded domain case. In this subsection we consider Q C R" to
be a general unbounded continuous open and connected set (for instance, Q = R™).
There are several cases where the existence of a ground state for problems (4.1)
and (4.2) is verified. As an example of those cases, in this subsection we consider
the case where the source term f(z,z) in addition to (f1)—(fs) also verifies
(f7) |f(z,2)| < w(x)|2|72z where p < ¢ < p* and w € L>(Q) N LP1 (), where
ps = np/(np —q(n — sp)) for 0 < s < 1.

Remark 4.6. Observe that for 0 < s < 1, one has that p; < ps;. Hence, by
interpolation, w € LP+<(Q) for every 0 < s < 1.

It is proven in [17] that under (f1)—(f7), there exists a ground state solution to
(4.2). Moreover, the exact same arguments (with the obvious modifications) apply
to problem (4.1) to show the existence of ground state solutions in the fractional
case.

In order to apply our results we also need to impose some stronger assumptions
on the potential function V', namely
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(Va) V € L*>(£2) and there exists ap > 0 such that V(x) > ag a.e. z € Q.

An immediate consequence of (V3) is that the norm || - ||s controls the Sobolev
norm || - [|s,p, i-€.
1
(45) full < max {1, 2z

Under these hypotheses, we get the following result.

Theorem 4.7. Assume the same hypotheses of Theorem 4.5 and moreover that
is unbounded and (f7), (V2) hold. Then, the same conclusions of Theorem 4.5 hold
true.

Proof. Just observe that since (V2) implies (4.5), all of the arguments in the proof
of Theorem 4.5 carry over to this case without modifications. (I

5. STABILITY OF EIGENVALUES

In this section we consider the eigenvalue problem for the fractional p—Laplacian,
(5.1) (—Ap)%u = N|ulP~2u %n Q
u=0 in R™\ ,
and its local counterpart

(5.2)

—Apu = AuP2u  in Q
u=>0 on 0f).

We will consider the bounded domain case.
For these problems it is known that there exists a sequence of variational eigen-
values {A} }ren for each s € (0, 1] given by the min-max formulation

v|?
(5.3) A := inf max[ ]5’57
cec; veC ||v|lp

where C; denotes the compact, symmetric subsets of W**(Q2) such that v(C) > k,
and v is the Krasnoselskii genus. See [11] for s = 1 and [13] in the fractional case
s € (0,1). Of course in (5.3), [uly , = [[Vull5.

This sequence of eigenvalues is denoted by 37, ...
of (5.1) and (5.2) is denoted by X*, for s € (0, 1].

Of course, 27, C X° and a major open problem is to determine if equality holds.

The stability of the variational spectrum X2, as s 1 1 was studied in [6] and in
that paper, the authors prove that A\j — A, as s 1 1 together with the convergence
of the corresponding eigenfunctions. See [6, Theorem 1.2].

For more stability results of different fractional eigenvalues problems, we refer
the interested reader to [10].

As an application of Theorem 3.3 (more precisely, of Remark 3.4) we obtain
an stability result for eigenvalues of (5.1) that gives much less information when
applied to the variational sequence 2. . but it can be applied to any sequence of

var

eigenvalues A* € X%, Our result reads as follows:

On the other hand, the spectrum

Theorem 5.1. Let \* € ¥* be such that sup,¢ (g 1) A* < oo. Then any accumulation
point X of the set {\*}e(0,1) belongs to . Moreover, if {si}ren is such that sy, — 1
and X% — X and w, € WGP (Q) is an LP(Q)—normalized eigenfunction of (5.1)
associated to A°F, then, up to a further subsequence, there exists u € VVolp(Q) such
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that ug, — w strongly in LP(Q) and u is an LP(Q)—normalized eigenfunction of
(5.2) associated to A.

Proof. The proof is an immediate consequence of Remark 3.4. In fact, assume that
AF = X% — X and let u;, be the associated LP(Q)—normalized eigenfunction of
(5.1). Then, from (5.1) one gets that

[t = Nellunp = A < €,

Sk,P

with C independent on k € N. Therefore, by [4], there exists u € W, (Q) such
that up, — u strongly in LP(€2). Observe that this implies that |lull, = 1, so in
particular, u # 0.

Now, since fr(2) := A\¥|2|P~22 — f(2) := A|z|P~2z uniformly on compact sets of
z € R, from Remark 3.4 it follows that u is an eigenfunction of (5.2) associated to
A as we wanted to show. g
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