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Abstract. In this work we study the sequence of variational eigenvalues of
a system of resonant type involving p− and q−laplacians on Ω ⊂ RN , with a
coupling term depending on two parameters α and β satisfying α/p+β/q = 1.
We show that the order of growth of the kth eigenvalue depends on α + β,

λk = O(k
α+β

N ).

1. Introduction

This paper is devoted to the study of the asymptotic behavior of eigenvalues of
resonant quasilinear systems

(1.1)

{
−∆pu = λα|u|α−2u|v|β
−∆qv = λβ|u|α|v|β−2v,

in Ω

with Dirichlet boundary condition

(1.2) u(x) = v(x) = 0 on ∂Ω.

Here, Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, the s−laplacian
operator is ∆su = div(|∇u|s−2∇u), the exponents satisfy 1 < p, q < +∞, and the
positive parameters α, β satisfy

(1.3)
α

p
+
β

q
= 1.

The study of resonant systems has deserved a great deal of attention in the
last years, and we may cite the works of Boccardo and de Figueiredo [9], Mana-
sevich and Mawhin [26], Felmer, Manasevich and de Thèlin [17], Stavrakakis and
Zographopoulos [31], among several others.

In several applications, such as bifurcation problems, anti-maximum principles,
and existence or non-existence of solutions (see for example [4, 16, 17, 22, 31, 32, 33])
it is desirable to have precise bounds on the eigenvalues. In general this informa-
tion is not well understood for elliptic systems, except for the first or principal
eigenvalue. Several properties of this first eigenvalue were analyzed (existence,
uniqueness, positivity, and isolation in bounded or unbounded domains, with dif-
ferent boundary conditions and with or without weights) and we refer the interested
reader to [1, 13, 18, 25, 33] among others.
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Let us recall briefly that the existence of a sequence of variational eigenvalues
for problem (1.1)-(1.2) was proved in [11], and the values λk are defined as

λk := inf
C∈Ck

sup
(u,v)∈C

1
p

∫

Ω

|∇u|p dx+
1
q

∫

Ω

|∇v|q dx
∫

Ω

|u|α|v|β dx
,

where Ck is the class of compact symmetric (C = −C) subsets of W 1,p
0 (Ω)×W 1,q

0 (Ω)
of (Krasnoselskii) genus greater or equal than k.

Throughout this work, the eigenvalues are counted repeated according to their
multiplicity. We say that λk has multiplicity r if λk−1 < λk = λk+1 = · · · =
λk+r−1 < λk+r. In this case, it is a well know fact that the set of eigenfunctions
corresponding to λk has genus greater or equal than r (see, for instance, [24]).

In the case of a single equation the existence of a sequence of variational eigenval-
ues together with the correct order of growth for these eigenvalues was first obtained
by Garcia-Azorero and Peral in [24]. The constants in the asymptotic behavior were
improved by Friedlander in [23]. Let us note that for the one-dimensional problem,
these bounds can be refined, see [19, 20].

As for elliptic systems, the asymptotic growth of the eigenvalues is less under-
stood even in the linear case. We may cite here the work of Protter [30], and also
the works of Cantrell and Cosner [5, 6, 7] were lower bounds for the first eigenvalue
were obtained. The exception for the lack of results in this direction comes from
linear and nonlinear elasticity theory (see the survey of Antman [3]).

For nonlinear elliptic systems, up to our knowledge, the first work where this
problem was addressed was [12] where we obtained a generalization of the Lyapunov
inequality together with an upper bound of the variational eigenvalues in terms of
the ones of a single p-laplacian equation for the one dimensional case. Later, in
[21] we obtained lower and upper bounds for the eigenvalues of problem (1.1)-(1.2)
in terms of the eigenvalues of a single p-laplacian and q-laplacian equations in any
dimension N ≥ 1. More precisely, for each k we prove that

c

(
k

|Ω|
) q

N

≤ λk ≤ C

(
k

|Ω|
) p

N

for suitable positive constants c, C depending on p and q.
We refer the interested reader to the introductions of [12, 21] for more information

and references about the eigenvalues of quasilinear elliptic equations and resonant
systems.

However, our previous bounds fail to reflect the coupling strength of the system
which is given by the parameters α and β. Formally, by taking α = p and β = 0,
we obtain a single p-laplacian equation replacing the system,

−∆pu = λp|u|p−2u,

and similarly, for α = 0 and β = q we have

−∆qv = λq|v|q−2v.

Hence, the order of growth of our upper (resp., lower) bound given in [21] is sharp
for the case α = p (resp., β = q), since coincides with the true upper (resp., lower)
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order of growth of the eigenvalues (see [24]). On the other hand, both orders does
not hold simultaneously even for those limit cases.

We can suspect that there exists a smooth transition for the order of growth of
the eigenvalues between both limiting cases, and the main result of this work is to
prove it. Namely, our main theorem is

Theorem 1.1. Let {λk}k be the sequence of variational eigenvalues of problem
(1.1)-(1.2). Then, there exist positive constants c < C depending on p, q and
Ω ⊂ RN , such that

c

(
k

|Ω|
)α+β

N

≤ λk ≤ C

(
k

|Ω|
)α+β

N

.

Observe that if one consider linear operators, or even the same p−laplace op-
erator in both equations (i.e. p = q), the coupling parameters α and β are not
reflected in the asymptotics of the eigenvalues since α + β = p in this case. We
believe that this fact may be the reason why this phenomenum was not discovered
earlier.

The proof of Theorem 1.1 follows directly from Weyl-type bounds for the spectral
counting function N(λ) which gives the number of eigenvalues less than a given
value, that is

N(λ) = #{k : λk ≤ λ}.
Theorem 1.1 is equivalent to the following asymptotic bound for N(λ):

C−1λ
N

α+β ≤ N(λ) ≤ c−1λ
N

α+β .

Up to our knowledge, this is the first case in the literature where the coupling
parameters of an elliptic system appear explicitly modifying the power on the as-
ymptotic order of growth of the eigenvalues. For example, in linear second order
problems on domains with parts of different dimensions, Ω = Ω(N) ∪ Ω(n) with
n < N like the ones considered in [10], we always have

c(Ω(N))λN/2 ≤ N(λ) ≤ C(Ω(N))λN/2,

and the influence of the domain Ω(n) appears only as a correction factor of lower
order (see [28] for details). Also, in Steklov-like eigenvalue problems where the
eigenvalue parameter appears both in the equation and the boundary condition in
a domain Ω ⊂ RN (see for example [27] for p = 2, and [29] for 1 < p <∞),

{
−∆pu = λ|u|p−2u

|∂u
∂ν |p−2 ∂u

∂ν = λ|u|p−2u,

which can be thought as a system involving the laplacian and the Dirichlet-to-
Neumann map, we have N(λ) = O(λm), where the order of growth of N(λ) is given
by

m = max
{
N − 1
p− 1

,
N

p

}
.
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1.1. Organization of the paper. The paper is organized as follows. In Section
§2 we review some facts about the eigenvalue problem for the single s-laplacian
equation

−(|u′|s−2u′)′ = |u|s−2u,

which can be found for example in [14], or [15].
Also, we will consider the eigenvalue problem involving the pseudo p−laplacian

operator

∆̂p =
N∑

j=1

∂

∂xj

(∣∣∣∣
∂u

∂xj

∣∣∣∣
p−2

∂u

∂xj

)
,

and we recall some bounds proved in [21].
In Section §3 we prove Theorem 1.1 by using a scaling argument as in [23]. The

main drawback of this approach is the fact that the constant on the asymptotic
expansion remains unknown since they depend on the first Dirichlet eigenvalue and
the second Neumann eigenvalue of problem (1.1)-(1.2) when Ω is the unit cube Q1.

So, we are left with the problem of find lower and upper bounds for those eigen-
values, which is a problem of independent interest. Thus, we consider the one-
dimensional problem

(1.4)
{ −(|u′(x)|p−2u′(x))′ = λα|u|α−2u|v|β
−(|v′(x)|q−2v′(x))′ = λβ|u|α|v|β−2v

on the interval (a, b), and we will focus on the Dirichlet boundary condition.
In Section §4 we prove the following lower bound for the first Dirichlet eigenvalue

λ1(p, q) of the one dimensional problem (1.4):

Theorem 1.2. Let Λ1(α+ β) be the first Dirichlet eigenvalue of

−(|ϕ′|α+β−2ϕ′)′ = Λ|ϕ|α+β−2ϕ

on (a, b). Then,
(
α

α
p β

β
q

)−1
(

2
πα+β

)α+β Λ1(α+ β)
α+ β − 1

≤ λ1(p, q).

The proof follows by using the Lyapunov inequality obtained in [12].

In [12] we obtained an upper bound of the first eigenvalue of the one dimensional
problem (1.4) in terms of the first eigenvalue of the single p-laplacian equation.
Moreover, upper bounds were obtained for all the variational eigenvalues, namely

(1.5) λk ≤ Λk(p)
p

[
1 +

(
p

q

)q+1 (
Λk(p)

)(q−p)/p
]
.

Here, Λk(p) stands for the kth eigenvalue of the p-laplacian. Let us note that (1.5)
holds for the one dimensional problem. In the N−dimensional case, (1.5) holds
only for the first eigenvalue.

In this paper we improve this explicit upper bound for the first eigenvalue, and
we use it to obtain asymptotic bounds for the kth eigenvalue of a system in Ω ⊂ RN

depending on the eigenvalues of the α+ β−laplacian.

Section §5 is devoted to the proof of the following upper bound of the first
Dirichlet eigenvalue of problem (1.4):
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Theorem 1.3. Let Λ1(α+ β) be the first Dirichlet eigenvalue of equation

−(|ϕ′|α+β−2ϕ′)′ = Λ|ϕ|α+β−2ϕ

on (a, b). Then,

λ1(p, q) ≤ Λ1(α+ β)
α+ β − 1


1
p

+
1
q

(
πα+β∫ πα+β

0
sinα+β

α+β(t)dt

)1− q
α+β


 .

Here sins(x) is defined implicitely as

x =
∫ sins(x)

0

dt

(1− ts)1/s

and πs is given by

πs = 2
∫ 1

0

dt

(1− ts)1/s
.

See section §2 for more con these and see also the paper [14].

Finally, in Section §6 we close the paper with asymptotic upper bounds for the
higher eigenvalues of system (1.1) by using the bounds obtained in Theorems 1.1 and
1.3, and some facts about eigenvalue problems involving the pseudo p−laplacian.
We show that

λk(p, q) ≤ cλk(α+ β),

for a fixed constant c depending only on α, β, and Ω. Also, we discuss the possibility
of finding better estimates.

2. Some known facts

In this Section we recall some previous results which will be needed in the rest
of the paper.

2.1. Variational setting. The variational characterization of eigenvalues follows
from the abstract theory developed by Amman (see [2]). In [15] the authors showed
the existence of infinitely many eigenpairs, i. e. (u, v) ∈ W 1,p

0 (Ω) ×W 1,q
0 (Ω) and

λ ∈ R such that∫

Ω

|∇u|p−2∇u∇ϕ+ |∇v|q−2∇v∇ψ dx = λ

∫

Ω

(α|u|α−2uφ|v|β + β|u|α|v|β−2vψ) dx

for any test-function pair (φ, ψ) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω).
It is convenient to work with the variational characterization of the eigenvalues,

defined through the Rayleigh quotient,

(2.1) λk = inf
C∈Ck

sup
(u,v)∈C

1
p

∫

Ω

|∇u|p dx+
1
q

∫

Ω

|∇v|q dx
∫

Ω

|u|α|v|β dx
,

where Ck is the class of compact symmetric (C = −C) subsets of W 1,p
0 (Ω)×W 1,q

0 (Ω)
of (Krasnoselskii) genus greater or equal that k.



6 J. FERNÁNDEZ BONDER AND J. P. PINASCO

2.2. One dimensional case. For the one dimensional s−laplacian in Ω = [a, b]

(2.2) −(|u′|s−2u′)′ = Λ|u|s−2u

with Dirichlet boundary conditions, we have

(2.3) Λk(s) = inf
C∈Ck

sup
u∈C

∫ b

a

|u′|s dx
∫ b

a

|u|s dx
,

with u ∈W 1,s
0 (a, b).

Here, all the eigenvalues and eigenfunctions can be found explicitly (see [15]):

Theorem 2.1 (Del Pino, Drabek and Manasevich, [14]). The eigenvalues Λk(s)
and eigenfunctions us,k of equation (2.2) on the interval [0, L] are given by

Λk(s) = (s− 1)
πs

sk
s

Ls
,

us,k(x) = sins(πskx/L).

Remark 2.2. It was proved in [15] that they coincide with the variational eigenvalues
given by equation (2.3). However, let us observe that the notation is different in
both papers.

The function sins(x) is the solution of the initial value problem

−(|u′|s−2u′)′ = (s− 1)|u|s−2u

u(0) = 0, u′(0) = 1,

and is defined implicitly as

x =
∫ sins(x)

0

dt

(1− ts)1/s
.

Moreover, its first zero is πs, given by

πs = 2
∫ 1

0

dt

(1− ts)1/s
.

Let us note that both sins and sin′s satisfy

| sins | ≤ 1, | sin′s | ≤ 1,

due to the Pythagorean like identity

(2.4) | sins |s + | sin′s |s = 1.

Finally, let us observe that the following integral is a constant depending only
on s: ∫ πs

0

sins
s(t) dt = K(s).
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2.3. The Spectral Counting Function. Given the sequence {λk}k∈N, we intro-
duce the spectral counting function N(λ) defined as

N(λ) = #{k : λk ≤ λ}.
To avoid confusion, we will use Nsys(λ) or Ns(λ) to denote the eigenvalue count-

ing functions of the system and the s−laplacian respectively. If necessary, we will
write N(λ,Ω) to denote explicitly the set Ω where the eigenvalue problem is consid-
ered, and even ND(λ) or NN (λ) to indicate the Dirichlet and Neumann boundary
conditions.

The main tool in order to obtain the asymptotic expansion ofN(λ) is the classical
Dirichlet-Neumann bracketing introduced by Courant [8]. The following proposition
can be found in [19]:

Proposition 2.3 ([19], Theorem 2.1). Let U1, U2 ∈ RN be disjoint open sets such
that (U1 ∪ U2)int = U and |U \ U1 ∪ U2| = 0. Then,

ND(λ,U1) +ND(λ,U2) = ND(λ,U1 ∪ U2)

≤ ND(λ,U)

≤ NN (λ,U)

≤ NN (λ,U1 ∪ U2)

= NN (λ,U1) +NN (λ,U2).

2.4. The pseudo p−laplacian. We will use the first eigenvalue νp,1 of the pseudo
p−laplacian on a cube QL of side of length L in order to bound the first eigenvalue
of the p−laplacian on the same domain.

Proposition 2.4. Let QL ⊂ RN , and Λ1(p), be the first eigenvalues of the p-
laplacian in QL. Then,

πp
pN

Lp ≤ Λ1(p) ≤ πp
pNp/2

Lp if 2 < p,

πp
pNp/2

Lp ≤ Λ1(p) ≤ πp
pN

Lp if p < 2.

Proof. We only sketch the proof here, see [21], Proposition 2.7 for the details. For
any x ∈ RN , we have |x|q ≤ Cp|x|p where Cp = 1 if p ≤ q, and Cp = N (p−q)/2q if
p ≥ q. Hence,

νp,1 = inf
u∈W 1,p

0

‖ |∇u|p‖p
p

‖u‖Lp

; Λ1(p) = inf
u∈W 1,p

0

‖ |∇u|2‖p
p

‖u‖Lp

.

The previous norm inequality gives

νp,1 ≤ Λ1(p) ≤ N (p−2)/2νp,1 if 2 < p,
N (p−2)/2νp,1 ≤ Λ1(p) ≤ νp,1 if p < 2,

and the result follows since the first eigenpair of the pseudo p−laplacian on QL is

νp,1 =
πp

pN

Lp
,

up,1 = sinp(πpx1/L) · · · sinp(πpxN/L).
That is, the first eigenvalue is N times the one dimensional eigenvalue. ¤
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3. Estimates for the Spectral Counting Function

Let us begin with the following scaling argument. We denote Q1 the unit cube
in RN , and Qt, the scaled cube of side of length t.

Lemma 3.1. Let λ1
1(p, q) (resp., λt

1(p, q)) be the first Dirichlet eigenvalue of prob-
lem 1.1 when Ω = Q1 (resp., Ω = Qt). Then,

tα+βλt
1(p, q) = λ1

1(p, q).

Proof. We have

λ1
1(p, q) =

1
p

∫

Q1

|∇u|p dx+
1
q

∫

Q1

|∇v|q dx
∫

Q1

|u|α|v|β dx
,

where (u, v) is an eigenfunction corresponding to λ1
1(p, q). Now, we choose the

functions
ut = tu1

(x
t

)
, vt = tv1

(x
t

)
.

Clearly, (ut, vt) ∈ W 1,p
0 (Qt) ×W 1,q

0 (Qt), and can be used as test functions in the
variational characterization (2.1) for λt

1(p, q). Then,

λt
1(p, q) ≤

1
p

∫

Qt

|∇ut|p dx+
1
q

∫

Qt

|∇vt|q dx
∫

Qt

|ut|α|vt|β dx
.

Changing variables s = x/t we obtain

(3.1)

λt
1(p, q) ≤

1
p

∫

Qt

|∇ut|p dx+
1
q

∫

Qt

|∇vt|q dx
∫

Qt

|ut|α|vt|β dx

=

1
p

∫

Q1

|∇u|p tds+
1
q

∫

Q1

|∇v|q tds
∫

Q1

tα+β |u|α|v|β tds

=
λ1

1(p, q)
tα+β

To obtain the other inequality we repeat the same argument by choosing an eigen-
function (ut, vt) corresponding to λt

1(p, q). ¤

Remark 3.2. In [1] the authors proved that the first eigenvalue of Problem (1.1)
has an eigenfunction (u, v) satisfying u > 0, v > 0 in Ω. For any other eigenvalue,
at least one of the eigenfunctions changes sign. However, let us note that both
(u, v) and (u,−v) are eigenfunctions corresponding to the first eigenvalue. By
using this argument it is possible to show that the scaled functions (ut, vt) are the
first eigenfunctions on Qt.
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The following lemma is similar to the previous one. However, several differences
arise. The main one is that we cannot choose the second Neumann eigenfunction
and use it as a test function, due to the minimax characterization. Let us note also
that the first eigenvalue is µ1 = 0, with constant associated eigenfunctions.

Lemma 3.3. Let µ1
2(p, q) (resp., µt

2(p, q)) be the second Neumann eigenvalue of
problem (1.1) when Ω = Q1 (resp., Ω = Qt). Then,

tα+βµt
2(p, q) = µ1

2(p, q).

Proof. Instead of the second eigenfunction, we choose a compact symmetric set C
of genus greater than or equal to 2 in W 1,p

0 (Q1) ×W 1,q
0 (Q1). Now, we scale the

functions as before, and then we obtain a set Ct ⊂ W 1,p
0 (Qt) ×W 1,q

0 (Qt) of genus
greater than or equal to 2. Since

sup
(u,v)∈C

1
p

∫

Ω

|∇u|p dx+
1
q

∫

Ω

|∇v|q dx
∫

Ω

|u|α|v|β dx
= sup

(ut,vt)∈Ct

1
p

∫

Ω

|∇ut|p dx+
1
q

∫

Ω

|∇vt|q dx
∫

Ω

|ut|α|vt|β dx
,

changing variables again we get,

(3.2)

µt
2(p, q) ≤ inf

Ct∈C2
sup

(ut,vt)∈Ct

1
p

∫

Ω

|∇ut|p dx+
1
q

∫

Ω

|∇vt|q dx
∫

Ω

|ut|α|vt|β dx

= inf
C∈C2

sup
(u,v)∈C

1
p

∫

Ω

|∇u|p dx+
1
q

∫

Ω

|∇v|q dx
∫

Ω

|u|α|v|β dx

= µ1
2(p, q).

In order to obtain the reverse inequality, we take a compact symmetric set C ⊂
W 1,p

0 (Qt) ×W 1,q
0 (Qt) of genus greater than or equal to 2, and we apply the same

argument. ¤

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For any λ fixed, we take a lattice of cubes of side length
t¿ 1 in RN with t depending on λ.

First we derive a lower bound for N(λ) (equivalently, an upper bound for λk).
From Lemma 3.1, λt

1(p, q) = t−(α+β)λ1
1(p, q), and taking

t =
(

λ

λ1
1(p, q)

)− 1
α+β

,

we have
λt

1(p, q) = λ

Hence, each cube has at least two eigenvalues lower than or equal to λ. By using
the Dirichlet Neumann bracketing, a lower bound for N(λ) is given by 2K, where
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K is the number of cubes of the lattice contained in Ω. Since

tNK → |Ω|
when t→ 0, we have

N(λ) ≥ 2K ∼ 2|Ω|
tN

= 2|Ω|
(

λ

λ1
1(p, q)

) N
α+β

.

The upper bound for λk(p, q) follows since

k = N(λk(p, q)) ≥ 2|Ω|
λ1

1(p, q)
N

α+β

λk(p, q)
N

α+β .

Let us find an upper bound for N(λ). We use the bound for the second Neumann
eigenvalue proved in Lemma 3.3, µt

2(p, q) = t−(α+β)µ1
2(p, q). Hence, taking

t =
(

cλ

µ1
2(p, q)

)− 1
α+β

,

for any c > 1, we have
µt

2(p, q) = cλ > λ.

Therefore, each cube has at most two eigenvalues lower than or equal to λ. By
using again the Dirichlet Neumann bracketing, an upper bound for N(λ) is given
by 2K, where K is the number of cubes covering Ω. Since

tNK → |Ω|
when t→ 0, we have

N(λ) ≤ 2K ∼ 2|Ω|
tN

= 2|Ω|
(

cλ

µ1
2(p, q)

) N
α+β

.

The lower bound for λk(p, q) follows since

k = N(λk(p, q)) ≤ 2|Ω|
µ1

2(p, q)
N

α+β

(cλk(p, q))
N

α+β .

The Theorem is proved. ¤

4. A Lower Bound for the First Eigenvalue

Let us prove now Theorem 1.2. We use the following Lyapunov inequality for
systems proved in Part I:

Theorem 4.1 ([12], Theorem 1.5). Let us assume that there exists a positive so-
lution of the system

{ −(|u′(x)|p−2u′(x))′ = f(x)|u|α−2u|v|β
−(|v′(x)|q−2v′(x))′ = g(x)|u|α|v|β−2v

on the interval (a, b), with Dirichlet boundary conditions. Then, we have that:

(4.1) 2α+β ≤ (b− a)
α
p′+

β
q′

(∫ b

a

f(x) dx

)α
p

(∫ b

a

g(x) dx

) β
q
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This result gives Theorem 1.2 after replacing f(x) = αλ1(p, q) and g(x) =
βλ1(p, q). We have

(4.2) 2α+β ≤ α
α
p β

β
q (b− a)

α
p′+

β
q′+

α
p + β

q λ1(p, q),

and let us note that
α

p′
+
β

q′
+
α

p
+
β

q
= α

(
1
p

+
1
p′

)
+ β

(
1
q

+
1
q′

)
= α+ β.

So,

2α+β ≤ α
α
p β

β
q (b− a)α+βλ1(p, q).

The desired result follows from this inequality and the explicit formula for Λ1(α+
β) in Theorem 2.1, since:

2α+β

(b− a)α+β

α+ β − 1
α+ β − 1

(
πα+β

πα+β

)α+β

=
1

α+ β − 1

(
2

πα+β

)α+β

Λ1(α+ β),

and therefore

1
α+ β − 1

(
2

πα+β

)α+β

Λ1(α+ β) ≤ α
α
p β

β
q λ1(p, q).

This completes the proof of Theorem 1.2. ¤

5. An Upper Bound for the First Eigenvalue

Let us prove now Theorem 1.3. For the upper bound of the first eigenvalue, we
need to improve the bound given in [12].

Given the variational characterization of the first eigenvalue,

λ1(p, q) ≤
1
p

∫ b

a
|u′|p + 1

q

∫ b

a
|v′|q

∫ b

a
|u|α|v|β

we choose u = v = ϕ1, which is a multiple of the first Dirichlet eigenfunction of the
single equation

−(|w′|α+β−2w′)′ = Λ|w|α+β−2w,

that is

ϕ1(x) =
b− a

πα+β
sinα+β

(
πα+β

x− a

b− a

)
.

Due to the Pythagorean-like identity (2.4) we have

|ϕ′1| ≤ 1.

Replacing u and v in the Rayleigh quotient we get

λ1(p, q) ≤
1
p

∫ b

a
|ϕ′1|p + 1

q

∫ b

a
|ϕ′1|q∫ b

a
|ϕ1|α+β

Now, since α+ β < p, and |ϕ′1| ≤ 1, the inequality

|ϕ′1|p ≤ |ϕ′1|α+β
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holds. On the other hand, by using Hölder inequality we obtain
∫ b

a

|ϕ′1|q ≤
(∫ b

a

|ϕ′1|α+β

) q
α+β

(b− a)1−
q

α+β

We have

λ1(p, q) ≤ 1
p

∫ b

a
|ϕ′1|α+β

∫ b

a
|ϕ1|α+β

+
1
q

(∫ b

a
|ϕ′1|α+β

) q
α+β

(b− a)1−
q

α+β

∫ b

a
|ϕ1|α+β

≤ 1
p
Λ1(α+ β) +

1
q
Λ1(α+ β)

q
α+β

(b− a)1−
q

α+β

(∫ b

a
|ϕ1|α+β

)1− q
α+β

Now we need an upper bound for
(

b− a∫ b

a
|ϕ1|α+β

)1− q
α+β

.

Indeed, we can compute the integral explicitly, obtaining

∫ b

a
|ϕ1|α+β dx =

(
b− a

πα+β

)α+β ∫ b

a

sinα+β
α+β

(
πα+β

x− a

b− a

)
dx

=
(
b− a

πα+β

)α+β+1 ∫ πα+β

0

sinα+β
α+β(t) dt

=
(
b− a

πα+β

)α+β+1

K(α+ β).

For brevity, let us call

Λ̂1(α+ β) =
Λ1(α+ β)
α+ β − 1

.

Then,

λ1(p, q) ≤ 1
p
Λ̂1(α+ β) +

1
q
Λ̂1(α+ β)

q
α+β

(
πα+βπ

α+β
α+β

(b− a)α+βK(α+ β)

)1− q
α+β

.

Now, by using the explicit formula for λ1(α+ β), we have

λ1(p, q) ≤ 1
p
Λ̂1(α+ β) +

1
q

(
πα+β

α+β

(b− a)α+β

) q
α+β

(
πα+β

α+βπα+β

(b− a)α+βK(α+ β)

)1− q
α+β

.

Expanding and collecting terms,

λ1(p, q) ≤ 1
p
Λ̂1(α+ β) +

1
q

πα+β
α+β

(b− a)α+β

(
πα+β

K(α+ β)

)1− q
α+β

,

and finally we obtain

λ1(p, q) ≤ Λ̂1(α+ β)

[
1
p

+
1
q

(
πα+β

K(α+ β)

)1− q
α+β

]
.
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The proof of Theorem 1.3 is finished. ¤

6. An explicit lower bound on the Main Theorem

In Section §3 we obtained the following asymtotic bounds for the spectral count-
ing function:

2|Ω|
λ1

1(p, q)
N

α+β

λ
N

α+β ≤ N(λ) ≤ 2|Ω|
µ1

2(p, q)
N

α+β

(cλ)
N

α+β .

An explicit lower bound can be given by using our previous upper bound, namely

λ1(p, q) ≤ Λ1(α+ β)
α+ β − 1

[
1
p

+
1
q

(
πα+β

K(α+ β)

)1− q
α+β

]

for one-dimensional problems.
Moreoever, for the N−dimensional case we need Proposition 2.4 together with

the bound of Part I, equation (1.5). Let us recall that we can bound the first
eigenvalue Λ1(p) by above by using the one of the pseudo p−laplacian,

Λ1(p) ≤ N (p−2)/2νp,1 if 2 < p,
Λ1(p) ≤ νp,1 if p < 2,

Since νp,1 = Nπp
p for the cube Q1, we obtain an explicit lower bound for N(λ) in

the N−dimensional case.

Remark 6.1. Although the previous formula holds for any constant c > 1, it is
convenient to take c = 1 + λ−1, since in this case we can rewrite the upper bound
as

2|Ω|
µ1

2(p, q)
N

α+β

λ
N

α+β +O(1).

We conjecture that a stronger result holds, namely,

N(λ) = c(Ω, α, β)λ
N

α+β + o(λ
N

α+β ).

Indeed, the proof follows immediately if it is true that

λ1
1(p, q) = µ1

2(p, q).

The equality holds for a single equation and p = 2 in any dimension, and also for
the one dimensional p−laplace equation. Up to our knowledge, it is not known for
systems, nor in the case N > 1 even for a single p−laplacian equation.
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