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Abstract

In this paper, we study the asymptotic behavior of the best Sobolev trace constant and
extremals for the immersion W!”(Q)< L4(0Q) in a bounded smooth domain when it is
contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is
a Sobolev-type immersion in weighted spaces over a projection of Q, W'P(P(Q) o)<
LI(P(2), B).

For the special case p = ¢, this problem leads to an eigenvalue problem with a nonlinear
boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this
case.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let Q be a smooth bounded domain in RY, N >2. Of importance in the study of
boundary value problems for differential operators in © are the Sobolev trace
inequalities. For any 1<p<N, and 1<g<p*=p(N —1)/(N —p) we have that
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W (Q) < L1(0Q) and hence the following inequality holds:

S| |ul |12c/(09) <yl |1;/V1.p<9)

for all ue W'#(Q). This is known as the Sobolev trace embedding theorem. The
best constant for this embedding is the largest S such that the above inequality holds,
that is

Jo IVul’ + |ul” dx

Spq(2) = .
[’-,1( ) ue W»(Q)\{0} (ﬁ)g |u|q dG)p/q

(1.1)

Moreover, if | <g<p* the embedding is compact and as a consequence we have
the existence of extremals, i.e. functions where the infimum is attained, see [12].
These extremals are weak solutions of the following problem:

Apu = |ul’"*u in Q,
{ ot = [u 12

|Vul’ % = )ul'*u  on 9Q,
where Ayu = div(|Vul’ ~2Vu) is the p-Laplacian, 2 is the outer unit normal derivative
and if we use the normalization ||u||;,yo) = 1, one can check that 2 = S, 4(Q2).
Our main interest in this paper is to study the dependence of the best constant
S, 4(Q) and extremals on the domain. In [14,15] a first step in this direction was made
by considering a family of domains obtained by contracting or expanding a fixed
one, that is puQ = {ux|xeQ}, and studying the limits x—0+ and u— co. In
particular, in [14] it is proved that

p—0 pNa=Np+p)/q |aQ|P/‘1
In this paper, we use the notation |A4| for the measure of the set 4 in its
corresponding dimension, that is, if 4 is a set of dimension r, |A4] stands for the
r-dimensional measure of A.

Here we consider a different family of domains. More precisely, we focus our
attention on thin domains. To this end, let N = n + k and define the family

Qﬂ = {(,le,y) | (x7y)EQ7 XGR”, yeRk}'

Remark that for small values of p, Q, is a narrow domain in the x direction.

Our first result shows that, when the domain is very narrow, the problem of
looking at the trace of a function is equivalent, in some sense, to the problem of the
immersion of the function in the projection of the domain over the y variables. More
precisely, we define the projection

P(Q) = {yeRF|3IxeR" with (x,y)eQ}
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and consider the weighted Sobolev embedding W'?(P(Q),a) < LI(P(Q),) with
associated best constant given by

o’ + v )a(y
Spq(P(R),2,8) = inf oy (Ve +10F) (/)dy. (1.4)

s 1, q
ve W2 (P(Q),o) (fp U‘qﬁ )

We prove

Theorem 1.1. Let 1 <g<p*, then there exists two nonnegative weights o, f€ L* (P(Q))
such that

Spg(Ru) ¢

lim =S,4(P(Q),a,p) (1.5)

p—0+ plna—np+r)/q
and if we scale the extremals u, of Sy ,(2,) to the original domain Q as v,(x,y) =
u,(px,y), (x,y) €, normalized as Huﬂ”%‘/(ﬁQ ) = W=t then v, —v = v(y) strongly in
"
Wr(Q), where ve W'P(P(Q),«) is an extremal for S, ,(P(Q),a, ).
We want to remark that the weights o and f can be determined in terms of the
geometry of Q. In fact, a(y) = |Q,| where Q, is the section at level y of Q and f(y) has
a more subtle definition, see Section 4.

To clarify the content of the result, assume that Q is a product, Q = Q; x Q, where
Q,=R" and Q, =R¥. Then

Q= u x Q ={(ux,y) | xeQ, ye}.

As in Theorem 1.1, let us call u, an extremal corresponding to €, and define
vu(x,») = u,(ux, ). We have that v, e W'”(Q) and

Spa(Qu) fQ |(/.L71Vxl)#, V)" + (o) dx dy

(nq—np+p)/q — P
3 (fanxQz o doxdy + 1t [g o0, [0l dxday)

(1.6)

where V.u = (uy,, ...,uy,) and V,u = (u,,, ...,u, ). This notation will be followed
throughout the paper. The normalization imposed in Theorem 1.1 in this case
reduces to

/ |Uu|qd0'xdy+#/ ‘Uﬂ|qud0'y= 1. (1.7)
BQIXQZ

Q]XBQZ

In this simpler case, the weight functions «, § are constants and can be computed
explicitly, in fact

a(y) = [ and  B(y) = |0].
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Hence, Theorem 1.1 reads as follows:

Theorem 1.2. Let 1<g<p* and Q = Q| x Q,, then

li Sp.q(2y) _ @l &
u=0t plra=min)a g0, pla P

(€22), (1.8)

where S, (@) = S, 4(22,1,1) is the usual Sobolev constant. Moreover, if we scale the
extremals u, to the original domain Q as v,(x,y)=u,(ux,y), xeQ, yed,
normalized by (1.7), then v, —v = v(y) strongly in W'(Q), where ve W'(Q,) is an
extremal for S, ,(Qs).

Observe, that the critical exponent for the Sobolev embedding,
WP (Qy) & LI(,), valid for 1<g<pk/(k —p), is larger than the one for the
Sobolev trace embedding W'?(Q) < L(0Q), which holds for 1<g<p(k+n—1)/
(k+n—p). For the relation of the critical exponents in the general case, see the
discussion in Section 5.

In the special case p = ¢, problem (1.2) becomes a nonlinear eigenvalue problem.
For p = 2, this eigenvalue problem is known as the Steklov problem, see [2].

Nonlinear eigenvalue problem such as (1.2) or with Dirichlet boundary condition
has received considerable attention over the years and has been a big area of
research. See [1,6,7,13,16,17,21], etc. These eigenvalue problems are far from being
completely understood and any new information that one can give could be helpful
in the understanding of nonlinear phenomena.

In [12] it is proved, applying the Ljusternik—Schnirelman critical point theory on C!
manifolds, that there exists a sequence of variational eigenvalues 4; # + co. Following
[12] (see also [7]), a sequence of variational eigenvalues /; of (1.2) can be characterized by

Il
3= inf max L@

| | (1.9)
Ce%; ueC ||Ll‘ |12ﬂ(dQ)

where
= {Qj(SJ;I) cwlr(@Q)|o: 5 >whr(Q) - {0} is continuous and odd}

and $/! is the unit sphere of /. These eigenvalues differ slightly from the ones
considered in [12]. However, the same arguments used there apply proving that in
fact {4;} is an unbounded sequence of eigenvalues.

When u goes to zero, there is a limit problem which is a weighted eigenvalue
problem on the projection P(Q). Let a and f§ be the weights given by Theorem 1.1
and consider the following eigenvalue problem:

—div(a| Vol > Vo) + oo’ o = 1o’ *v  in P(Q),

o (1.10)
o 0 on OP(Q).
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For problem (1.10), one can define the sequence

;. Je) (IVul” + [ul")ody
/; = inf max

, 111
Ce; ueC Jpig) [ul"Bdy (1D

where

4= { oS W(PQ)|, @5 > W (P(Q) ~ {0} }

is continuous and odd

Once again, applying the Ljusternik—Schnirelman critical point theory one could
check that {Zj} is an unbounded sequence of eigenvalues for (1.10). However, this
fact is a direct consequence of our next result.

Theorem 1.3. Let 7;, given by (1.9) in Q, and let u;, be an associated eigenfunction
normalized as in Theorem 1.1. Then,

. ;L 7
lim £ =
w0 U

)

where i_j is defined by (1.11) and is an eigenvalue of (1.10). Also, along a subsequence,
v u(x,3) = uj,(ux,y) converges strongly in W' (Q) to a function ; = v;(y) which is
an eigenfunction of (1.10) with eigenvalue i_j.

Observe that the first eigenvalue 4, coincides with the best Sobolev trace constant
S,,(2). Hence, for p =g and for the first eigenvalue, Theorems 1.1 and 1.3
coincides.

As before, in the case Q = Q| x ,, the limit problem has a simpler form, i.e.

_ o]

—Au+ [P0 = Q—/T|v|p720 in Q,,

5 €] (1.12)
v

EZO on 0Q,.

However, Theorem 1.3 conserves the same statement.

Our last result is concerned with the following fact: once the domain has
been contracted in the x direction, we can now try to contract it in the y direction
and see if the limit coincides with the one obtained by contracting the domain
in every direction at the same time. Surprisingly, this is not the case. In fact, we
obtain

Theorem 1.4. Let Q = Q x Q, and consider Q,, = {(ux,vy) | (x,y)eQ}, then

. . Spa(Qy Q
lim ( lim pa(Pr) = | : (1.13)
vo0\ =0 plna—n+)/ay(ka—kp)/q (|09 |Q2|)p/q
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By the result of [14], (1.3), we have

im Sp.q(HQ) _ <] ]
w0 uNa=No 5015~ 1901 (|aq, ||

This shows that the double limit lim, ), 0,0y Sp.4(2,,) does not exist.
For a general domain 2 we have

Quy Q
lim  lim Sp.g(ur) = [ , (1.14)
v=0 \u—0 pa—np+p)/ay(ka—kp)/q (f ﬁdy)p/q

P(Q)

where f is the weight given in Theorem 1.1. To prove this fact, we have to assume
that the immersion W'?(P(Q),a)< LI(P(Q), B) is compact. To see in which cases
this holds, see Section 5.

To end this introduction, we want to comment briefly on related work. As a
precedent, see [15] for a detailed analysis of the behavior of extremals and best
Sobolev constants in expanding domains for p = 2 and ¢>2. In that paper, it is
proved that the extremals develop a peak near the point where the curvature of the
boundary attains a maximum. See also [11] where the symmetry properties of the
extremals and their uniqueness is studied for p =2, ¢>1.

Nonlinear boundary conditions like the ones that appear in (1.2) have only
been considered in recent years, see for example [3,4,12-15,18,22]. In [8,20] a
related problem in the half-space Rf for the critical exponent is studied.
See also [9,10] for other geometric problems that lead to nonlinear boundary
conditions.

The paper is organized as follows. To simplify and clarify the exposition, we prove
in Sections 2 and 3 our main results in the case Q = Q; x Q,, that is, Theorem 1.1,
Theorem 1.2 for Q4 x Q,, and Theorem 1.3. In Section 4, we indicate how to modify
our arguments to deal with the general case. Finally, in Section 5, we prove Theorem
1.4. Throughout the paper, by C we denote a constant that may vary from line to
line but remains independent of the relevant quantities.

2. The best constant for thin domains

In this section, we focus on the proof of Theorem 1.2, so throughout this section
Q= .Q] X Qz.
Let us begin with the following Lemma.

Lemma 2.1. Under the assumptions of Theorem 1.2, it follows that

ng—n | &
Spa(@) <™ ””WW%(QZ»
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Proof. Let us recall that
P 4
fQu |Vul’ + |ul” dx

ue vg}p(gﬂ) q rla -’
(g, Iul” do)

Sp-q(Qu) =

Then, taking u = u(y) and observing that 9Q = (9Q; x Q) U (Q; x 9Q,), we get
@] Jo, (IVul” + [ul”) dy

rlq
(19911 fo, 1ul* dy + (1] fq, 0l doy)
Qi Jo, (Vul” + [ul”) dy
r/q r/q
|09 (fszz Jul? dy)

SP-!I(Q;L) < ,ll(nq_”P+P)/f1

< (nq—np+p)/q

and the result follows by taking infimum over all ue W'?(Q,). 0O

This lemma shows that the ratio S, ,(Q,)/u"="7*7)/4 is bounded. So a natural
question is to determine if it converges to some value. This is answered in Theorem
1.2 that we prove next.

Proof of Theorem 1.2. Let u,e W'2(Q,) be a extremal for S,,(2,) and define
vu(x,») = u,(ux,y), we have that v,e W'»(Q). Then

Sp.q(Qy) fQ (|(N’71VXU#’VJ/UH)|I) + |vﬂ|p) dXdy

plna=np+p)/q - o (2.1)
(fagl o, [valdoxdy + 1 [o oq, 10" dx day)

Recall that the u, are normalized as (1.7).
Using the previous lemma we have that v, is bounded in W!7(Q). We have, for a
subsequence, that

v—v weakly in W'7(Q),
v,—v  in LP(Q),
v,—v in LY(0Q)
and then it also happens that
v,—v in LY(0Q) x ),

v,—v in LY(Q) x 0Q,).
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Using condition (1.7) and taking limit, we obtain that v verifies,

/ [o]' doy dy = 1.
anxgz

Hence v#0. Returning to (2.1) and by the previous lemma we have that
/ |,u_1vau|p dxdy<C, (2.2)
Q
where C is a constant that does not depend on u, then

/ |V v,l” dx dy < C—0.
Q

We conclude that the limit v does not depend on x, that is, v = v(y).
By (2.2) we have that 4~ 'V v, is bounded in L7(€), then there exist we L?(Q) such
that,

p 'V, —w  weakly in LF(Q).

Hence
. . —1 14 14
hunl(l)llf [|n vau||y(g)>”“’||y(g)- (2.3)

Passing to the limit in (2.1), by (1.7) and (2.3) we get

.. S
imjor = [ 100 DF 4 vy 2 ey

Finally, using the fact that

1= / o do dy = 09| / ol dy,
0Q, xQy Q2

we have that

4
lim inf (@) 12| IIUIIWI,JQZ)> e

A = 2
u—0+ plng np+p)/q”~ 109 |11/11 HUHZZIIIQZ) |591|‘D/q

(Q2). (2:4)

Now, we combine (2.4) with Lemma 2.1 to obtain

Sp,q(Qu) _ |Ql| G
p—0 plna=—np+p)/a |891|p/q P4

(2)

and that v is an extremal for S, ().
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By the arguments just given, we conclude that w =0 and that ||Uu||Wl-n(Q)—>
||UHWI./1(Q), so that

v—v in W(Q).

This completes the proof of the Theorem. [

3. The eigenvalue problem

In this section we consider Q = Q; x Q,. First of all let us observe that, for
1<¢g<p the constant S, ,(€2,) can be computed explicitly, S, ,(2>) = 1Q,' P/, In
fact, by Holder’s inequality

q/p
/ |u|q dy< (/ ‘u‘q dy) ‘Q2|(P—LZ)/P
[0} Q,

Jo, IVul” + [uf’ d_ Jo, IVul” + |ul” dy
(o )" (i o )5

Hence,

Z‘Qz|l_p/q-

Therefore

Spa(22) =@ 711

On the other hand, taking u = 1 as test function we get

Spa(22) <[] 774,

hence u =1 is an extremal and the claim is proved. In particular, when p = ¢,
Spp(22) = 1.

Now we turn our attention to the case p = ¢ which is a nonlinear eigenvalue
problem. We recall that Theorem 1.2 says that

M) _ Spp(Q) | 12 ¢ _ 1]
Spp(22) = ,
It w102 |0Q |
where | 09]|| = J1(€,) is the first eigenvalue of (1.12) with eigenfunction u = 1.

Now, we analyze the convergence of the remaining variational eigenvalues. First
let us introduce the following notation:

fgz (IVul’ + [ul”) dy

ul? dy)p/q

Jo (Gl sy vy

Q) 4(u) = N
(Joo Iul" da)"” (fo
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Lemma 3.1. Let /;, be the jth variational eigenvalue given by (1.9) in Q,. Then
Ajn < Wy,
where J; is the jth variational eigenvalue of (1.12).
Proof. First, let us recall that for u = u(y)
|Ql| Jo, (Vul” + Iul”)
QP-,P( ) |8.Ql | ‘
fQZ ul” dy + u EeN fa& ul” da,

|| Jo, IVul’ + [u”) d)’ |Ql\ 0, (1),
0| Jo, lul” dy Hloa =

Now let us observe that if we call
€ ={p(S )| ¢:5'>w'?(Q,) - {0}, is continuous and odd}
and
G ={p(I ") d: ' W' (2,) — {0}, is continuous and odd},
then %;=%. Therefore
Zju = inf sup Q,,(u)< inf sup Q,,(u)

Cet uecC Ce% ueC

: |2 -
< inf su = ui;
< o ueg 'u|(9.Q |Qp1)( u) = u Y

as we wanted to show. [

As we know that the quotient 4;,/u is bounded, we can assume that
@_, <1 0
pj\ A as u—u,
u
so a natural question is whether p; = Zj. This is the content of our next lemma.

Lemma 3.2. With the previous notation we have that

~ 1.

Proof. First we have, by Lemma 3.1, that

p;<7j.
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It remains to prove the reverse inequality. Using the variational characterization of
A;, we have that for all ¢>0 there exists C, = ¢,(S'~!) €%, such that

P P dx d X
Sup fQ (|V,UU| +|U|) X y S@_i_g (31)

vel; (fanng v|p dgx dy + n fQ, X002 |U|p dx dGY) #

We can assume, and we do so, that ve C, is normalized as (1.7).
Let us define the application ¥ : W'2(Q)— W'?(Q,) by

YN0 =g [ S ds

We observe that, by Holder’s inequality

mw/ V@</ /vvww, (3.2)

V() =¥ (Vo) = (), -, () (3.3)
and
| (VOIS PV, (3.4)

so, by (3.2)~(3.4), ¥ is a bounded linear operator.
Thanks to this application, we can obtain from ¢, a function

Go: I WP (Qy),
defined by
be(a) = P($,(a)).

It is immediate to check, from (3.2)—(3.4), that ¢, is continuous and odd. Also, from
(3.2)(3.4), we obtain

Léﬂva+wmdmw>mnA IV, 2@) + [#)F) dy

Next, let us compute the integrals at the boundary.
First, let us observe that if ve C, then, there exists a constant C such that

IVl < Cate (3.5)
Hence, by Poincaré inequality, we get

613) = PO 00, < V0 ) g
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and by (3.5)
/ lv— ¥ ()] doydy< C/ |Vl dx dy< Cp,
Q1 x Q) Q
from where it follows that

1/p 1/p
(/ Iﬁd@@) —(/ IWdem@D
0Q x Q> 0Q

Hence, by (1.7) with p small enough,

<Cu.

/ o) do dy — |8Q1|/ [P (v)| dy’ <Cp.
0Q1 X2y 0
So we obtain that, for y small enough,

|09 | i [P (v)" dy=1—e. (3.6)

From this fact, we get that ¥(v) #0 for every ve C,. Finally, from (3.1)-(3.4) and
(3.6), we get

Q YV, P)F + |P)F) d ;
Sup| 1l Jg, (IV,¥(0)] tl ©)I") v i,
veC, 0] Jo, W)’ dy +& 1

and hence

Yy =P 5
@l Jo, (V0 +100)dy iy,

):.< o <K
S SUPgee, |3Q1|fgz |5|P dy L

as we wanted to show. O

By Lemma 3.2, if we knew that /; are in fact eigenvalues of (1.12), the proof of
Theorem 1.3 would be finished. By an indirect method, we can prove this fact. This is
the content of the next lemma.

Lemma 3.3. Let p; be as above. Then p; is an eigenvalue of (1.12) and, up to a

subsequence, the functions v;, converges strongly in W'(Q) to an eigenfunction o; of
(1.12).

Proof. First, let us observe that

/l_/lu B f_Q |(:“71VXU1‘.,H’ v}’vj«ﬂﬂp + |Uj7ﬂ|p) dx dy
vyul* dx d“}’)

K (fag o, |l doxdy + 1 o o0,
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As v;,, is normalized such as in (1.7), it follows that [[v; || 1,q) < C. Arguing exactly
as in the proof of Theorem 1.2 it follows that

v, weakly in W'7(Q),
Vi, —0 in I7(Q),
Va0 in LP(Q),

Uj,# d l_)j in L‘f(E)Q)

It remains to show that &; = #;(y) is an eigenfunction of (1.12) with eigenvalue p; and

that the convergence is actually strong. To this end, let us consider w the solution of
the following problem:

_ 0Q .
—Aw + Wl Pw = ||Qll||pj|5j|f’ 5 in @,
- (3.7)
E =0 on 892,

and proceed as follows. First, let us introduce the following notation:

Vuz(x,3) = (0 'V,z,V,2)
and consider the following norm in W'#(Q):
el = [ 19,0+ 128 e .
As we are dealing with a strongly monotone operator (see [5]), we get

-2 -2
cllw = vl < /Q (Vw2 wy = V0l V0i0) (Viw = V) dx dy
n—2 -2
= )0 ) de .

Using the facts that v;, is a weak solution of (1.2), that w is a weak solution of (3.7)
and taking ¢ = w —v;, as a test function, we get that the last term equals

|0Q |
|21

)u i, -2
B ﬂ(/ (0”00 (W = vj,) do dy
U 0%,

-2
+ H/ 0”00 (W = j,) dx de)-
leagg

p; /Q 15”25, (w — v7,) dx dy
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Rearranging the terms conveniently, we get
P
cllw = vl
p—2 = p—2
SP; {|an| / 5" "0 (w — vj,) dy — /89 0 |07ul” " 0ju (W — Vi) do dy
1 X882

| loa
‘Q| / |j|p2 U]#)dxaly

A, -2
- ( . P/‘) / [l 00 (W = v3,) do dy
u 0Q1xQ,

-2
i [ ol ol = ) dedor.
Ql X(?Qz

Using the convergence of v;, to 7; in 1/(9Q) and the convergence of /; /i to p;, one
can easily verify that

b= ]l =0 as g0,

which implies that
Vyvju—=Vyw in LF(Q),

vju—w in L7(Q)

and therefore w = 7; and v;, > ; strongly in W'”(Q). Finally, by (3.7), we get that 7;
is an eigenfunction of (1.12) with eigenvalue p;. [J

4. General geometries

In this section, we show how to modify our previous arguments in order to
generalize the results when Q is a general bounded domain in R"** and not
necessarily a product. As we mentioned in the introduction, what we get as limit of
the best Sobolev trace constant is the best constant of a weighted Sobolev-type
inequality.

Let Qc R = {(x,y) | xeR", yeRF} be a general bounded smooth domain and
we consider Q, = {(ux,y) | (x,y)eQ}.

As before, we define the best Sobolev trace constant in Q, as

[Vul?’ + |ul dx dy
Spq(Qu) = inf fQﬂ

ue wh r/q
eW'n(Q,) (faﬂﬂ lul? do’)
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and we want, as in the product case, to write the integrals involved in the quotient as
integrals over the projection of Q over y. To do this, we define

Q, = {xeR"|(x,y)eQ}, P(Q)={yeR"|3IxeR" with (x,y)eQ}.

For a given function ue W'?(Q,), if we call v,(x,y) = u(ux,y), v,€ W'»(Q) and by
Fubini’s theorem

|1Vl dsdy =i [ 1671V, 9,00 + ol dxdy

o

N

(1 Vb Vo)l + [o, dx) dy.  (41)

Observe that if v, = v,(y), by (4.1), we obtain
/ [Vul” + |uf” dx dy = u"/ (IVyoul” + [oal”) 12| dy.
Q P(Q)

To deal with the boundary, by our assumptions on the domain, 92 can be locally
described as the graph of a smooth function. So we have that

! r
0Q = U Siu U T; (disjoint union),
i=1 j=1

where, after relabeling the variables if necessary,

Si ={(x,y) | x1 =hi(x",y)}, where h; : DicR" ' x RFSR
and the terms labeled 7} collect the “vertical” parts of the boundary

T, = {(x,y) |1 = g;(x,))}, where g;: E;,cR" x RF' SR

As Tjis “vertical”, we can assume that the parametrization has been taken such that,
in the case y; = g;(x,)’), the function g; satisfies V.g; = 0 in E;.
Observe that

P(Q) = U P(D;) (not necessarily disjoint).

i=1

Hence, 09, is described as
/ r
09, = Siuu | Ty (disjoint union),
i1 j=1

where
Sip={(x,») | x1 = whi(u'x',p)}, where b : D;cR"! x R >R
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and

Tip={(x,») |31 =gi(u'x,))}, where g;: EjcR" x R - R.

We have
/ r
ul?de = / ul? do + / ul? de.
/OQ# | | 12:; Sm | | ]E:; T/‘-AA | ‘

In the first case,

/ lu|? do = p"~! / |vu|q\/1 + Vol + 12|V |* dx dy
D;

N

= ! / [vulTe;  dx’ dy.
D;

It is easy to see that w;, — w; uniformly in D;, where

w; =\ 1+ |Vehi]*.

In the second case, using that V,g; = 0 in E;, we get

/ " do :MH/E |Uu\q\/1 + 2 Vg + Vg dx dy

Job g

:'un/ |Uu‘q I+ |vy’gj|2 dXdy/

7

=" / |v*y; dx dy'.
E.

Collecting all these facts, we have that

Opglu) 1 Jo, IVul” + [uf dx dy

B rla
(fagu Jul? dG)
fQ |(:u_] vxv;u vyvu) ‘p + |Uﬂ ‘p dx dy

H(nq—l1p+p)/q H(nq—npﬂ?)/q

(4.2)

/ . r/e
<2} Ip, loul* @iy dx' dy + Zl fE]_ v |*y; dx dy’)
= J=

Once these observations had been made, all the arguments given in the previous
sections follow without any change.
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To conclude with the proof of the Theorems 1.1 and 1.3, it only remains to show
that if in quotient (4.2) we take a function u = u(y) we get

fp(g) (IVyoul” + [0u1") 12, ] dy

/ . p/q
(231 Joiwy 10 (finy, @i0de') dy s J ol d dy')
i= j=

fp(g) (|v}’vu|p + |”u|p)|9y‘ dy

; . rla
(fp(g) Ivulq@ Jp), @i dx’) d+ “Zl Ji, 1oal"y; dx dy')
i= j=

So, if the sequence v, — v strongly in W!”(Q), passing to the limit we arrive at
Jey Vol + [0)[2y] dy

! rlq
(fP(m W(; Ji), @ dx’) dy >

and hence, the weights in Theorems 1.1 and 1.3 are given by
1
a() = 1@ and ()=, /<D> 0.

Finally, observe that by our assumptions on 0Q, the functions w;e L*(D;), so
peL*(P(Q)).

5. Proof of Theorem 1.4

In order to prove (1.13), observe that in Theorem 1.1 we have proved that

lim SP-‘!(QNJ') — Spﬁq(VP(Q)a O‘(Vy)a ﬁ(vy))
u—0 plng=np+p)/ay(kq—kp)/q vlkg—kp)/q '

Remark that this is valid for a general domain Q. To study the limit v— 0 we argue as
in Theorem 1.1. In fact, taking u = 1 as a test function, we get

S , a(vy) d
Spa(VP(Q), 2(vp), B(vy)) < Jip) #(9) yp/q
(fvP(Q) B(vy) dy)

_ kakya__Jme) H0) &
r/q
(fp(g) ,B(J/) dy)
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— yka=kp)/q 2 T
rla
(foie) B0 )

On the other hand, if u,e W'?(vP(Q), a(vy)) is an extremal for S, , (which exists
by Theorem 1.1), then

Spa(VP(Q), 2(vy), B(vy)) =

fvP(Q) (IVuy” + [us")a(vy) dy
p/q
(fvP(Q) |y | B(vy) dy)

calling v,(y) = u,(vy) and changing variables we get

)

Spg(VP(Q),2(v), B0))  Jpy IVl + [0 )e(y) dy
vkq—kp)/q - (f 104y )p/q )
P(Q v

Now, we follow exactly the same arguments given in the proof of Theorem 1.1 as
long as the immersion

(5.1)

WP (P(Q), )& LI(P(Q). )

is compact. To see this fact, first let us assume that Q = Q; x Q,, then

Cza(y) = |Q)] = Q| >e>0. (5.2)

Hence, the compactness of the immersion is straightforward because we have
WP (P(Q),a) = W'V (P(Q))

with equivalent norms and the weight f lies in L* (P(Q)).
Once this compactness has been established, we can extract a subsequence, such
that

v,—v = constant, weakly in W'”(P(Q),a)
and so, taking limits in (5.1), we arrive at

i SO P@), (). By) e 20V dy |
v—0 y(ka—kp)/q (fpg) ﬁ(y)dy)p/q (|8QIHQz|)p/q

and hence the convergence is actually strong. This finishes the proof of Theorem 1.4,
proving (1.13).

To deal with the general case, observe that the arguments remains valid if a(y) is
bounded from below. However, we cannot expect this to hold for any bounded
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smooth domain Q. In fact, we only have that a(y) = |©,]| verifies a lower bound of
the form

C>oa(y)=c(dist(y, OP(Q)))"?. (5.3)

In order to see this, given yeP(Q), we take yoedP(Q) such that |y —yo| =
dist(y, 0P(RQ)). Now take x, xoeR" such that (x,y)eQ, (xo,y0) €0 and there exists
an inner tangent ball B, with (x,y)eB,=Q and B,nQ = {(xo, )}

Hence, Q,5(B;), and then a(y) = |Q,|>[(B,),| = (* — ly)"/?. The claim follows
noticing that 2 — |y|> ~dist(y, OP(Q)).

Now, the compactness follows from the following theorem, that can be found
in [19].

Theorem 5.1 (Opic and Kufner [19, Theorems 19.11 and 19.24]). Let d(x) =
dist(y, OP(Q)). The compactness of the immersion

W' (P(Q),d"?) < LY(P(Q))
holds in any of the following cases:

(1) if p<n/2 then q<p;

(2) ifn/2<p<(n+2)/2 then g<—¢—;
k+5-p

3) if p>(n+2)/2 then q<k+]1(—‘i2p.

The rest of the proof runs as in the previous case. [l
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