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Abstract. In this paper, we study the critical Sobolev embeddings W 1,p(x)(Ω) ⊂ Lp∗(x)(Ω) for
variable exponent Sobolev spaces from the point of view of the Γ-convergence. More precisely
we determine the Γ-limit of subcritical approximation of the best constant associated with this
embedding. As an application we provide a sufficient condition for the existence of extremals
for the best constant.

1. Introduction

The purpose of this paper is to analyze the Sobolev immersion theorem for variable exponent
spaces in the critical range from the point of view of the Γ-convergence. Our motivation comes
from the existence problem for extremals of these immersions. By extremals we mean functions

u ∈W 1,p(x)
0 (Ω) where the infimum

(1.1) S = S(p(·), q(·),Ω) B inf
v∈W 1,p(x)

0 (Ω)

‖∇v‖p(x)

‖v‖q(x)

is attained. We refer to the next section for the definition of the variable exponent Sobolev
spaces and the norms appearing in (1.1). We shall assume the set A B {x ∈ Ω: q(x) = p∗(x)}
non-empty (here p∗(x) is the Sobolev conjugate of p(x), see next section) so that the problem
of existence of an extremal for S is critical from the Sobolev embedding point of view.

This problem was recently treated in [9] where the authors provide sufficient conditions to
ensure the existence of such extremals. The approach in [9] was the so-called direct method
of the calculus of variations. That is, they considered a minimizing sequence for S and find a
sufficient condition that ensured the compactness of such sequence.

In this paper, we follow a different approach. Instead of looking for minimizing sequences for
S, we approximate the critical problems by subcritical ones, where the existence of extremals
is easily obtained, and then pass to the limit. In fact, following G. Palatucci in [22] where the
constant exponent case is studied, we want to determine the asymptotic behaviour in the sense
of the Γ-convergence of the subcritical approximations

Sε B inf
v∈W 1,p(x)

0 (Ω)

‖∇v‖p(x)

‖v‖q(x)−ε
, ε > 0,

and then deduce the behavior of their associated extremals uε.

2000 Mathematics Subject Classification. 46E35,35B33.
Key words and phrases. Sobolev embedding, variable exponents, critical exponents, concentration compactness.

1
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1.1. Preliminary notations. Let Ω be smooth open bounded subset of Rn. Given a mea-
surable function p : Ω → [1,+∞), the Lebesgue variable exponent space Lp(x)(Ω) is defined
as

Lp(x)(Ω) B

{
u ∈ L1

loc(Ω):

∫
Ω
|u|p(x) dx < +∞

}
.

This space is endowed with the norm

‖u‖p(x) B inf

{
λ > 0:

∫
Ω

∣∣∣u
λ

∣∣∣p(x)
dx ≤ 1

}
.

which turns Lp(x)(Ω) into a Banach space. Assuming moreover that

(1.2) 1 < p− B inf
Ω
p ≤ p+ B sup

Ω
p < +∞,

it can be proved that Lp(x)(Ω) separable and reflexive.

These spaces where first considered in the seminal W. Orlicz’ paper [21] in 1931 but then
where left behind as the author pursued the study of the spaces that now bear his name. The
first systematic study of these spaces appeared in H. Nakano’s works at the beginning of the
1950s [19, 20] where he developed a general theory in which the spaces Lp(x)(Ω) were a particular
example of the more general spaces he was considering. Even though some progress was made
after Makano’s work (see in particular the works of the Polish school H. Hudzik, A. Kamińska
and J. Musielak in e.g. [13, 14, 18]), it was only in the last 20 years that major progress has
been accomplished mainly due to the following facts:

• The discovery of a very weak condition ensuring the boundedness of the Hardy-Littlewood
maximal operator in these spaces, i.e. the log-Hölder condition that implies, to begin
with, that test functions are dense in Lp(x)(Ω).
• The discovery of the connection of these spaces with the modeling of the so-called elec-

trorheological fluids [23]
• The application that variable exponents have shown in image processing [5]

Of central importance in the above mentioned applications are the variable exponent Sobolev
spaces W 1,p(x)(Ω) defined as

W 1,p(x)(Ω) B
{
u ∈W 1,1

loc (Ω): u, ∂iu ∈ Lp(x)(Ω) i = 1, . . . , n
}
,

and the subspace of functions with zero boundary values

W
1,p(x)
0 (Ω) B {u ∈W 1,p(x)(Ω): u has compact support},

where the closure is taken in the W 1,p(x)(Ω)−norm ‖ · ‖1,p(x) that is defined as

‖u‖1,p(x) B ‖u‖p(x) + ‖∇u‖p(x).

We assume from now on that p is log-Hölder in the sense that

(1.3) sup
x,y∈Ω

|(p(x)− p(y)) log(|x− y|)| < +∞.

Under this assumption it can be proved that the space C∞c (Ω) is dense in Lp(x)(Ω) and in

W
1,p(x)
0 (Ω), and also that the Poincaré inequality holds i.e. there exists a constant C = C(Ω, p) >

0 such that
‖u‖p(x) ≤ C‖∇u‖p(x)
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for any u ∈W 1,p(x)
0 (Ω). It follows in particular that ‖∇u‖p(x) is an equivalent norm inW

1,p(x)
0 (Ω).

1.2. Critical Sobolev embedding. A major tool in order to study existence and regularity
properties of solutions to partial differential equatios is the Sobolev embedding theorem. For
variable exponents spaces this theorem has been established in [15] (see also [7]). Given a
measurable function q : Ω→ [1,+∞), it basically says that we have a continuous embedding

W
1,p(x)
0 (Ω) ⊂ Lq(x)(Ω)

if and only if q(x) ≤ p∗(x) B np(x)/(n − p(x)). Moreover, when the exponent q is strictly
subcritical in the sense that

inf
x∈Ω

(p∗(x)− q(x)) > 0,

then this embedding is compact (see e.g. [6]). On the other hand when the critical set

(1.4) A B {x ∈ Ω̄ : q(x) = p(x)∗}
is not empty, the immersion is no longer compact in general (see [17] for some very restricted
cases where A 6= ∅ but the immersion still remains compact). The existence of extremal for the
best constant S defined in (1.1) is then not granted. Indeed the well-known Pohozaev identity
implies that when p is constant and Ω is star-shaped then S is not attained.

The problem of existence of extremals for S in the variable exponent setting was recently
considered in [9] where the authors provided sufficient existence conditions. A fundamental tool
used in their proof, as well as in almost every problem dealing with critical expoenent in general,
is the so called Concentration Compactness Principle (CCP) that was introduced by P. L. Lions
in the 80’s (see [16]) and was recently extended to the variable exponent setting in [12] (see also
the refinement in [9]). This version of the CCP relies on a notion of localized Sobolev constant
defined as follows. For x ∈ A we define the localized best Sobolev constant S̄x as

(1.5) S̄x B lim
ε→0

S(p(·), q(·), Bε(x) ∩ Ω).

Notice that

(1.6) S(p(·), q(·),Ω) ≤ inf
x∈A

S̄x.

The CCP proved in [12] and refined in [9] states that given a weakly convergent sequence

{uk}k∈N ⊂ W
1,p(x)
0 (Ω) with weak limit u, there exists a countable set of indices I, positive real

numbers {µi}i∈I , {νi}i∈I ⊂ R+, points {xi}i∈I ∈ A and nonnegative measures µ, ν such that

|uk|q(x) dx
∗
⇀ dν = |u|q(x) dx+

∑
i∈I

νi δxi ,(1.7)

|∇uk|p(x) dx
∗
⇀ dµ ≥ |∇u|p(x) dx+

∑
i∈I

µi δxi ,(1.8)

S̄xiν
1

p(xi)
∗

i ≤ ν
1

p(xi)

i for any i ∈ I.(1.9)

It is also easily checked that the nonnegative measure

µ̃ B µ−

(
|∇u|p(x) dx+

∑
i∈I

µi δxi

)
has no atoms.
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By analyzing the behavior of minimizing sequences using the CCP, it is proved in [9] that if the
inequality in (1.6) is strict, q− < p+ and p, q are slightly more regular than merely Log-Hölder
continuous, more precisely if

(1.10) lim
Ω3y→x

(p(y)−p(x)) log(|x−y|) = lim
Ω3y→x

(q(y)−q(x)) log(|x−y|) = 0, uniformly in x ∈ Ω.

is satisfied, then there exists an extremal for S(p(·), q(·),Ω), i.e. a function u ∈W 1,p(x)
0 (Ω) where

the infimum in (1.1) is attained.

1.3. Statements of the results. The main purpose of this paper is to study the limit as ε→ 0
of the subcritical approximation

Sε B S(p(·), q(·)− ε,Ω) = inf
v∈W 1,p(x)

0 (Ω)

‖∇v‖p(x)

‖v‖q(x)−ε
, ε > 0,

of S(p(·), q(·),Ω) following the work of [1] and [22]. This amounts to study the asymptotic
behaviour as ε→ 0 of the functional Fε : B(Ω)→ R defined by

Fε(u) B

∫
Ω
|u|q(x)−ε dx,

where

(1.11) B(Ω) B
{
u ∈W 1,p(x)

0 (Ω), ‖∇u‖p(x),Ω ≤ 1
}
.

This will be done in the framework of the Γ-convergence.

In view of the CCP (1.7)-(1.9), it turns out to be convenient to extend Fε to the space

X = X (Ω) =
{

(u, µ) ∈W 1,p(x)
0 (Ω)×M(Ω): µ(Ω) ≤ 1, µ = |∇u|p(x) dx+ µ̃+

∑
i∈I

µiδxi

}
,

where M(Ω) is the space of bounded measures over Ω and, in the decomposition of µ, µ̃ is a
nonnegative measure without atoms, the set I is at most countable, the scalars µi are positive,
and the atoms xi belongs to the critical set A defined in (1.4).

We say that a sequence {(uε, µε)}ε>0 ⊂ X converges in X to (u, µ), which is denoted by

(uε, µε)
τ→ (u, µ), if uε ⇀ u weakly in Lq(x)(Ω) and µε

∗
⇀ µ in M(Ω). We recall that µε

∗
⇀ µ

means that
∫
φdµε →

∫
φdµ for any φ ∈ Cb(Ω).

We then extend Fε to the whole space X by

Fε(u, µ) =

{∫
Ω |u|

q(x)−ε dx if dµ = |∇u|p(x) dx

0 otherwhise in X

We also consider the limit functional F ∗ : X → R defined by

F ∗(u, µ) B

∫
Ω
|u|q(x) dx+

∑
i∈I

µ
p∗(xi)
p(xi)

i S̄−p
∗(xi)

xi .

where S̄xi , i ∈ I, is defined in (1.5).

Our main result is the following

Theorem 1.1. The functionals {Fε}ε>0 Γ−converge to F ∗ in the sense that for any (u, µ) ∈ X
there holds that
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• for every sequence {(uε, µε)}ε>0 ⊂ X converging to (u, µ) in X , we have

(1.12) lim sup
ε→0

Fε(uε, µε) ≤ F ∗(u, µ)

• there exists a sequence {(uε, µε)}ε>0 ⊂ X converging to (u, µ) in X such that

(1.13) lim inf
ε→0

Fε(uε, µε) ≥ F ∗(u, µ)

Remark 1.2. What we called Γ−convergence in Theorem 1.1 is what other authors called
Γ+−convergence. See [22].

Remark 1.3. Consider the functionals F+, F− : X → [0,+∞) defined by

F+(u, µ) B sup {lim supFε(uε, µε) : (uε, µε)
τ→ (u, µ)},

and

(1.14) F−(u, µ) B sup {lim inf Fε(uε, µε) : (uε, µε)
τ→ (u, µ)}.

Obviously, F− ≤ F+. Moreover the Γ-limit F ∗ of the sequence {Fε}ε>0 exists if and only if
F− = F+ and in this case, F ∗ = F− = F+. Therefore, we can rewrite the previous theorem as

F+ ≤ F ∗ and F− ≥ F ∗.

Define

(1.15) S̃−1 B S̃(p(·), q(·),Ω) = sup
u∈B(Ω)

∫
Ω
|u|q(x) dx,

where B(Ω) is defined in (1.11). We also define a local best constant S̃−1
x0 , x0 ∈ A, in a smiliar

way as in (1.5) by

(1.16) S̃−1
x0 B lim

ε→0

(
sup

u∈B(Bε(x0))

∫
Bε(x0)

|u|q(x) dx

)
, x0 ∈ A.

Noticing that B(Bx0(ε)) ⊂ B(Ω), we have that

(1.17) sup
x0∈A

S̃−1
x0 ≤ S̃

−1.

We also prove in lemma 2.7 below that S̃−1
x0 = S̄

−q(x0)
x0 .

We now consider the subcritical approximations S̃−1
ε of S̃−1 defined by

S̃−1
ε B S̃(p(·), q(·)− ε,Ω)−1 = sup

u∈B(Ω)

∫
Ω
|u|q(x)−ε dx.

We first prove that

Proposition 1.4. There holds that

lim
ε→0

S̃−1
ε = S̃−1.

In the same spirit as in [9, Theorem 4.2], we can deduce from the Γ-convergence of Fε to F

the asymptotic behaviour of extremals for S̃ε:
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Theorem 1.5. Let uε ∈ B(Ω) be an extremal for S̃−1
ε , i.e.∫

Ω
|uε|q(x)−ε dx = S̃−1

ε .

Then the following alternative hols:

(1) either the sequence {uε}ε>0 has a strongly convergent subsequence in Lq(x)(Ω) and the

strong limit is an extremal for S̃−1,
(2) or the sequence {uε}ε>0 concentrates around a single point x0 ∈ A in the sense that

|uε|q(x) dx ⇀ S̃−1 δx0 and |∇uε|p(x) dx ⇀ δx0 .

Moreover

(1.18) S̃−1
x0 = S̃−1.

As an immediate consequence of (1.17) and (1.18), we obtain the following sufficient condition

for the existence of an extremal for S̃−1:

Corollary 1.6. If supx∈A S̃
−1
x < S̃−1, then any sequence of extremals for S̃−1

ε converges, up to

a subsequence, to some u ∈ B(Ω) which is an extremal for S̃−1. In particular, there exists an

extremal for S̃−1.

This kind of sufficient condition of existence is common in the study of problems with critical
exponent. In the constant exponent case, it goes back to [2, 4], and [16]. In the variable exponent
case, it was recently established and used by the authors in [9, 8, 11, 10] where precise condition
on the exponents p and q were provided for this condition to hold.

2. Proof of Theorem 1.1

We divided the proof into two subsections: one for the lim sup inequality (1.12) and other for
the lim inf inequality (1.13). The strategy of the proof is completely analogous to that of [22]
where the constant exponent case is treated with difficulties specific to the variable exponent
setting.

2.1. Proof of the lim sup property (1.12). Consider a sequence {(uε, µε)}ε>0 ⊂ X converging

as ε→ 0 to some (u0, µ0) ∈ X . We can assume without loss of generality that dµε = |∇uε|p(x) dx
for all ε > 0. Then by Hölder inequality (see [6, lemma 3.2.20]):

Fε(uε, µε) =

∫
Ω
|uε|q(·)−ε dx

≤
( 1

( q(x)
q(x)−ε)

−
+

1

( q(x)
ε )−

)
‖|uε|q(x)−ε‖ q(x)

q(x)−ε

‖1‖ q(x)
ε

.

Since
(

q(x)
q(x)−ε

)−
→ 1,

(
ε

q(x)

)−
→ 0, and ‖1‖ q(x)

ε

→ 1 as ε→ 0, we obtain

lim sup
ε→0

Fε(uε, µε) ≤ lim sup
ε→0

‖|uε|q(x)−ε‖ q(x)
q(x)−ε

.
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Up to some subsequence, by the CCP, there exists u ∈W 1,p(x)
0 (Ω) and measures ν, µ ∈M(Ω)

of the form ν = |u|q(x)dx+
∑

i∈I νiδxi , µ = |∇u|p(x)dx+ µ̃+
∑

i∈I µiδxi such that

uε ⇀ u weakly in W
1,p(x)
0 (Ω) and in Lq(x)(Ω),

|uε|q(x) dx
∗
⇀ ν and |∇uε|p(x) dx

∗
⇀ µ.

Observe that u = u0 and µ0 = µ since (uε, µε = |∇uε|p(x))→ (u0, µ0) in X . It follows that

ρq(x)(uε) B

∫
Ω
|uε|q(x) dx→

∫
Ω
|u0|q(x) dx+

∑
i∈I

νi as ε→ 0.

Since

‖|uε|q(x)−ε‖ q(x)
q(x)−ε

≤ max
{
ρq(x)(uε)

(
q(x)

q(x)−ε
)+
, ρq(x)(uε)

(
q(x)

q(x)−ε
)−
}
,

we obtain, in view of (1.9), that

lim sup
ε→0+

Fε(uε, µε) ≤
∫

Ω
|u0|q(x) dx+

∑
i∈I

S−p(xi)xi µ
p∗(xi)
p(xi)

i = F ∗(u0, µ0).

This is the limsup inequality. �

2.2. Proof of the lim inf property (1.13). We begin with an elementary inequality that will
be most useful in the sequel. Though we believe that this inequality is well known, we were
unable to find it in the literature.

Proposition 2.1. Given p > 1 and θ ∈ (0, 1] there exists a positive constant C > 0 such that∣∣∣|a+ b|p − |a|p − |b|p
∣∣∣ ≤ C(|a|p−θ|b|θ + |a|θ|b|p−θ

)
for any a, b ∈ Rn.

Proof. Since this inequality is invariant under rotation and dilatation of a and b we can assume
that b = e1 = (1, 0, . . . , 0). The function f : Rn\{0} → [0,+∞) defined by

f(a) =

∣∣∣|a+ e1|p − |a|p − 1
∣∣∣

|a|p−θ + |a|θ

being continuous, it suffices to prove that it remains bounded near 0 and ∞ to obtain that it is
bounded in all Rn\{0}. First

|a+ e1|p =
(
|a|2 + 2ae1 + 1

)p/2
=

{
1 +O(|a|) for |a| � 1,

|a|p(1 +O(1/|a|))p/2 = |a|p +O(|a|p−1) for |a| � 1.

It follows that for |a| � 1 we have

f(a) =
O(|a|)

|a|p−θ + |a|θ

=


O(|a|)

|a|θ(1 + o(1))
= O(|a|1−θ) ≤ C if θ ≤ p

2

O(|a|)
|a|p−θ(1 + o(1))

= O(|a|1−p+θ) if θ ≥ p
2
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Hence if p ≥ 2 so that θ ≤ 1 ≤ p/2, or if p < 2 and θ ≤ p/2, then f is bounded near 0. Now if
p < 2 and θ ≥ p/2 then θ ≥ p/2 ≥ p− 1 so that f is also bounded near 0 in that case.

For |a| � 1 we obtain

f(a) =
O(|a|p−1)

|a|p−θ + |a|θ

=

{
O(|a|θ−1) ≤ C if θ ≤ p

2

O(|a|p−1−θ) if θ ≥ p
2

Hence if p ≥ 2 so that θ ≤ 1 ≤ p/2, or if p < 2 and θ ≤ p/2, then f is bounded near infinity. If
p < 2 and θ ≥ p/2 then θ ≥ p/2 ≥ p− 1 and the same conclusion holds. �

Remark 2.2. It can be easily checked, from the above proof, that for any p ∈ [p−, p+], the
constant C can be taken depending only on p−, p+ and θ.

Proposition 2.3. For any (u, µ) ∈ X there exists a sequence (uε, |∇uε|p(x) dx) ∈ X converging
in X to (u, µ) as ε→ 0.

Proof. We adapt the proof of M. Amar and A. Garroni [1]. We first prove the claim in the case
u = 0. We denote by n the unit exterior normal vector to ∂Ω. We extend n to a smooth vector
field in Rn with compact support in a small neighborhood of ∂Ω, and consider Tε : Rn → Rn
given by Tε(x) = x−

√
εn(x).

We consider µ as a measure in all Rn with support in Ω̄ and let µε B Tε]µ be the push-forward
of µ under Tε in the sense that µε(E) = µ(T−1

ε (E)) for any measurable subset E ⊂ Ω̄. Then µε
has support in Ω̄ε B {x ∈ Ω̄, dist(x, ∂Ω) ≥

√
ε}.

We cover Ω̄ε by open disjoint cubes Qi,ε = xi,ε + εQ centered at xi,ε, where Q is the cube
centered at 0 with sides parallel to the coordinate axes of length 1. Notice that Qi,ε ⊂ Ω since
ε <
√
ε. Given some φ ∈ C∞c (B1/2) we define ui,ε ∈ C∞c (Qi,ε) by

ui,ε(x) = ti,εε
−

n−p(xi,ε)

p(xi,ε) φ
(x− xi,ε

ε

)
,

where ti,ε ≥ 0 is chosen such that ∫
|∇ui,ε|p(x) dx = µε(Qi,ε).

Notice that the scalars ti,ε are uniformly bounded. We then consider uε B
∑

i ui,ε ∈W
1,p(x)
0 (Ω).

Notice that for any ε, the ui,ε have disjoint support. As a consequence∫
Ω
|∇uε|p(x) dx =

∑
i

∫
Qi,ε

|∇ui,ε|p(x) dx =
∑
i

µε(Qi,ε) =
∑
i

µε(Qi,ε∩Ω̄ε) = µε(Ω̄ε) = µ(Ω̄) ≤ 1.

It follows that (uε, |∇uε|p(x) dx) ∈ X for any ε > 0, and that {uε}ε>0 is bounded in W
1,p(x)
0 (Ω).

Morover we have uε → 0 in Lp(x)(Ω). In fact,∫
Ω
|uε|p(x) dx =

∑
i

∫
Qi,ε

|ui,ε|p(x) dx ≤ C
∑
i

∫
Q
ε
n(1−

p(xi,ε+εy)

p(xi,ε)
)
εp(xi,ε+εy)|φ|p(xi,ε+εy) dy

≤ Cεp− → 0.
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Hence we can assume that uε ⇀ 0 weakly in Lq(x)(Ω). It thus remain to prove that |∇uε|p(x) dx→
µ weakly in M(Ω̄). Let ψ ∈ C(Ω̄) and δ > 0. Then for ε > 0 small we have, by the uniform
continuity of ψ over Ω̄, that∫

Ω
ψ|∇uε|p(x) dx =

∑
i

∫
Qi,ε

ψ|∇ui,ε|p(x) dx =
∑
i

(ψ(xi,ε) +O(δ))

∫
Qi,ε

|∇ui,ε|p(x) dx

=
∑
i

(ψ(xi,ε) +O(δ))µε(Qi,ε) =
∑
i

ψ(xi,ε)µε(Qi,ε) +O(δ)

=

∫
Ω
ψ dµε +O(δ) =

∫
Ω
ψ ◦ Tε dµ+O(δ) =

∫
Ω
ψ dµ+O(δ).

For a general pair (u, µ) ∈ X, we write µ = |∇u|p(x) + µ̃+
∑

i µiδxi , and consider uε such that

(uε, |∇uε|p(x))
τ→ (0, µ̃+

∑
i µiδxi) in X as given by the previous step. Then ũε = uε + u verifies

(ũε, |∇ũε|p(x))
τ→ (u, µ) in X. Indeed in view of Proposition 2.1 and Remark 2.2, there exists a

constant C > 0 such that∫
Ω

∣∣∣|∇ũε|p(x) − |∇u|p(x) − |∇uε|p(x)
∣∣∣ dx ≤ C ∫

Ω
|∇u|p(x)−1|∇uε| dx+ C

∫
Ω
|∇u||∇uε|p(x)−1 dx.

To prove that the integrals in the rhs goes to 0, we observe that the sequence (|∇uε|)ε is bounded

in Lp(x)(Ω) and converges to 0 in L1(Ω), so that, up to a subsequence, it also converges to 0

a.e.. It follows that |∇uε| → 0 weakly in Lp(x)(Ω). The convergence to 0 of the first integral
in the rhs follows. The convergence to 0 of the second integral can be proved in the same way
noticing that the sequence {|∇uε|p(x)−1}ε>0 converges weakly to 0 in Lp(x)′(Ω) being bounded

in Lp(x)′(Ω) and converging to 0 a.e. As a consequence for any ψ ∈ C(Ω̄), we have∫
Ω
ψ|∇ũε|p(x) dx =

∫
Ω
ψ|∇u|p(x) dx+

∫
Ω
ψ|∇uε|p(x) dx+ o(1) =

∫
Ω
ψ dµ+ o(1),

i.e. |∇ũε|p(x) dx→ µ weakly in M(Ω̄). In particular taking ψ ≡ 1 gives

lim sup
ε→0

∫
Ω
|∇ũε|p(x) dx ≤ 1.

For those ε > 0 such that
∫

Ω |∇ũε|
p(x) dx > 1, we consider δε > 0, δε → 0, such that∫

Ω
(1− δε)p(x)|∇ũε|p(x) dx = 1,

and replace ũε by (1− δε)ũε. Hence (ũε, |∇ũε|p(x)) ∈ X .

This finishes the proof of the Proposition. �

With the aid of the previous result, we can prove the lim inf property when µ has no atoms.

Proposition 2.4. Let (u, µ) ∈ X such that µ has no atomic part i.e. dµ = |∇u|p(x) dx + dµ̃.
Then

lim
ε→0

Fε(uε, µε) = F ∗(u, µ)

for every sequence {(uε, |∇uε|p(x))}ε>0 ⊂ X converging to (u, µ) as ε→ 0.

Remark 2.5. Notice that such a sequence exists in view of the previous Proposition 2.3.
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Proof. Consider a sequence {(uε, µε B |∇uε|p(x))}ε>0 ⊂ X converging to (u, µ). According to

the CCP, the atoms of the measure ν B lim |uε|q(x) dx (limit in M(Ω̄) - which exists up to a
subsequence) are also atoms of µ. Since by assumption µ has no atomic part, we deduce that ν

also has no atoms, and thus that uε → u strongly in Lq(x)(Ω) and a.e.. As in the proof of the
lim sup property we obtain that

lim sup
ε→0

∫
Ω
|uε|q(x)−ε dx ≤

∫
Ω
|u|q(x) dx.

Moreover using Fatou lemma,

lim inf
ε→0

∫
Ω
|uε|q(x)−ε dx ≥

∫
Ω
|u|q(x) dx.

Hence

lim
ε→0

Fε(uε, µε) = lim
ε→0

∫
Ω
|uε|q(x)−ε dx =

∫
Ω
|u|q(x) dx = F ∗(u, µ),

as we wanted to show. �

We now prove the lim inf property assuming that µ is purely atomic with a finite number of
atoms and total mass strictly less that 1.

Proposition 2.6. For every (u, µ) ∈ X of the form (u, µ) = (0,
∑k

i=0 µiδxi), with xi ∈ A and

µi > 0 such that µ(Ω̄) =
∑

i µi < 1, there exists {(uε, |∇uε|p(x))}ε>0 ⊂ X converging in X to
(u, µ) and such that

lim
ε→0

Fε(uε, |∇uε|p(x)) = F ∗(u, µ).

The proof relies on the following two lemmas. The first one states gives the relation between
the two localized Sobolev constant (1.5) and (1.16).

Lemma 2.7. For any x0 ∈ A,

S̃−1
x0 = S̄−q(x0)

x0 .

Proof. First, suppose that S̃−1
x0 > 1. So there exists ε0 > 0 such that

sup
u∈B(Bε(x0))

∫
Bε(x0)

|u|q(x) dx > 1 for all ε ≤ ε0.

It follows that

sup
u∈B(Bε(x0))

‖u‖q
−
ε

q(x),Bε(x0) ≤ sup
u∈B(Bε(x0))

∫
Bε(x0)

|u|q(x) dx ≤ sup
u∈B(Bε(x0))

‖u‖q
+
ε

q(x),Bε(x0),

where q−ε = infBε(x0) q(x) and q+
ε = supBε(x0) q(x). Notice that

sup
u∈B(Bε(x0))

‖u‖q(x),Bε(x0) =

(
inf

u∈B̃(Bε(x0))
‖∇u‖p(x),Bε(x0)

)−1

,

where B̃(U) = {u ∈W 1,p(x)
0 (U) : ‖u‖q(x),U ≤ 1}. So, recalling that

lim
ε→0

inf
u∈B̃(Bε(x0))

‖∇u‖p(x),Bε(x0) = S̄x0 ,

we get

S̄−q(x0)
x0 = S̃−1

x0 .
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The case where S̃−1
x0 ≤ 1 is analogous. �

Lemma 2.8. For any x0 ∈ A there exists a sequence (uε, |∇uε|p(x)) ∈ X such that

(uε, |∇uε|p(x))
τ→ (0, δx0),

and

lim
ε→0

∫
|uε|q(x)−ε dx = S̄−q(x0)

x0 = S̃−1
x0 .

Proof. Let δ > 0, there exists ε0 such that for all ε < ε0

|S̃−1
xi − S̃(p(·), q(·), Bε(xi))−1| < δ

Moreover, there exists uε > 0 and uε ∈W 1,p(·)
0 (Bε(xi)) such that ‖∇uε‖p(x) ≤ 1 and

S̃(p(·), q(·), Bε(xi))−1 − δ <
∫
Bε(xi)

|uε|q(x) dx =

∫
Ω
|uε|q(x) dx ≤ S̃(p(·), q(·), Bε(xi))−1

So, we have proved that given δ > 0, there exists uδ ∈W
1,p(x)
0 (Bδ(xi)) such that ‖∇uδ‖p(x) = 1

and ∣∣∣∣S̃−1
xi −

∫
Ω
|uδ|q(x) dx

∣∣∣∣ ≤ δ
Observe that the sequence {uδ}δ>0 verifies

uδ → 0 a.e. in Ω,

and, as

1 =

∫
|∇uδ|p(x) dx; supp(|∇uδ|) ⊂ Bδ(xi),

then |∇uδ|p(x) ⇀ δxi , weakly in the sense of measures, as δ → 0.

Now, just observe that, by the Lebesgue dominated convergence theorem,∫
Ω
|uδ|q(x)−ε dx→

∫
Ω
|uδ|q(x) dx.

From these facts, the conclusion of the Lemma, follows. �

We can now prove Proposition 2.6:

Proof of Proposition 2.6. We prove the claim in the case k = 2 i.e. for µ of the form µ =
µ0δx0 + µ1δx1 with x0, x1 ∈ A and µ0, µ1 > 0, µ(Ω̄) = µ0 + µ1 < 1. We denote by u0,ε and u1,ε

the functions given by the previous proposition corresponding to the points x0 and x1:

(u0,ε, |∇u0,ε|p(x))
τ→ (0, δx0), lim

ε→0

∫
|u0,ε|q(x)−ε dx = S̄−q(x0)

x0 ,

(u1,ε, |∇u1,ε|p(x))
τ→ (0, δx1), lim

ε→0

∫
|u1,ε|q(x)−ε dx = S̄−q(x1)

x1 .

(2.1)

Since x0 6= x1, the supports of u0,ε and u1,ε are disjoint for ε small. It follows that the
functions

uε B µ
1

p(x0)

0 uε,0 + µ
1

p(x1)

1 uε,1
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satisfy for any given ψ ∈ C(Ω̄) that∫
Ω
ψ|∇uε|p(x) dx =

∫
µ

p(x)
p(x0)

0 ψ|∇uε,0|p(x) dx+

∫
µ

p(x)
p(x1)

1 ψ|∇uε,1|p(x) dx

→ µ0ψ(x0) + µ1ψ(x1) =

∫
ψ dµ.

in view of (2.1). In particular limε→0

∫
Ω |∇uε|

p(x) dx = µ0+µ1 < 1. Hence (uε, |∇uε|p(x)) belongs
to X for ε small and converges to (0, µ) as ε→ 0.

Moreover

Fε(uε, |∇uε|p(x)) =

∫
Ω
|uε|q(x)−ε dx =

∫
µ

q(x)−ε
p(x0)

0 |uε|q(x)−ε dx+

∫
µ

q(x)−ε
p(x1)

1 |uε|q(x)−ε dx

= (1 + o(1))

∫
µ

q(x)
p(x0)

0 |uε|q(x)−ε dx+ (1 + o(1))

∫
µ

q(x)
p(x1)

1 |uε|q(x)−ε dx

= µ
q(x0)
p(x0)

0 S̄−q(x0)
x0 + µ

q(x1)
p(x1)

1 S̄−q(x1)
x1 + o(1)

= F ∗(0, µ0δx0 + µ1δx1) + o(1).

This finishes the proof of Proposition 2.6 in the case k = 2. The proof when µ has an arbitrary
finite number of atoms is similar. �

The next lemma first proved in [1] allows to deduce the general case from the two particular
cases stated in propositions 2.4 and 2.6. Since its proof is identical to that of [1] and [22] we
omit it. Its statement involves the functional F− defined in (1.14).

Lemma 2.9. If F−(u, µ) ≥ F ∗(u, µ) for every (u, µ) ∈ X such that

(1) µ(Ω) < 1,

(2) µ = |∇u|p(x) + µ̃+
∑n

i=0 µiδxi,

(3) dist(supp(|u|+ µ̃),
⋃n
i=1{xi}) > 0,

then F−(u, µ) ≥ F ∗(u, µ) for every (u, µ) ∈ X.

Finally, we can prove the principal result.

Proof of the lim inf inequality. We only have to check the hypotheses of Lemma 2.9. Given
some (u, µ) ∈ X as in Lemma 2.9, we can descompose µ as µ = µ1 + µ2 with µ1 =

∑n
i=0 µiδxi

and µ2 = |∇u|p(x) + µ̃. Moreover there exists relatively open subsets A,B ⊂ Ω such that

supp(µ1) ⊂ A and supp(|u|+ µ̃) ⊂ B and A ∩B = ∅.
By propositions 2.3, 2.4 and 2.6, there exist sequences (u1

ε, µ
1
ε = |∇u1

ε|p(x)) ∈ X and (u2
ε, µ

2
ε =

|∇u2
ε|p(x)) ∈ X with u1

ε ∈ W
1,p(x)
0 (A), u2

ε ∈ W
1,p(x)
0 (B) converging in X to (0, µ1) and (u, µ2)

respectively, and satisfying

Fε(u
1
ε, µ

1
ε)→ F ∗(0, µ1), and Fε(u

2
ε, µ

1
ε)→ F ∗(0, µ2).
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Consider uε = u1
ε + u2

ε and µε = µ1
ε + µ2

ε. As u1
ε and u2

ε have disjoint support, it is easily seen
as in the proof of prop. 2.6, that (uε, µε) belongs to X and converges to (u, µ). Moreover

Fε(uε, µε) = Fε(u
1
ε, µ

1
ε) + Fε(u

2
ε, µ

2
ε)

= F ∗(0, µ1) + F ∗(u, µ2) + o(1)

=

∫
Ω
|u|q(x) dx+

n∑
i=0

µ
p∗(xi)
p(xi)

i S
−p∗(xi)
xi + o(1)

= F ∗(u, µ) + o(1).

This finishes the proof. �

3. Proof of proposition 1.4 and theorem 1.5.

Before beginning with the proof of proposition 1.4, we state and prove an easy version of the
Hölder inequality, that even it is well known (see e.g. [6]) is not the most common version. So
we provide here with a proof for the sake of completeness.

Lemma 3.1. Let f ∈ Lp(x)(Ω) and g ∈ Lp
′(x)(Ω) where 1 < p− ≤ p(x) ≤ p+ < ∞ and

p′(x) = p(x)
p(x)−1 is conjugate exponent. Then

(3.1)∫
Ω
f(x)g(x) dx ≤

(
1

p−
+

1

p′−

)
max

{(∫
Ω
|f(x)|p(x) dx

)1/p−

;

(∫
Ω
|f(x)|p(x) dx

)1/p+
}
‖g‖p′(x).

Proof. Let λ = ‖f‖p(x) and µ = ‖g‖p′(x). By Young’s inequality, we get

∫
Ω

f(x)

λ

g(x)

µ
dx ≤

∫
Ω

1

p(x)

(
|f(x)|
λ

)p(x)

dx+

∫
Ω

1

p′(x)

(
|g(x)|
µ

)p′(x)

dx

≤ 1

p−

∫
Ω

(
|f(x)|
λ

)p(x)

dx+
1

p′−

∫
Ω

(
|g(x)|
µ

)p′(x)

dx

=
1

p−
+

1

p′−

Now, the result follows just observing that

λ = ‖f‖p(x) ≤ max

{(∫
Ω
|f(x)|p(x) dx

)1/p−

;

(∫
Ω
|f(x)|p(x) dx

)1/p+
}
.

�

We are now ready to prove Proposition 1.4.
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Proof of Proposition 1.4. Using Hölder inequality (3.1), we have for any u ∈ B(Ω) that

∫
Ω
|u|q(x)−ε dx ≤

 1(
q
q−ε

)
−

+
1( q
ε

)
−

(∫
Ω
|u|q(x) dx

) 1

( q
q−ε)− ‖1‖( q(x)

ε

)′

= (1 + o(1))
(∫

Ω
|u|q(x) dx

)1+o(1)

from which we deduce that lim supε→0 S̃
−1
ε ≤ S̃−1.

For the opposite inequality, we first observe that for any u ∈W 1,p(x)
0 (Ω),

lim
ε→0

∫
Ω
|u|q(x)−ε dx =

∫
Ω
|u|q(x) dx.

In fact, if u ∈W 1,p(x)
0 (Ω), we can write

|u|q(x)−ε = |u|q(x)−ε1{|u|≤1} + |u|q(x)−ε1{|u|>1} ≤ 1 + |u|q(x),

and the result follows by the Dominated Convergence Theorem. Now, for a given δ > 0, consider
uδ ∈ B(Ω) such that

∫
Ω |uδ|

q(x) ≥ S̃−1 − δ. Then

lim inf
ε→0

S̃−1
ε ≥ lim inf

ε→0

∫
Ω
|uδ|q(x)−ε =

∫
Ω
|uδ|q(x) dx ≥ S̃−1 − δ.

The proof is now complete. �

Before proving Theorem 1.5 we need the following Sobolev type inequality deduced from the
definition of S̃:

Proposition 3.2. For any u ∈W 1,p(x)
0 (Ω),

(3.2)

∫
Ω
|u|q(x) dx ≤ S̃−1 max

{
‖∇u‖q+p , ‖∇u‖q−p

}
.

Proof. Let u ∈W 1,p(x)
0 (Ω). By definition of the norm ‖ · ‖p(x), there holds∫

Ω

( |∇u|
‖∇u‖p

)p(x)
dx = 1.

It follows that v B u
‖∇u‖p is admissible for S̃−1 so that∫

Ω

|u|q(x)

‖∇u‖q(x)
p

dx ≤ S̃−1.

The result follows noticing that ‖∇u‖q(x)
p ≤ max

{
‖∇u‖q

+

p , ‖∇u‖q
−
p

}
for a.e. x ∈ Ω. �

Proof of theorem 1.5. Observe that as an immediate consequence of the Γ-convergence of Fε to
F ∗ as stated in theorem 1.1, we have

(3.3) lim
ε→0

sup
X
Fε = sup

X
F ∗.
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Noticing that S̃−1
ε = supX Fε, we obtain, in view of the previous proposition, that

(3.4) sup
X
F ∗ = S̃−1.

Being subcritical, the embedding W
1,p(x)
0 (Ω) ↪→ Lq(x)−ε(Ω) is compact for any ε > 0. It

follows that there exist an extremal uε ∈ B(Ω) for S̃−1
ε i.e.

(3.5)

∫
Ω
|uε|q(x)−ε dx = S̃−1

ε .

We can assume that uε ⇀ u weakly in W
1,p(x)
0 (Ω). The lim sup property (1.12) then gives

lim sup
ε→0

∫
Ω
|uε|q(x)−ε dx ≤ F ∗(u, µ) =

∫
Ω
|u|q(x) dx+

∑
i∈I

µ
p∗(xi)
p(xi)

i S̃−1
xi ,

where µ and the µi are as in the CCP (1.7)–(1.9). We then obtain in view of (3.4), (3.5) and
Proposition 1.4 that (u, µ) is an extremal for F ∗ i.e.

(3.6)

∫
Ω
|u|q(x) dx+

∑
i∈I

µ
p∗(xi)
p(xi)

i S̃−1
xi = S̃−1.

Since B(Bε(x0)) ⊂ B(Ω) for any x0 ∈ Ω̄, we see that S̃−1
x0 ≤ S̃−1 for any x0 ∈ A. Using also

the Sobolev inequality (3.2), we deduce from (3.6) that

1 ≤ max
{
‖∇u‖q+p , ‖∇u‖q−p

}
+
∑
i∈I

µ
p∗(xi)
p(xi)

i .

Moreover since

(3.7) 1 ≥ µ(Ω̄) ≥
∫

Ω
|∇u|p(x) dx+

∑
i

µi,

we have

max
{
‖∇u0‖q

+

p , ‖∇u0‖q
−
p

}
= ‖∇u0‖q

−
p ≤

(∫
Ω
|∇u0|p(x) dx

) 1
p+ .

It follows that

1 ≤
(∫

Ω
|∇u0|p(x) dx

) q−

p+ +
∑
i∈I

µ
p∗(xi)
p(xi)

i .

Since q−

p+
, p
∗(xi)
p(xi)

> 1 for any i, we obtain in view of (3.7) that

1 ≤
∫

Ω
|∇u|p(x) dx+

∑
i

µi ≤ 1

where the first inequality is strict, leading to a contradiction, if one of the terms in the sum
belongs to (0, 1). It follows that

(i) either
∫

Ω |∇u|
p(x) dx = 0 and all the µi are 0 except one µi0 = 1,

(ii) or µi = 0 for any i ∈ I and
∫

Ω |∇u|
p(x) dx = 1.
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In the first case (i), the CCP (1.7)-(1.9) reduces to

|uε|q(x) dx
∗
⇀ νi0 δxi0 , |∇uε|p(x) dx

∗
⇀ δxi0 , νi0 ≤ S̃−1

xi0
.

Then using Hölder inequality,

S̃−1 = lim
ε→0

∫
Ω
|uε|q(x)−ε dx ≤ lim sup

ε→0

∫
Ω
|uε|q(x) dx = νi0 ≤ S̃−1

xi0
≤ S̃−1.

It follows that νi0 = S̃−1 and we obtain the second alternative in theorem 1.5.

In the second case (ii), it follows from (3.6) that u is an extremal for S̃−1. Since uε → u a.e.

and
∫

Ω |uε|
q(x) dx →

∫
Ω |u|

q(x) dx, we obtain using the Brezis-Lieb Lemma (see [3] and also [12,
Lemma 3.4]) that∫

Ω
|uε − u|q(x) dx =

∫
Ω
|uε|q(x) dx−

∫
Ω
|u|q(x) dx+ o(1) = o(1)

i.e. uε → u strongly in Lq(x)(Ω). This ends the proof of Theorem 1.5. �
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