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Abstract. In this paper we study homogenization problems for the Sobolev

trace embedding H1(Ω) ↪→ Lq(∂Ω) in a bounded smooth domain. When
q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best

constant of the Sobolev trace embedding in rapidly oscillating periodic media,

we consider H1 and Lq spaces with weights that are periodic in space. We find
that extremals for these embeddings converge to a solution of an homogenized

limit problem and the best trace constant converges to a homogenized best

trace constant. Our results are in fact more general, we can also consider
general operators of the form aε(x,∇u) with nonlinear Neumann boundary

conditions. In particular, we can deal with the embedding W 1,p(Ω) ↪→ Lq(∂Ω).

1. Introduction.

Sobolev inequalities have been studied by many authors and is by now a classical
subject. It at least goes back to [3], for more references see [10]. Relevant for the
study of boundary value problems for differential operators is the Sobolev trace
inequality that has been intensively studied, see for example, [11, 12, 14, 15, 16].
Given a bounded smooth domain Ω ⊂ RN , we deal with the best constant of the
Sobolev trace embedding H1(Ω) ↪→ Lq(∂Ω). When q = 2 this leads to an eigenvalue
problem of the Steklov type.

Our main goal here is to consider the Sobolev trace inequality for H1 and Lq

spaces with weights that oscillate periodically. We find that extremals for these
embeddings converge as the oscillations go to infinity to a solution of an homoge-
nized limit problem and the best trace constant converges to an homogenized best
trace constant.

Let us consider the following coefficients

(1.1)



aij ∈ L∞# (T), where T = [0, 1]N , i.e., each aij is a T-periodic
bounded measurable function defined on RN ,

∃α, β > 0 such that α|η|2 ≤ aij(x)ηiηj ≤ β|η|2 ∀η ∈ RN , a.e. x ∈ T,

aij = aji ∀i, j = 1, . . . , N,

(1.2)

a0 ∈ L∞# (T), i.e., a0 is T-periodic, and

∃a−, a+ ∈ R+, such that 0 < a− ≤ a0(x) ≤ a+, a.e. x ∈ T
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and

(1.3)

b ∈ L∞# (T), i.e., b is T-periodic, and

∃b−, b+ ∈ R+, such that 0 < b− ≤ b(x) ≤ b+, a.e. x ∈ T.

Associated to these coefficients and a parameter ε > 0, we consider for every critical
or subcritical exponent, 1 ≤ q ≤ 2∗ := 2(N − 1)/(N − 2), the Sobolev trace
inequality,

S(ε)
∫

∂Ω

bε|v|qdS ≤
∫

Ω

(
aε

ij

∂v

∂xj

∂v

∂xi
+ aε

0v
2

)
dx,

valid for all v ∈ H1(Ω). Here aε
ij(x) := aij(x/ε), aε

0(x) := a0(x/ε) and bε(x) :=
b(x/ε).

The best Sobolev trace constant is the largest S(ε) such that the above inequality
holds, that is,

(1.4) S(ε) := inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω

(
aε

ij

∂v

∂xj

∂v

∂xi
+ aε

0v
2

)
dx(∫

∂Ω

bε|v|q dS

)2/q
.

For subcritical exponents, 1 ≤ q < 2∗, the embedding H1(Ω) ↪→ Lq(∂Ω) is compact,
so we have existence of extremals, i.e. functions where the infimum is attained.
These extremals are strictly positive in Ω (see [14]) and smooth up to the boundary
(see [6]). When one normalize the extremals with

(1.5)
∫

∂Ω

bε|uε|qdS = 1,

it follows that they are weak solutions of the following problem

(1.6)


∂

∂xi

(
aε

ij

∂uε

∂xj

)
= aε

0uε in Ω,

∂uε

∂νε
:= aε

ij

∂uε

∂xj
νi = S(ε)bε|uε|q−2uε on ∂Ω,

where ν is the unit outward normal vector. Of special importance is the case q = 2.
In this case, (1.6) is an eigenvalue problem of Steklov type, see [20]. In the rest of
this article we will assume that the extremals are normalized according to (1.5).

Our first result is the following:

Theorem 1. Let 1 ≤ q < 2∗. Assume that Ω is a generic domain, that is, assume
that the boundary of Ω, ∂Ω, does not contain flat pieces or that it contains finitely
many flat pieces with conormal not proportional to any m ∈ ZN . Then, the function
S(ε) converges as ε → 0 to S∗ the best Sobolev trace constant of the homogenized
problem that is defined by

(1.7) S∗ = inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω

(
a∗ij

∂v

∂xj

∂v

∂xi
+ a∗0v

2

)
dx(∫

∂Ω

b∗|v|q dS

)2/q
,
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where the homogenized coefficients are defined by: a∗0 and b∗ are the mean value of
a0 and b respectively, i.e.,

(1.8) a∗0 :=
∫

T
a0(y) dy, b∗ :=

∫
T

b(y) dy.

The coefficients a∗ij are given by

a∗ij :=
∫

T

(
aij −

∂ai`

∂y`
χj

)
dy,(1.9)

where, for any k = 1, . . . , d, χk is the unique solution of the cell problem

(1.10)

−
∂

∂yi

(
aij

∂χk

∂yj

)
=

∂ak`

∂y`
in T,

χk ∈ H1
#(T), m(χk) = 0.

Moreover, as ε → 0 the sequence of extremals {uε} of (1.4) converges (along sub-
sequences) weakly in H1(Ω) to a limit u∗ that is an extremal of the homogenized
problem (1.7) and so, it verifies

(1.11)


∂

∂xi

(
a∗ij

∂u∗

∂xj

)
= a∗0u

∗ in Ω,

∂u∗

∂ν∗
:= a∗ij

∂v∗

∂xj
νi = S∗b∗|u∗|q−2u∗ on ∂Ω.

Remark 1.1. The homogenized coefficients are related to the original coefficients
by the usual homogenization rules (see [5]). Concerning boundary terms, in [17],
it is proved that for generic domains there exists a limit. However for non-generic
domains there exist different limits for different sequences of ε → 0. In Theorem 1
we consider the generic case, that is, we impose that the boundary of Ω does not
contain flat pieces or that it contains finitely many flat pieces with conormal not
proportional to any m ∈ ZN .

Remark 1.2. This result can be generalized using H-convergence. If we have a
sequence of coefficients (aε

ij) that converges to (a∗ij) in the sense of H-convergence
(see [18]) then the corresponding extremals uε converge weakly in H1(Ω) to an
extremal of the limit problem. To see this fact we only have to observe that, using
H-convergence, we can pass to the limit in the weak form of the equation (1.6).

Also, this result can also be seen from the Γ-convergence of functionals point of
view. The functionals describe the stored energy of the portion of the ε-periodic
composite material occupying a region Ω of RN . The Γ-convergence provide the
behavior of the extremals and the shape of the limit of the functionals (see [9] for
an extensive study of this method).

Our second result deals with the critical exponent, q = 2∗. In this case, under a
geometric assumption on the domain, we have a similar result.

Theorem 2. Assume that Ω is a generic domain (see Theorem 1) and that

(1.12)
α(N − 2)|B(0, 1)|1/(N−1)

2(b+)2/2∗
>

|Ω|a+

|∂Ω|b−
,

where the constants α, a+ and b± are given in (1.1)–(1.3).
Then, the function S(ε) converges as ε → 0 to S∗ the best Sobolev trace constant

of the homogenized problem that is defined by (1.7) Moreover, as ε → 0 the sequence
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of extremals {uε} of (1.4) converges (along subsequences) weakly in H1(Ω) to a
limit u∗ that is an extremal of the homogenized problem (1.7) (and so, a solution
of (1.11)).

Remark 1.3. In the proof of Theorem 2, what is actually used is that there exists
δ > 0 (independent of ε) such that S(ε) satisfies

(1.13)
α(N − 2)|B(0, 1)|1/(N−1)

2(b+)2/2∗
− δ > S(ε).

This condition is implied by (1.12) taking u ≡ 1 as a test function in (1.4).
Arguing as in [15], one can check that the hypothesis (1.13) implies the existence

of an extremal uε for (1.4).

Our results are in fact more general. For the sake of clarity we choose to present
first the linear case with periodic coefficients in full detail. However, using ideas
from [4], we can deal with more general (nonlinear) operators.

Let aε(x, ξ) and bε(x, u), with x ∈ Ω, ξ ∈ RN and u ∈ R be general nonlinear
functions verifying convenient hypotheses (see Section 5). We consider

(1.14) λ1 = inf
v∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω

a(x,∇v) · ∇v + b(x, v)v dx∫
∂Ω

|v|q dS

.

Theorem 3. Assume that aε and bε satisfy the hypotheses (A1)–(A4), (B1)–(B3)
in Section 5 and that there exist two limit functions ahom : Ω × RN → RN and
bhom : Ω× R → R, that satisfy the same hypotheses.

Also assume that the operators Aε G-converge to the operator Ahom associated
to these functions. Let λε

1 and λhom
1 be as in (1.14) with a, b replaced by aε, bε and

ahom, bhom respectively.
(1) If 1 ≤ q < p∗ := p(N − 1)/(N − p) then, λε

1 → λhom
1 as ε → 0.

Moreover, the extremals {uε} converge (along subsequences) weakly in
W 1,p(Ω) to a limit u∗ that is an extremal of the homogenized problem.

(2) For the critical case, q = p∗, assume that Ω verifies

(1.15)
|Ω|

|∂Ω|p∗/p
<

c

K(N, p)
,

where K(N, p) is the best Sobolev trace constant in a half-space

K(N, p) = inf
∇v∈Lp(RN

+ ),w∈Lp∗ (∂RN
+ )

∫
RN

+

|∇v|pdx(∫
∂RN

+

|v|p
∗
dS

)p/p∗
,

and c depend on the family of coefficients. Then, the conclusions of the
previous item hold true.

To end this introduction, let us mention that homogenization results for the
Sobolev trace constant in domains with holes for critical and subcritical exponents
have been recently considered in [13] in the spirit of [8].

The rest of the paper is organized as follows, in Section 2 we recall some pre-
liminary results that are needed in the proof of the main theorems, in Section 3
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we deal with the subcritical case (Theorem 1), in Section 4 with the critical case
(Theorem 2) and, finally, in Section 5 we prove the extension for the nonlinear case
(Theorem 3).

2. Preliminaries

In this subsection we present some results and techniques in homogenization of
periodic media. We briefly recall the notion of two-scale convergence (see [2], [19]).

Proposition 2.1. Let Ω ⊆ RN and wε be a bounded sequence in L2(Ω) . There
exist a subsequence, still denoted by ε, and a limit w(x, y) ∈ L2(Ω;L2

#(T)) such
that wε two-scale converges to w in the sense that

lim
ε→0

∫
Ω

wε(x)φ(x, x/ε) dx =
∫

Ω

∫
T

w(x, y)φ(x, y) dxdy

for every function φ(x, y) ∈ L2(Ω; C#(T)). The two-scale convergence is denoted by
wε ⇀ w in 2s. Furthermore, if {wε} is a bounded sequence that converges weakly to
a limit w in H1(Ω). Then, wε two-scale converges to w, and there exists a function
w1(x, y) ∈ L2(Ω;H1

#(T)) such that, up to a subsequence, we have the following
two-scale convergence

∇wε(x) ⇀ ∇xw(x) +∇yw1(x, y) in 2-scale.

This two-scale convergence result is a powerful tool to deal with our problem,
the study of the limit as ε → 0 in (1.4).

Another important tool is the weak star convergence in L∞(Ω). In general, if
gε, g ∈ L∞(Ω), we say that gε converges to g weak star in L∞(Ω), denoted by
gε

∗
⇀ g in L∞(Ω), if ∫

Ω

gεφdx →
∫

Ω

gφ dx, ∀φ ∈ L1(Ω).

We note immediately, see [8], that an εT-periodic function converges weak−∗ in
L∞ to its mean value. Thus

aε
0
∗
⇀ a∗0 in L∞(Ω).

Moreover, if Ω is a generic domain, i.e. ∂Ω does not contain flat pieces or that it
contains finitely many flat pieces with conormal not proportional to any m ∈ ZN ,
we have that

(2.1) bε ∗
⇀ b∗ in L∞(∂Ω),

where b∗ is given by (1.8), see Remark 1.1.

3. Subcritical case

In this section we assume that q is subcritical, that is 1 ≤ q < 2∗, so the
immersion H1(Ω) ↪→ Lq(∂Ω) is compact.

Proof of Theorem 1. First, let us prove that the best constants S(ε) and the
extremals uε are bounded in H1 independently of ε. Indeed, by the definition of
S(ε) in (1.4) and our assumptions on the coefficients (1.1), (1.2), there exist two
constants 0 < c < C such that

(3.1) c λ0 ≤ S(ε) ≤ C λ0,
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with λ0 defined by

(3.2) λ0 = inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω

|∇v|2 + v2 dx(∫
∂Ω

|v|q dS

)2/q
.

Now, we show that the extremals uε, the weak solutions of (1.6), are bounded
in H1−norm independently of ε. To prove this fact recall that we have normalized
the extremals by (1.5). By our assumptions on the coefficients (1.1), (1.2), we have

S(ε) =
∫

Ω

(
aε

ij

∂uε

∂xj

∂uε

∂xi
+ aε

0|uε|2
)

dx ≥
∫

Ω

(
α|∇uε|2 + a−|uε|2

)
dx.

By (3.1), we obtain that uε is bounded in H1 independently of ε. Hence there
exists a subsequence (that we still call uε) and a function u0 ∈ H1(Ω) such that
uε ⇀ u0 weakly in H1(Ω) and uε → u0 strongly in Lq(∂Ω) for 1 ≤ q < 2∗. By the
above mentioned convergence and (2.1) we have that∫

∂Ω

b∗|u0|q dS = 1.

Moreover, using Proposition 2.1, we obtain that uε ⇀ u0 in 2-scale and there exists
u1 such that

∇uε ⇀ ∇xu0(x) +∇yu1(x, y), in 2-scale.

We use φ(x) + εφ1(x, x/ε) with φ ∈ H1(Ω) and φ1 ∈ H1(Ω;C#(T)) as a test
function in the weak form of (1.6). As S(ε) is bounded, we can assume that
S(ε) → S0, for an appropriate subsequence. Then we pass to the limit the weak
formulation and, by the two-scale convergence, we get∫

Ω

∫
T

aij(y)
(

∂u0

∂xj
(x) +

∂u1

∂yj
(x, y)

)(
∂φ

∂xi
(x) +

∂φ1

∂yi
(x, y)

)
dy dx

+
∫

Ω

∫
T

a0(y)u0(x)φ(x)dx dy = S0

∫
∂Ω

∫
T

b(y)|u0|q−2u0φ(x) dS dy.

Integrating by parts we obtain that (u0, u1) is the weak solution of the system

∂

∂xi

(∫
T

aij(y)
(

∂u0

∂xj
(x) +

∂u1

∂yj
(x, y)

)
dy

)
= a∗0 u0(x) in Ω,(3.3)

νi
∂

∂xi

(∫
T

aij(y)
(

∂u∗

∂xj
(x) +

∂u1

∂yj
(x, y)

)
dy

)
= S0 b∗ |u0|q−2u0(x) on ∂Ω,(3.4)

∂

∂yi

(
aij(y)

(
∂u0

∂xi
(x) +

∂u1

∂yi
(x, y)

))
= 0 in Ω× T,(3.5)

with a∗0 and b∗ defined in (1.8). Considering

u1(x, y) =
N∑

i=1

∂u0

∂xi
(x)χi(y),
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we note that u1 satisfies (3.5) for any u0 since χ1 is solution of (1.10). Moreover,
with this function u1 in (3.3) and (3.4), we obtain that u0 is a solution of

(3.6)


∂

∂xi

(
a∗ij

∂u0

∂xj

)
= a∗0u0 in Ω,

∂u0

∂ν∗
= S0b

∗|u0|q−2u0 on ∂Ω,

where the coefficients a∗ij are given by (1.9) and the derivative normal ∂/∂ν∗ is
defined in (1.11). Now, since S0 satisfies (3.6), we get S0 ≥ S∗ with S∗ defined in
(1.7). To conclude the proof of Theorem 1 we need to show that S0 = S∗. In fact,
let u∗ be an extremal of (1.7) and consider

vε = u∗ + εχε
k

∂u∗

∂xk

as a test function in (1.4), where χε
k(x) = χk(x/ε). From the maximum principle

and Hopf’s Lemma we get that u∗ is strictly positive in Ω. Therefore the regularity
results of [6] are applicable and we obtain that u∗ ∈ C∞(Ω). Thus, since the
functions χk ∈ W 1,∞ (this is a consequence of the hypotheses on the coefficients),
we have immediately vε ⇀ u∗ weakly in H1(Ω) and vε → u∗ strongly in Lq(∂Ω)
for 1 ≤ q < 2∗. Now, we obtain∫

Ω

(
aε

ij

∂vε

∂xj

∂vε

∂xi
+ aε

0v
2
ε

)
dx =

∫
Ω

(
aε

ij + aε
ik

∂χε
j

∂yk

)
∂u∗

∂xj

∂u∗

∂xi
dx

+
∫

Ω

(
aε

ij

∂χε
k

∂yj

∂χε
`

∂yi
+ aε

ik

∂χε
`

∂yi

)
∂u∗

∂xk

∂u∗

∂x`
dx

+
∫

Ω

aε
0(u

∗)2dx + O(ε).

Passing to the limit, using that χk is a solution of (1.10) and by the weak−∗
convergence in L∞, we get

lim
ε→0

∫
Ω

(
aε

ij

∂vε

∂xj

∂vε

∂xi
+ aε

0v
2
ε

)
dx =

∫
Ω

(
a∗ij

∂u∗

∂xj

∂u∗

∂xi
+ a∗0(u

∗)2
)

dx,

where a∗0 and a∗ij are defined by (1.8) and (1.9), respectively. Moreover, again by
the weak−∗ convergence in L∞, we have∫

∂Ω

bε|vε|q →
∫

∂Ω

b∗|u∗|q.

Therefore, passing to the limit in (1.4) with test function vε, we prove S0 ≤ S∗ and
we conclude the proof of Theorem 1. �

Remark 3.1. Results on correctors of the extremals are easily obtained with the
two scale convergence method. Considering the solutions of the cell problem (1.10),
the corrector term is defined by

uε
1(x) = χk(x/ε)

∂u∗

∂xk
(x),

where u∗ is an extremal of the homogenized problem (1.11). Hence, by Proposi-
tion 2.1 and following the same lines as [2], (uε − u∗ − εuε

1) converges strongly to
zero in H1(Ω).
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4. Critical case

In this section we deal with the critical exponent q = 2∗ = 2(N − 1)/(N − 2).

Proof of Theorem 2. Recall that, as observed in Remark 1.3, hypothesis (1.12)
implies the existence of an extremal uε for (1.4).

As before, by the definition of S(ε) in (1.4) and our assumptions on the coeffi-
cients (1.1), (1.2), we have (3.1). Hence, the extremals uε are bounded in H1(Ω)
and we have, for a subsequence,

uε ⇀ u0 weakly in H1(Ω),

uε → u0 strongly in Lq(∂Ω), with 1 ≤ q < 2∗.

Arguing exactly as in the previous section we obtain that uε ⇀ u0 in 2s and
moreover, that u0 is a weak solution to

(4.1)


∂

∂xi

(
a∗ij

∂u0

∂xj

)
= a∗0u0 in Ω,

∂u0

∂ν∗
= Sb∗|u0|q−2u0 on ∂Ω,

where S is the limit of a subsequence of S(ε), the coefficients a∗ij are given by (1.9)
and the derivative normal ∂/∂ν∗ is defined in (1.11).

Let us prove that u0 6= 0. To this end we use the following Theorem due to [16].

Theorem 4. There exists a constant B > 0 such that,(∫
∂Ω

v2∗ dS

)2/2∗

≤ A

∫
Ω

|∇v|2 dx + B

∫
Ω

v2 dx

for every v ∈ H1(Ω), where

A =
2

(N − 2)|B(0, 1)|1/(N−1)
.

Remark 4.1. The constant A in Theorem 4 is sharp.

Now, as uε ≥ 0, it follows that u0 ≥ 0 and, by classical regularity theory, u0 is
smooth up to the boundary. By the strong maximum principle and Hopf’s lemma,
it follows that either u0 > 0 or u0 ≡ 0. In order to prove of the result, we have to
exclude this last possibility. To this end, we use the argument given in [15] to show
that ‖u0‖L2(Ω) 6= 0. In fact, by Theorem 4, we have that there exists a constant B
such that (∫

∂Ω

v2∗ dσ

)2/2∗

≤ A

∫
Ω

|∇v|2 dx + B

∫
Ω

|v|2 dx

for every v ∈ H1(Ω). Recall that uε are normalized such that satisfies (1.5), so, by
(1.3),

1 =
(∫

∂Ω

bεu2∗
ε dσ

)2/2∗

≤ (b+)2/2∗

(
A

∫
Ω

|∇uε|2 dx + B

∫
Ω

u2
ε dx

)
.

Hence, for some suitable B̃ we get,

1
(b+)2/2∗

≤ A

α

(∫
Ω

aε
ij

∂uε

∂xj

∂uε

∂xi
dx +

∫
Ω

aε
0|uε|2 dx

)
+ B̃

(∫
Ω

u2
ε dx

)
.
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Therefore,

(4.2)
1

(b+)2/2∗
≤ A

α
S(ε) + B̃

∫
Ω

|uε|2 dx

Passing to the limit ε → 0 in (4.2) we arrive to

1
(b+)2/2∗

≤ A

α
S + B̃

∫
Ω

|u0|2 dx

therefore, as we have assumed (1.13), that implies
α

A(b+)2/2∗
> S,

we conclude u0 6= 0.
Now, multiplying (4.1) by u0 and integrating by parts, we obtain∫

Ω

a∗ij
∂u0

∂xj

∂u0

∂xi
+ a∗0u

2
0 dx = S

∫
∂Ω

u2∗
0 dS.

As u0 6= 0 it follows that S 6= 0 and ‖u0‖L2∗ (∂Ω) 6= 0. Therefore, we conclude that

S0 ≤

∫
Ω

a∗ij
∂u0

∂xj

∂u0

∂xi
+ a∗0u

2
0 dx(∫

∂Ω

u2∗
0 dS

)2/2∗
= S

(∫
∂Ω

u2∗
0 dS

)1/(N−1)

≤ S.

Now, arguing exactly as in the end of Section 3, we conclude the desired result. �

5. The nonlinear case

Finally, in this section we consider the extension of our previous results to a more
general class of nonlinear operators, including the p−Laplacian with oscillating
coefficients. The main ideas for these extensions are similar to the ones used before
combined with those of [4].

We consider nonlinear monotone operators A : W 1,p(Ω) → (W 1,p(Ω))∗ of the
form

Au = − div(a(x,∇u)) + b(x, u),

whose coefficients a : Ω× RN → RN belong to the class of functions satisfying the
following hypotheses:

(A1) a(·, ·) is of Carathéodory type.
(A2) Monotonicity: 0 ≤ (a(x, ξ1)− a(x, ξ2)) · (ξ1 − ξ2) ∀ξ1, ξ2, a.e. x.
(A3) Uniform ellipticity: α|ξ|p ≤ a(x, ξ) · ξ ∀ξ, a.e. x.
(A4) Growth: |a(x, ξ)| ≤ β|ξ|p−1 ∀ξ, a.e. x.

and the function b : Ω× R → R satisfies the following hypotheses
(B1) b(·, ·) is of Carathéodory type.
(B2) Uniform α|u|p ≤ b(x, u)u ∀u, a.e. x.
(B3) Growth: |b(x, u)| ≤ β|u|p−1 ∀u, a.e. x.
For a and b satisfying the above hypotheses, we consider the eigenvalue problem

(5.1)
div(a(x,∇u)) = b(x, u) in Ω,

a(x,∇u) · ν = λ|u|q−2u on ∂Ω.



10 J. FERNÁNDEZ BONDER, R. ORIVE AND J.D. ROSSI

If there exist λ and u solutions of (5.1), taking u as a test function in the eigenvalue
problem, we note that

(5.2) λ =

∫
Ω

a(x,∇u) · ∇u + b(x, u)udx∫
∂Ω

|u|qdS

.

Moreover, the infimum in (1.14) is attained and is called the first eigenvalue λ1 for
the problem (5.1). This fact is indeed by the lower semi-continuity property of the
functinal associated to A for the minimizing sequence.

Let ε > 0 be a small parameter which represents the scale of heterogeneity. We
consider a family of functions aε, bε satisfying the previous hypotheses, for example,
aε(x, ξ) = a(x/ε, ξ) and bε(x, u) = b(x/ε, u) which are, in addition, periodic in x.
Thus, we deal with the minimization problem

(5.3) λε
1 = inf

v∈W 1,p(Ω)\W 1,p
0 (Ω)

∫
Ω

aε(x,∇v) · ∇v + bε(x, v)v dx∫
∂Ω

|v|q dS

.

First, assume that q is subcritical. Then, since the embedding W 1,p(Ω) ↪→
Lq(∂Ω) is compact there exist extremals for (5.3). We normalize the extremals
with the condition

(5.4)
∫

∂Ω

|uε|qdS = 1.

The normalized extremals are weak solutions of the problem

(5.5)
div(aε(x,∇uε)) = bε(x, uε)uε in Ω,

a(x,∇uε) · ν = λε
1|uε|q−2uε on ∂Ω.

Since in the statement of Theorem 3 we have assumed the G-convergence of the
operators the conclusions concerning the convergence of the first eigenvalue and its
associated extremals follows.

Note that this assumption is not restrictive, since if aε and bε are measurable co-
efficients which satisfy (A1)-(A3) and (B1)–(B3), then the operators Aε G-converge
(up to a subsequence) to a maximal monotone operator Ahom whose coefficients,
ahom and bhom, are measurable and satisfies (A1)-(A3) and (B1)–(B3). We refer to
Theorem 4.1 of [7] for this well-known compactness result for the G-convergence on
the class of multivalued functions of the type a.

For the critical case p∗ = p(N − 1)/(N − 2) we can argue exactly as before in
section 4, noting that condition (1.15) on the domain and the coefficients involved
implies that there are minimizers of (5.3) since some compactness is recovered.
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