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Abstract

In this paper, we study the asymptotic behavior of the best Sobolev trace constant and

extremals for the immersion W 1;pðOÞ+Lqð@OÞ in a bounded smooth domain when it is

contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is

a Sobolev-type immersion in weighted spaces over a projection of O; W 1;pðPðOÞ; aÞ+
LqðPðOÞ; bÞ:
For the special case p ¼ q; this problem leads to an eigenvalue problem with a nonlinear

boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this

case.
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1. Introduction

Let O be a smooth bounded domain in RN ; NX2: Of importance in the study of
boundary value problems for differential operators in O are the Sobolev trace
inequalities. For any 1opoN; and 1pqpp� ¼ pðN � 1Þ=ðN � pÞ we have that
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W 1;pðOÞ+Lqð@OÞ and hence the following inequality holds:

Sjjujjp
Lqð@OÞpjjujjp

W 1;pðOÞ

for all uAW 1;pðOÞ: This is known as the Sobolev trace embedding theorem. The
best constant for this embedding is the largest S such that the above inequality holds,
that is

Sp;qðOÞ ¼ inf
uAW 1;pðOÞ\f0g

R
O jrujp þ jujp dxR

@O jujq ds
� �p=q

: ð1:1Þ

Moreover, if 1pqop� the embedding is compact and as a consequence we have
the existence of extremals, i.e. functions where the infimum is attained, see [12].
These extremals are weak solutions of the following problem:

Dpu ¼ jujp�2u in O;

jrujp�2@u
@n ¼ ljujq�2u on @O;

(
ð1:2Þ

where Dpu ¼ divðjrujp�2ruÞ is the p-Laplacian, @
@n is the outer unit normal derivative

and if we use the normalization jjujjLqð@OÞ ¼ 1; one can check that l ¼ Sp;qðOÞ:
Our main interest in this paper is to study the dependence of the best constant

Sp;qðOÞ and extremals on the domain. In [14,15] a first step in this direction was made
by considering a family of domains obtained by contracting or expanding a fixed
one, that is mO ¼ fmx j xAOg; and studying the limits m-0þ and m-N: In
particular, in [14] it is proved that

lim
m-0

Sp;qðmOÞ
mðNq�NpþpÞ=q

¼ jOj
j@Ojp=q

: ð1:3Þ

In this paper, we use the notation jAj for the measure of the set A in its
corresponding dimension, that is, if A is a set of dimension r; jAj stands for the
r-dimensional measure of A:
Here we consider a different family of domains. More precisely, we focus our

attention on thin domains. To this end, let N ¼ n þ k and define the family

Om ¼ fðmx; yÞ j ðx; yÞAO; xARn; yARkg:

Remark that for small values of m; Om is a narrow domain in the x direction.

Our first result shows that, when the domain is very narrow, the problem of
looking at the trace of a function is equivalent, in some sense, to the problem of the
immersion of the function in the projection of the domain over the y variables. More
precisely, we define the projection

PðOÞ ¼ fyARk j (xARn with ðx; yÞAOg
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and consider the weighted Sobolev embedding W 1;pðPðOÞ; aÞ+LqðPðOÞ; bÞ with
associated best constant given by

%Sp;qðPðOÞ; a; bÞ ¼ inf
vAW 1;pðPðOÞ;aÞ

R
PðOÞ ðjrvjp þ jvjpÞaðyÞ dyR

PðOÞ jvj
qbðyÞ dy

� �p=q
: ð1:4Þ

We prove

Theorem 1.1. Let 1pqop�; then there exists two nonnegative weights a; bALNðPðOÞÞ
such that

lim
m-0þ

Sp;qðOmÞ
mðnq�npþpÞ=q

¼ %Sp;qðPðOÞ; a; bÞ ð1:5Þ

and if we scale the extremals um of Sp;qðOmÞ to the original domain O as vmðx; yÞ ¼
umðmx; yÞ; ðx; yÞAO; normalized as jjumjjqLqð@OmÞ ¼ mn�1; then vm-v ¼ vðyÞ strongly in

W 1;pðOÞ; where vAW 1;pðPðOÞ; aÞ is an extremal for %Sp;qðPðOÞ; a;bÞ:

We want to remark that the weights a and b can be determined in terms of the
geometry of O: In fact, aðyÞ ¼ jOyj where Oy is the section at level y of O and bðyÞ has
a more subtle definition, see Section 4.
To clarify the content of the result, assume that O is a product, O ¼ O1 � O2 where

O1CRn and O2CRk: Then

Om ¼ mO1 � O2 ¼ fðmx; yÞ j xAO1; yAO2g:

As in Theorem 1.1, let us call um an extremal corresponding to Om and define

vmðx; yÞ ¼ umðmx; yÞ: We have that vmAW 1;pðOÞ and

Sp;qðOmÞ
mðnq�npþpÞ=q

¼
R
O jðm�1rxvm;ryvmÞjp þ jvmjp dx dyR

@O1�O2
jvmjq dsx dy þ m

R
O1�@O2

jvmjq dx dsy

� �p=q
; ð1:6Þ

where rxu ¼ ðux1 ;y; uxn
Þ and ryu ¼ ðuy1 ;y; uyk

Þ: This notation will be followed
throughout the paper. The normalization imposed in Theorem 1.1 in this case
reduces to Z

@O1�O2
jvmjq dsx dy þ m

Z
O1�@O2

jvmjq dx dsy ¼ 1: ð1:7Þ

In this simpler case, the weight functions a; b are constants and can be computed
explicitly, in fact

aðyÞ ¼ jO1j and bðyÞ ¼ j@O1j:
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Hence, Theorem 1.1 reads as follows:

Theorem 1.2. Let 1pqop� and O ¼ O1 � O2; then

lim
m-0þ

Sp;qðOmÞ
mðnq�npþpÞ=q

¼ jO1j
j@O1jp=q

%Sp;qðO2Þ; ð1:8Þ

where %Sp;qðO2Þ ¼ %Sp;qðO2; 1; 1Þ is the usual Sobolev constant. Moreover, if we scale the

extremals um to the original domain O as vmðx; yÞ ¼ umðmx; yÞ; xAO1; yAO2;

normalized by (1.7), then vm-v ¼ vðyÞ strongly in W 1;pðOÞ; where vAW 1;pðO2Þ is an

extremal for %Sp;qðO2Þ:

Observe, that the critical exponent for the Sobolev embedding,

W 1;pðO2Þ+LqðO2Þ; valid for 1pqopk=ðk � pÞ; is larger than the one for the

Sobolev trace embedding W 1;pðOÞ+Lqð@OÞ; which holds for 1pqopðk þ n � 1Þ=
ðk þ n � pÞ: For the relation of the critical exponents in the general case, see the
discussion in Section 5.
In the special case p ¼ q; problem (1.2) becomes a nonlinear eigenvalue problem.

For p ¼ 2; this eigenvalue problem is known as the Steklov problem, see [2].
Nonlinear eigenvalue problem such as (1.2) or with Dirichlet boundary condition

has received considerable attention over the years and has been a big area of
research. See [1,6,7,13,16,17,21], etc. These eigenvalue problems are far from being
completely understood and any new information that one can give could be helpful
in the understanding of nonlinear phenomena.

In [12] it is proved, applying the Ljusternik–Schnirelman critical point theory on C1

manifolds, that there exists a sequence of variational eigenvalues ljsþN: Following

[12] (see also [7]), a sequence of variational eigenvalues lj of (1.2) can be characterized by

lj ¼ inf
CACj

max
uAC

jjujjp
W 1;pðOÞ

jjujjp
Lpð@OÞ

; ð1:9Þ

where

Cj ¼ fFðSj�1ÞCW 1;pðOÞ jF : Sj�1-W 1;pðOÞ � f0g is continuous and oddg

and Sj�1 is the unit sphere of Rj : These eigenvalues differ slightly from the ones
considered in [12]. However, the same arguments used there apply proving that in
fact fljg is an unbounded sequence of eigenvalues.
When m goes to zero, there is a limit problem which is a weighted eigenvalue

problem on the projection PðOÞ: Let a and b be the weights given by Theorem 1.1
and consider the following eigenvalue problem:

�divðajrvjp�2rvÞ þ ajvjp�2v ¼ %lbjvjp�2v in PðOÞ;
@v

@n
¼ 0 on @PðOÞ:

8<
: ð1:10Þ
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For problem (1.10), one can define the sequence

%lj ¼ inf
CA %Cj

max
uAC

R
PðOÞ ðjrujp þ jujpÞa dyR

PðOÞ juj
pb dy

; ð1:11Þ

where

%Cj ¼
FðSj�1ÞCW 1;pðPðOÞÞ j; F : Sj�1-W 1;pðPðOÞÞ � f0g

is continuous and odd

� �
:

Once again, applying the Ljusternik–Schnirelman critical point theory one could

check that f%ljg is an unbounded sequence of eigenvalues for (1.10). However, this
fact is a direct consequence of our next result.

Theorem 1.3. Let lj;m given by (1.9) in Om and let uj;m be an associated eigenfunction

normalized as in Theorem 1.1. Then,

lim
m-0

lj;m

m
¼ %lj;

where %lj is defined by (1.11) and is an eigenvalue of (1.10). Also, along a subsequence,

vj;mðx; yÞ ¼ uj;mðmx; yÞ converges strongly in W 1;pðOÞ to a function %vj ¼ %vjðyÞ which is

an eigenfunction of (1.10) with eigenvalue %lj:

Observe that the first eigenvalue l1 coincides with the best Sobolev trace constant
Sp;pðOÞ: Hence, for p ¼ q and for the first eigenvalue, Theorems 1.1 and 1.3

coincides.
As before, in the case O ¼ O1 � O2; the limit problem has a simpler form, i.e.

�Dpv þ jvjp�2v ¼ j@O1j
jO1j

%ljvjp�2v in O2;

@v

@n
¼ 0 on @O2:

8>><
>>: ð1:12Þ

However, Theorem 1.3 conserves the same statement.
Our last result is concerned with the following fact: once the domain has

been contracted in the x direction, we can now try to contract it in the y direction
and see if the limit coincides with the one obtained by contracting the domain
in every direction at the same time. Surprisingly, this is not the case. In fact, we
obtain

Theorem 1.4. Let O ¼ O1 � O2 and consider Om;n ¼ fðmx; nyÞ j ðx; yÞAOg; then

lim
n-0

lim
m-0

Sp;qðOm;nÞ
mðnq�npþpÞ=qnðkq�kpÞ=q

� �
¼ jOj

ðj@O1j jO2jÞp=q
: ð1:13Þ
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By the result of [14], (1.3), we have

lim
m-0

Sp;qðmOÞ
mðNq�NpþpÞ=q

¼ jOj
j@Ojp=q

a
jOj

ðj@O1jjO2jÞp=q
:

This shows that the double limit limðm;nÞ-ð0;0Þ Sp;qðOm;nÞ does not exist.
For a general domain O we have

lim
n-0

lim
m-0

Sp;qðOm;nÞ
mðnq�npþpÞ=qnðkq�kpÞ=q

� �
¼ jOjR

PðOÞ b dy
� �p=q

; ð1:14Þ

where b is the weight given in Theorem 1.1. To prove this fact, we have to assume

that the immersion W 1;pðPðOÞ; aÞ+LqðPðOÞ; bÞ is compact. To see in which cases
this holds, see Section 5.
To end this introduction, we want to comment briefly on related work. As a

precedent, see [15] for a detailed analysis of the behavior of extremals and best
Sobolev constants in expanding domains for p ¼ 2 and q42: In that paper, it is
proved that the extremals develop a peak near the point where the curvature of the
boundary attains a maximum. See also [11] where the symmetry properties of the
extremals and their uniqueness is studied for p ¼ 2; q41:
Nonlinear boundary conditions like the ones that appear in (1.2) have only

been considered in recent years, see for example [3,4,12–15,18,22]. In [8,20] a

related problem in the half-space RN
þ for the critical exponent is studied.

See also [9,10] for other geometric problems that lead to nonlinear boundary
conditions.
The paper is organized as follows. To simplify and clarify the exposition, we prove

in Sections 2 and 3 our main results in the case O ¼ O1 � O2; that is, Theorem 1.1,
Theorem 1.2 for O1 � O2; and Theorem 1.3. In Section 4, we indicate how to modify
our arguments to deal with the general case. Finally, in Section 5, we prove Theorem
1.4. Throughout the paper, by C we denote a constant that may vary from line to
line but remains independent of the relevant quantities.

2. The best constant for thin domains

In this section, we focus on the proof of Theorem 1.2, so throughout this section
O ¼ O1 � O2:
Let us begin with the following Lemma.

Lemma 2.1. Under the assumptions of Theorem 1.2, it follows that

Sp;qðOmÞpmðnq�npþpÞ=q jO1j
j@O1jp=q

%Sp;qðO2Þ:
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Proof. Let us recall that

Sp;qðOmÞ ¼ inf
uAW 1;pðOmÞ

R
Om

jrujp þ jujp dxR
@Om

jujq ds
� �p=q

:

Then, taking u ¼ uðyÞ and observing that @O ¼ ð@O1 � %O2Þ,ð %O1 � @O2Þ; we get

Sp;qðOmÞpmðnq�npþpÞ=q
jO1j

R
O2

ðjrujp þ jujpÞ dy

j@O1j
R
O2

jujq dy þ mjO1j
R
@O2

jujq dsy

� �p=q

pmðnq�npþpÞ=q jO1j
j@O1jp=q

R
O2

ðjrujp þ jujpÞ dyR
O2

jujq dy
� �p=q

and the result follows by taking infimum over all uAW 1;pðO2Þ: &

This lemma shows that the ratio Sp;qðOmÞ=mðnq�npþpÞ=q is bounded. So a natural

question is to determine if it converges to some value. This is answered in Theorem
1.2 that we prove next.

Proof of Theorem 1.2. Let umAW 1;pðOmÞ be a extremal for Sp;qðOmÞ and define

vmðx; yÞ ¼ umðmx; yÞ; we have that vmAW 1;pðOÞ: Then

Sp;qðOmÞ
mðnq�npþpÞ=q

¼
R
O ðjðm�1rxvm;ryvmÞjp þ jvmjpÞ dx dyR

@O1�O2
jvmjq dsx dy þ m

R
O1�@O2

jvmjq dx dsy

� �p=q
: ð2:1Þ

Recall that the um are normalized as (1.7).

Using the previous lemma we have that vm is bounded in W 1;pðOÞ: We have, for a
subsequence, that

vm,v weakly in W 1;pðOÞ;

vm-v in LpðOÞ;

vm-v in Lqð@OÞ

and then it also happens that

vm-v in Lqð@O1 � O2Þ;

vm-v in LqðO1 � @O2Þ:
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Using condition (1.7) and taking limit, we obtain that v verifies,Z
@O1�O2

jvjq dsx dy ¼ 1:

Hence va0: Returning to (2.1) and by the previous lemma we have thatZ
O
jm�1rxvmjp dx dypC; ð2:2Þ

where C is a constant that does not depend on m; thenZ
O
jrxvmjp dx dypmpC-0:

We conclude that the limit v does not depend on x; that is, v ¼ vðyÞ:
By (2.2) we have that m�1rxvm is bounded in LpðOÞ; then there exist wALpðOÞ such

that,

m�1rxvm,w weakly in LpðOÞ:

Hence

lim inf
m-0þ

jjm�1rxvmjjpLpðOÞXjjwjjp
LpðOÞ: ð2:3Þ

Passing to the limit in (2.1), by (1.7) and (2.3) we get

lim inf
m-0þ

Sp;qðOmÞ
mðnq�npþpÞ=q

X

Z
O
jðw;ryvÞjp þ jvjp dx dyXjO1jjjvjjpW 1;pðO2Þ:

Finally, using the fact that

1 ¼
Z
@O1�O2

jvjq dsx dy ¼ j@O1j
Z
O2

jvjq dy;

we have that

lim inf
m-0þ

Sp;qðOmÞ
mðnq�npþpÞ=q

X
jO1j

j@O1jp=q

jjvjjp
W 1;pðO2Þ

jjvjjp=q

LqðO2Þ

X
jO1j

j@O1jp=q
%Sp;qðO2Þ: ð2:4Þ

Now, we combine (2.4) with Lemma 2.1 to obtain

lim
m-0

Sp;qðOmÞ
mðnq�npþpÞ=q

¼ jO1j
j@O1jp=q

%Sp;qðO2Þ

and that v is an extremal for %Sp;qðO2Þ:

ARTICLE IN PRESS
J. Fernández Bonder et al. / J. Differential Equations ] (]]]]) ]]]–]]]8



By the arguments just given, we conclude that w ¼ 0 and that jjvmjjW 1;pðOÞ-

jjvjjW 1;pðOÞ; so that

vm-v in W 1;pðOÞ:

This completes the proof of the Theorem. &

3. The eigenvalue problem

In this section we consider O ¼ O1 � O2: First of all let us observe that, for

1pqpp the constant %Sp;qðO2Þ can be computed explicitly, %Sp;qðO2Þ ¼ jO2j1�p=q: In

fact, by Hölder’s inequalityZ
O2

jujq dyp
Z
O2

jujq dy

� �q=p

jO2jðp�qÞ=p:

Hence, R
O2

jrujp þ jujp dyR
O2

jujq dy
� �p=q

X

R
O2

jrujp þ jujp dyR
O2

jujp dy
� �

jO2jðp�qÞ=q
XjO2j1�p=q:

Therefore

%Sp;qðO2ÞXjO2j1�p=q:

On the other hand, taking u � 1 as test function we get

%Sp;qðO2ÞpjO2j1�p=q;

hence u � 1 is an extremal and the claim is proved. In particular, when p ¼ q;
%Sp;pðO2Þ ¼ 1:

Now we turn our attention to the case p ¼ q which is a nonlinear eigenvalue
problem. We recall that Theorem 1.2 says that

l1ðOmÞ
m

¼ Sp;pðOmÞ
m

-
jO1j
j@O1j

%Sp;pðO2Þ ¼
jO1j
j@O1j

;

where jO1j
j@O1j ¼ %l1ðO2Þ is the first eigenvalue of (1.12) with eigenfunction u ¼ 1:

Now, we analyze the convergence of the remaining variational eigenvalues. First
let us introduce the following notation:

Qp;qðuÞ ¼
R
O ðjrujp þ jujpÞ dx dyR

@O jujq ds
� �p=q

and %Qp;qðuÞ ¼
R
O2

ðjrujp þ jujpÞ dyR
O2

jujq dy
� �p=q

:
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Lemma 3.1. Let lj;m be the jth variational eigenvalue given by (1.9) in Om: Then

lj;mpm%lj;

where %lj is the jth variational eigenvalue of (1.12).

Proof. First, let us recall that for u ¼ uðyÞ

Qp;pðuÞ ¼ m
jO1j
j@O1j

R
O2

ðjrujp þ jujpÞ dyR
O2

jujp dy þ m
jO1j
j@O1j

R
@O2

jujp dsy

p m
jO1j
j@O1j

R
O2

ðjrujp þ jujpÞ dyR
O2

jujp dy
¼ m

jO1j
j@O1j

%Qp;pðuÞ:

Now let us observe that if we call

Cj ¼ ffðSj�1Þ j f : Sj�1-W 1;pðOmÞ � f0g; is continuous and oddg

and

%Cj ¼ f %fðSj�1Þ j %f : Sj�1-W 1;pðO2Þ � f0g; is continuous and oddg;

then %CjCCj : Therefore

lj;m ¼ inf
CACj

sup
uAC

Qp;pðuÞp inf
CA %Cj

sup
uAC

Qp;pðuÞ

p inf
CA %Cj

sup
uAC

m
jO1j
j@O1j

%Qp;pðuÞ ¼ m%lj

as we wanted to show. &

As we know that the quotient lj;m=m is bounded, we can assume that

lj;m

m
-rjp%lj as m-0;

so a natural question is whether rj ¼ %lj: This is the content of our next lemma.

Lemma 3.2. With the previous notation we have that

rj ¼ %lj:

Proof. First we have, by Lemma 3.1, that

rjp%lj:
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It remains to prove the reverse inequality. Using the variational characterization of

lj;m we have that for all e40 there exists Ce ¼ feðSj�1ÞACj such that

sup
vACe

R
O ðjrmvjp þ jvjpÞ dx dyR

@O1�O2
jvjp dsx dy þ m

R
O1�@O2

jvjp dx dsy

� �plj;m

m
þ e: ð3:1Þ

We can assume, and we do so, that vACe is normalized as (1.7).

Let us define the application C : W 1;pðOÞ-W 1;pðO2Þ by

Cðf ÞðyÞ ¼ 1

jO1j

Z
O1

f ðx; yÞ dx:

We observe that, by Hölder’s inequality

jO1j
Z
O2

Cðf Þjp dyp
Z
O2

Z
O1

jf jp dx dy; ð3:2Þ

ryCðf Þ ¼ Cðryf Þ ¼ ðCðfy1Þ;y;Cðfyk
ÞÞ ð3:3Þ

and

jCðryf ÞjpCðjryf jÞ; ð3:4Þ

so, by (3.2)–(3.4), C is a bounded linear operator.
Thanks to this application, we can obtain from fe a function

%fe : Sj�1-W 1;pðO2Þ;

defined by

%feðaÞ ¼ CðfeðaÞÞ:

It is immediate to check, from (3.2)–(3.4), that %fe is continuous and odd. Also, from
(3.2)–(3.4), we obtainZ

O
ðjrmvjp þ jvjpÞ dx dyXjO1j

Z
O2

ðjryCðvÞjp þ jCðvÞjpÞ dy:

Next, let us compute the integrals at the boundary.
First, let us observe that if vACe then, there exists a constant C such that

jjrxvjjLpðOÞpCm: ð3:5Þ

Hence, by Poincaré inequality, we get

jjvð; yÞ �CðvÞðyÞjjp
Lpð@O1ÞpCjjrxvð; yÞjjp

LpðO1Þ
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and by (3.5) Z
@O1�O2

jv �CðvÞjp dsx dypC

Z
O
jrxvjp dx dypCmp;

from where it follows that

Z
@O1�O2

jvjp dsx dy

� �1=p

�
Z
@O1�O2

jCðvÞjp dsx dy

� �1=p
�����

�����pCm:

Hence, by (1.7) with m small enough,Z
@O1�O2

jvjp dsx dy � j@O1j
Z
O2

jCðvÞjp dy

����
����pCm:

So we obtain that, for m small enough,

j@O1j
Z
O2

jCðvÞjp dyX1� e: ð3:6Þ

From this fact, we get that CðvÞa0 for every vACe: Finally, from (3.1)–(3.4) and
(3.6), we get

sup
vACe

jO1j
R
O2

ðjryCðvÞjp þ jCðvÞjpÞ dy

j@O1j
R
O2

jCðvÞjp dy þ e
p
lj;m

m
þ e

and hence

%ljp sup %vA %Ce

jO1j
R
O2

ðjry %vjp þ j%vjpÞ dy

j@O1j
R
O2

j%vjp dy
p
lj;m

m
þ e0

as we wanted to show. &

By Lemma 3.2, if we knew that %lj are in fact eigenvalues of (1.12), the proof of

Theorem 1.3 would be finished. By an indirect method, we can prove this fact. This is
the content of the next lemma.

Lemma 3.3. Let rj be as above. Then rj is an eigenvalue of (1.12) and, up to a

subsequence, the functions vj;m converges strongly in W 1;pðOÞ to an eigenfunction %vj of

(1.12).

Proof. First, let us observe that

lj;m

m
¼

R
O jðm�1rxvj;m;ryvj;mÞjp þ jvj;mjpÞ dx dyR

@O1�O2
jvj;mjq dsx dy þ m

R
O1�@O2

jvj;mjq dx dsy

� �
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As vj;m is normalized such as in (1.7), it follows that jjvj;mjjW 1;pðOÞpC: Arguing exactly

as in the proof of Theorem 1.2 it follows that

vj;m,%vj weakly in W 1;pðOÞ;

rxvj;m-0 in LpðOÞ;

vj;m-%vj in LpðOÞ;

vj;m-%vj in Lqð@OÞ:

It remains to show that %vj ¼ %vjðyÞ is an eigenfunction of (1.12) with eigenvalue rj and

that the convergence is actually strong. To this end, let us consider w the solution of
the following problem:

�Dpw þ jwjp�2w ¼ j@O1j
jO1j

rj j%vj jp�2 %vj in O2;

@w

@n
¼ 0 on @O2;

8>><
>>: ð3:7Þ

and proceed as follows. First, let us introduce the following notation:

rmzðx; yÞ ¼ ðm�1rxz;ryzÞ

and consider the following norm in W 1;pðOÞ:

jjzjjpm ¼
Z
O
jrmzjp þ jzjp dx dy:

As we are dealing with a strongly monotone operator (see [5]), we get

cjjw � vj;mjjpmp
Z
O
ðjrmwjp�2rmwy � jrmvj;mjp�2rmvj;mÞðrmw �rmvj;mÞ dx dy

þ
Z
O
ðjwjp�2w � jvj;mjp�2vj;mÞðw � vj;mÞ dx dy:

Using the facts that vj;m is a weak solution of (1.2), that w is a weak solution of (3.7)

and taking f ¼ w � vj;m as a test function, we get that the last term equals

j@O1j
jO1j

rj

Z
O
j%vjjp�2 %vjðw � vj;mÞ dx dy

� lj;m

m

Z
@O1�O2

jvj;mjp�2vj;mðw � vj;mÞ dsx dy

�

þ m
Z
O1�@O2

jvj;mjp�2vj;mðw � vj;mÞ dx dsy

�
:
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Rearranging the terms conveniently, we get

cjjw � vj;mjjpm

prj j@O1j
Z
O2

j%vjjp�2 %vjðw � vj;mÞ dy �
Z
@O1�O2

jvj;mjp�2vj;mðw � vj;mÞ dsx dy

� �

þ j@O1j
jO1j

rj

Z
O
j%vj jp�2 %vjð%vj � vj;mÞ dx dy

� lj;m

m
� rj

� �Z
@O1�O2

jvj;mjp�2vj;mðw � vj;mÞ dsx dy

� lj;m

Z
O1�@O2

jvj;mjp�2vj;mðw � vj;mÞ dx dsy:

Using the convergence of vj;m to %vj in Lpð@OÞ and the convergence of lj;m=m to rj; one

can easily verify that

jjw � vj;mjjpm-0 as m-0;

which implies that

ryvj;m-ryw in LpðOÞ;

vj;m-w in LpðOÞ

and therefore w ¼ %vj and vj;m-%vj strongly in W 1;pðOÞ: Finally, by (3.7), we get that %vj

is an eigenfunction of (1.12) with eigenvalue rj: &

4. General geometries

In this section, we show how to modify our previous arguments in order to

generalize the results when O is a general bounded domain in Rnþk and not
necessarily a product. As we mentioned in the introduction, what we get as limit of
the best Sobolev trace constant is the best constant of a weighted Sobolev-type
inequality.

Let OCRnþk ¼ fðx; yÞ j xARn; yARkg be a general bounded smooth domain and
we consider Om ¼ fðmx; yÞ j ðx; yÞAOg:
As before, we define the best Sobolev trace constant in Om as

Sp;qðOmÞ ¼ inf
uAW 1;pðOmÞ

R
Om

jrujp þ jujp dx dyR
@Om

jujq ds
� �p=q
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and we want, as in the product case, to write the integrals involved in the quotient as
integrals over the projection of O over y: To do this, we define

Oy ¼ fxARn j ðx; yÞAOg; PðOÞ ¼ fyARk j (xARn with ðx; yÞAOg:

For a given function uAW 1;pðOmÞ; if we call vmðx; yÞ ¼ uðmx; yÞ; vmAW 1;pðOÞ and by
Fubini’s theoremZ

Om

jrujp þ jujp dx dy ¼ mn

Z
O
jðm�1rxvm;ryvmÞjp þ jvmjp dx dy

¼ mn

Z
PðOÞ

Z
Oy

jðm�1rxvm;ryvmÞjp þ jvmjp dx

 !
dy: ð4:1Þ

Observe that if vm ¼ vmðyÞ; by (4.1), we obtainZ
Om

jrujp þ jujp dx dy ¼ mn

Z
PðOÞ

ðjryvmjp þ jvmjpÞjOyj dy:

To deal with the boundary, by our assumptions on the domain, @O can be locally
described as the graph of a smooth function. So we have that

@O ¼
[l

i¼1
Si,

[r

j¼1
Tj ðdisjoint unionÞ;

where, after relabeling the variables if necessary,

Si ¼ fðx; yÞ j x1 ¼ hiðx0; yÞg; where hi : DiCRn�1 � Rk-R

and the terms labeled Tj collect the ‘‘vertical’’ parts of the boundary

Tj ¼ fðx; yÞ j y1 ¼ gjðx; y0Þg; where gj : EjCRn � Rk�1-R:

As Tj is ‘‘vertical’’, we can assume that the parametrization has been taken such that,

in the case y1 ¼ gjðx; y0Þ; the function gj satisfies rxgj � 0 in Ej:

Observe that

PðOÞ ¼
[l

i¼1
PðDiÞ ðnot necessarily disjointÞ:

Hence, @Om is described as

@Om ¼
[l

i¼1
Si;m,

[r

j¼1
Tj;m ðdisjoint unionÞ;

where

Si;m ¼ fðx; yÞ j x1 ¼ mhiðm�1x0; yÞg; where hi : DiCRn�1 � Rk-R
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and

Tj;m ¼ fðx; yÞ j y1 ¼ gjðm�1x; y0Þg; where gj : EjCRn � Rk�1-R:

We have

Z
@Om

jujq ds ¼
Xl

i¼1

Z
Si;m

jujq dsþ
Xr

j¼1

Z
Tj;m

jujq ds:

In the first case,Z
Si;m

jujq ds ¼ mn�1
Z

Di

jvmjq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrx0hij2 þ m2jryhij2

q
dx0 dy

¼ mn�1
Z

Di

jvmjqoi;m dx0 dy:

It is easy to see that oi;m-oi uniformly in Di; where

oi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrx0hij2

q
:

In the second case, using that rxgj � 0 in Ej; we get

Z
Tj;m

jujq ds ¼ mn

Z
Ej

jvmjq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m�2jrxgjj2 þ jry0gjj2

q
dx dy0

¼ mn

Z
Ej

jvmjq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jry0gj j2

q
dx dy0

¼ mn

Z
Ej

jvmjqgj dx dy0:

Collecting all these facts, we have that

Qp;qðuÞ
mðnq�npþpÞ=q

¼ 1

mðnq�npþpÞ=q

R
Om

jrujp þ jujp dx dyR
@Om

jujq ds
� �p=q

¼
R
O jðm�1rxvm;ryvmÞjp þ jvmjp dx dy

Pl
i¼1

R
Di

jvmjqoi;m dx0 dy þ m
Pr
j¼1

R
Ej

jvmjqgj dx dy0

 !p=q
: ð4:2Þ

Once these observations had been made, all the arguments given in the previous
sections follow without any change.
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To conclude with the proof of the Theorems 1.1 and 1.3, it only remains to show
that if in quotient (4.2) we take a function u ¼ uðyÞ we getR

PðOÞ ðjryvmjp þ jvmjpÞjOyj dy

Pl

i¼1

R
PðDiÞ jvmj

q R
ðDiÞy

oi;m dx0
� �

dy þ m
Pr
j¼1

R
Ej

jvmjqgj dx dy0

 !p=q

¼
R

PðOÞ ðjryvmjp þ jvmjpÞjOyj dy

R
PðOÞ jvmj

q Pl
i¼1

R
ðDiÞy

oi;m dx0
� �

dy þ m
Pr
j¼1

R
Ej

jvmjqgj dx dy0

 !p=q
:

So, if the sequence vm-v strongly in W 1;pðOÞ; passing to the limit we arrive at
R

PðOÞ ðjryvjp þ jvjpÞjOyj dy

R
PðOÞ jvj

q Pl
i¼1

R
ðDiÞy

oi dx0
� �

dy

� �p=q

and hence, the weights in Theorems 1.1 and 1.3 are given by

aðyÞ ¼ jOyj and bðyÞ ¼
Xl

i¼1

Z
ðDiÞy

oi dx0:

Finally, observe that by our assumptions on @O; the functions oiALNðDiÞ; so
bALNðPðOÞÞ:

5. Proof of Theorem 1.4

In order to prove (1.13), observe that in Theorem 1.1 we have proved that

lim
m-0

Sp;qðOm;nÞ
mðnq�npþpÞ=qnðkq�kpÞ=q

¼
%Sp;qðnPðOÞ; aðnyÞ; bðnyÞÞ

nðkq�kpÞ=q
:

Remark that this is valid for a general domain O: To study the limit n-0 we argue as
in Theorem 1.1. In fact, taking u � 1 as a test function, we get

%Sp;qðnPðOÞ; aðnyÞ; bðnyÞÞp
R
nPðOÞ aðnyÞ dyR

nPðOÞ bðnyÞ dy
� �p=q

¼ nðkq�kpÞ=q

R
PðOÞ aðyÞ dyR

PðOÞ bðyÞ dy
� �p=q
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¼ nðkq�kpÞ=q jOjR
PðOÞ bðyÞ dy

� �p=q
:

On the other hand, if unAW 1;pðnPðOÞ; aðnyÞÞ is an extremal for %Sp;q (which exists

by Theorem 1.1), then

%Sp;qðnPðOÞ; aðnyÞ; bðnyÞÞ ¼
R
nPðOÞ ðjrunjp þ junjpÞaðnyÞ dyR

nPðOÞ junjqbðnyÞ dy
� �p=q

;

calling vnðyÞ ¼ unðnyÞ and changing variables we get

%Sp;qðnPðOÞ; aðnyÞ; bðnyÞÞ
nðkq�kpÞ=q

¼
R

PðOÞ ðn�pjrvnjp þ jvnjpÞaðyÞ dyR
PðOÞ jvnj

qbðyÞ dy
� �p=q

: ð5:1Þ

Now, we follow exactly the same arguments given in the proof of Theorem 1.1 as
long as the immersion

W 1;pðPðOÞ; aÞ+LqðPðOÞ; bÞ

is compact. To see this fact, first let us assume that O ¼ O1 � O2; then

CXaðyÞ ¼ jOyj ¼ jO1jXc40: ð5:2Þ

Hence, the compactness of the immersion is straightforward because we have

W 1;pðPðOÞ; aÞ ¼ W 1;pðPðOÞÞ

with equivalent norms and the weight b lies in LNðPðOÞÞ:
Once this compactness has been established, we can extract a subsequence, such

that

vn,v ¼ constant; weakly in W 1;pðPðOÞ; aÞ

and so, taking limits in (5.1), we arrive at

lim inf
n-0

%Sp;qðnPðOÞ; aðnyÞ; bðnyÞÞ
nðkq�kpÞ=q

¼
R

PðOÞ aðyÞ dyR
PðOÞ bðyÞ dy

� �p=q
¼ jOj

j@O1jjO2jð Þp=q

and hence the convergence is actually strong. This finishes the proof of Theorem 1.4,
proving (1.13).
To deal with the general case, observe that the arguments remains valid if aðyÞ is

bounded from below. However, we cannot expect this to hold for any bounded
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smooth domain O: In fact, we only have that aðyÞ ¼ jOyj verifies a lower bound of
the form

CXaðyÞXcðdistðy; @PðOÞÞÞn=2: ð5:3Þ

In order to see this, given yAPðOÞ; we take y0A@PðOÞ such that jy � y0j ¼
distðy; @PðOÞÞ: Now take x; x0ARn such that ðx; yÞAO; ðx0; y0ÞA@O and there exists

an inner tangent ball Br with ðx; yÞABrCO and Br- %O ¼ fðx0; y0Þg:
Hence, Oy*ðBrÞy and then aðyÞ ¼ jOyjXjðBrÞyj ¼ ðr2 � jyj2Þn=2: The claim follows

noticing that r2 � jyj2Bdistðy; @PðOÞÞ:
Now, the compactness follows from the following theorem, that can be found

in [19].

Theorem 5.1 (Opic and Kufner [19, Theorems 19.11 and 19.24]). Let dðxÞ ¼
distðy; @PðOÞÞ: The compactness of the immersion

W 1;pðPðOÞ; dn=2Þ+LqðPðOÞÞ

holds in any of the following cases:

(1) if ppn=2 then qop;
(2) if n=2oppðn þ 2Þ=2 then qo kp

kþn
2
�p
;

(3) if p4ðn þ 2Þ=2 then qo kp
kþ1�2p

:

The rest of the proof runs as in the previous case. &
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