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Abstract

In this paper we obtain the blow-up rate for positive solutions of a
system of two heat equations, ut = ∆u, vt = ∆v, in a bounded smooth
domain Ω, with boundary conditions ∂u

∂η
= vp, ∂v

∂η
= uq. Under some

assumptions on the initial data u0, v0 and p, q subcritical, we find that

the behaviour of u and v is given by ‖u(·, t)‖∞ ∼ (T − t)
− p+1

2(pq−1) and

‖v(·, t)‖∞ ∼ (T − t)
− q+1

2(pq−1) . As a corollary of the blow-up rate we obtain
the localization of the blow-up set at the boundary of the domain. The
main tool in the proof, is a nonexistence theorem for an elliptic system;
we prove that the only nonnegative classical solution of the system ∆u =
0, ∆v = 0 in IRn

+, with boundary conditions ∂u
∂η

= vp, ∂v
∂η

= uq on ∂IRn
+

is the trivial solution u ≡ 0, v ≡ 0, when p ≤ n
n−2

, q < n
n−2

and pq > 1.

1 Introduction.

In this paper we obtain the blow-up rate for positive solutions of the following
parabolic system {

ut = ∆u in Ω× (0, T ),
vt = ∆v in Ω× (0, T ), (1.1){
∂u
∂η = vp on ∂Ω× (0, T ),
∂v
∂η = uq on ∂Ω× (0, T ),

(1.2)

{
u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω. (1.3)

Parabolic reaction-diffusion problems or systems like (1.1)-(1.2) or of a more
general form, allowing for example source terms or with different boundary
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conditions, appear in several branches of applied mathematics. They have been
used to model, for example, chemical reactions, heat transfer or population
dynamics and have been studied by several authors. See [18] and the references
therein.

The question of whether the solution develops sigularities in finite time has
deserve a great deal of interest. In particular, for (1.1)- (1.3) it is well known
(see [5], [20] and [21]) that if pq > 1 the solution (u, v) blows up in finite time,
i.e. there exists a finite time T such that

lim
t↗T

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) = +∞.

We observe that both functions, u and v, go to infinity simultaneously at time
T . In [1] the blow-up problem is considered for more general nonlinearities, in
the equation and in the boundary conditions, in a general smooth domain Ω.

The question of how this blow-up phenomenum happens is therefore a natu-
ral one and a lot of work has been done in that direction. In the case of a single
equation (i.e. p = q and u0 = v0 wich imply u = v) we cite the work of [13]
where they prove that the blow-up rate in that case was

‖u(·, t)‖L∞(Ω) ∼ (T − t)−
1

2(p−1) .

For the blow-up rate of the system (1.1)-(1.3), we refer to [5], [19] and [22]
where the authors consider only the radial case.

Here we obtain the blow-up rate problem for (1.1)-(1.3) in a general bounded
smooth domain, under suitable assumptions on the exponents p, q and on the
initial datum (u0, v0). More precisely, throughout this paper we assume that
q ≤ p (for symmetry reasons, this is not a restriction). Also we assume that, if
n ≥ 3, pq > 1, p ≤ n

n−2 , q < n
n−2 and, if n = 2, pq > 1. On the initial data we

suppose that are positive, verify a compatibility condition and ∆u0,∆v0 ≥ α >
0 in order to guarantee ut, vt ≥ 0.

The main result of the paper is:

Theorem 1.1 Under the above assumptions on p, q, u0 and v0, there exists
positive constants C, c such that

c ≤ max
Ω

u(·, t)(T − t)
p+1

2(pq−1) ≤ C (t↗ T ),

c ≤ max
Ω

v(·, t)(T − t)
q+1

2(pq−1) ≤ C (t↗ T ).

As a Corollary we obtain the localization of the blow-up set at the boundary
of Ω.
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Corollary 1.1 Let p, q, u0 and v0 be as in Theorem 1.1. Then if Ω′ ⊂⊂ Ω
there exists a constant C = C(dist(Ω′, ∂Ω)) such that

‖u(·, t)‖L∞(Ω′) + ‖v(·, t)‖L∞(Ω′) < C (t ∈ [0, T ))

(i.e. the blow-up set is localized at ∂Ω).

The proof is based on a “blow-up” type argument introduced by Gidas-
Spruck [11] and that was adapted for the parabolic case by [13]. Here, we use
these ideas to deal with our system.

After this “blow-up” technique is used, the proof relays on the following
Liouville-type theorems for an elliptic system in the half space with nonlinear
bounday conditions:

Theorem 1.2 Suppose n ≥ 3, and p ≤ n
n−2 , q <

n
n−2 with pq > 1. Let (u, v)

be a classical nonnegative solution of the following problem:{
∆u = 0 in IRn+,
∆v = 0 in IRn+,

(1.4)

with boundary conditions {
∂u
∂η = vp on ∂IRn+,
∂v
∂η = uq on ∂IRn+,

(1.5)

then u ≡ 0, v ≡ 0.

Theorem 1.3 Let n = 2, and p, q > 0. Let (u, v) be a classical nonnegative
solution of (1.4), (1.5) with u bounded, then u ≡ 0, v ≡ 0.

These theorems are of independent interest. In fact it have been used by
the authors to prove an existence result for an elliptic system with a nonlinear
boundary condition in a bounded domain [6].

The proof of Theorem 1.2 is based on the Moving Plane Method, introduced
by Alexandroff and then used by several authors to study the symmetry prop-
erties of many elliptic equations ([10], [4], [16], etc). In [14] the Moving Plane
Method is used to study the single equation{

∆u = 0 in IRn+,
∂u
∂n = up on ∂IRn+.

It is proved there that the only classical solution is u ≡ 0 when p is subcritical
(p < n

n−2 ) and greater than one.

The paper is organized as follows, in §2, we prove Theorem 1.1, in §3 the
nonexistence results (Theorems 1.2 and 1.3) and we leave for the Appendix some
uniform Schauder estimates needed in the proof of Theorem 1.1.
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2 Blow-up rate for the system

To prove Theorem 1.1 we need a result that gives the asymptotic behavior for
solutions of 

wt = ∆w in Ω× [0, T ),
∂w
∂η (≥) ≤ k

(T−t)s on ∂Ω× [0, T ),
w(x, 0) = w0(x) > 0 on Ω,

(2.1)

where s > 1/2. We state this result as follows.

Lemma 2.1 Let w be a positive solution of (2.1) that blows-up at time T , then

(c ≤)‖w(·, t)‖∞(T − t)s−1/2 ≤ C (t↗ T ).

Proof: It is enough to prove the Lemma for w such that wt ≥ 0, because, given
w0 we can choose an initial datum w̃0 such that ∆w̃0 > δ > 0 (this guarantees
w̃t ≥ 0) below or above w0, then we obtain the result by a comparison argument.

Let Γ(x, t) be the fundamental solution of the heat equation, namely

Γ(x, t) =
1

(4πt)n/2
exp

(
−|x|

2

4t

)
.

Now for x ∈ ∂Ω, using Green’s identity and the jump relation (see [7]) we have

1
2
w(x, t) =

∫
Ω

Γ(x−y, t−z)w(y, z) dy+
∫ t

z

∫
∂Ω

∂w

∂η
(y, τ)Γ(x−y, t− τ) dSydτ−

(2.2)

−
∫ t

z

∫
∂Ω

∂Γ
∂η

(x− y, t− τ)w(y, τ) dSydτ.

Now we set W (t) = supΩ w(·, t). Since Ω is smooth, for instance ∂Ω ∈ C1+α, Γ
satisfies (see [7]) ∣∣∣∣∂Γ

∂η
(x− y, t− τ)

∣∣∣∣ ≤ C

(t− τ)µ|x− y|n+1−2µ−α

if ∂w
∂η ≤

k
(T−t)s by (2.2) we obtain, for 1− α/2 < µ < 1

1
2
W (t) ≤W (z) + C

∫ t

z

k

(T − τ)s(t− τ)1/2
dτ + CW (t)(T − z)1−µ.

We choose z such that C(T − z)1−µ < 1/4 then multiplying by (T − t)s−1/2 we
get

(T − t)s−1/2

4
W (t) ≤ (T−t)s−1/2W (z)+C(T−t)s−1/2

∫ t

z

k

(T − τ)s(t− τ)1/2
dτ.
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One can check that the right hand side of the last inequality is bounded uni-
formly in t as we wanted to prove.

For the other inequality, if ∂w
∂η ≥

k
(T−t)s ,

1
2
W (t) ≥

∫ t

z

∫
∂Ω

k

(T − t)s
Γ(x− y, t− τ) dSydτ − CW (t)(T − z)1−µ.

As before, we choose z such that C(T − z)1−µ < 1/2 then

W (t) ≥
∫ t

z

k

(T − t)s

(∫
∂Ω

Γ(x− y, t− τ) dSy

)
dτ ≥

≥ c

∫ t

z

k

(T − t)s
1

(t− τ)1/2
dτ.

As before, one can check that the right hand side multiplied by (T − t)s−1/2, is
bounded by below uniformly in t. This completes the proof. 2

Now we state two results.

Lemma 2.2 Let z be a positive solution of
zt = ∆z in Ω× [0, T ),
∂z
∂η ≤ zκ on ∂Ω× [0, T ),
z(x, 0) = z0(x) in Ω,

(2.3)

with κ > 1 and blow-up time T . Then there exists c > 0 such that

c ≤ max
Ω

z(·, t)(T − t)
1

2(κ−1) .

The proof can be found in [13].
The second result is a comparison between the pair of functions u and vγ

(with γ = p+1
q+1 ), where (u, v) is the solution of (1.1)-(1.3). This comparison

result allows us to reduce the problem to a single equation and then apply
Lemma 2.1. The proof of this Lemma can be found in [19] and [5].

Lemma 2.3 There exists a constant C > 0 such that

Cu ≥ v
p+1
q+1

where (u, v) is a solution of (1.1)-(1.3).

Now we prove that the converse of Lemma 2.3 is, in some sence, true. In
fact, we prove the following result (see [9] for a similar result for a semilinear
system).
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Lemma 2.4 Let

M(t) = max
Ω

u(·, t), N(t) = max
Ω

v(·, t). (2.4)

There exists a constant δ > 0 such that

δmax{Mq+1(t), Np+1(t)} ≤ min{Mq+1(t), Np+1(t)}.

Proof: We argue by contradiction. Assume that there exists a sequence tn → T
such that

max{Mq+1(tn), Np+1(tn)} = Mq+1(tn), M−(q+1)(tn)Np+1(tn) → 0.

Let xn ∈ ∂Ω be a point such that u(xn, tn) = M(tn). We define

ϕn(y, s) =
1

M(tn)
u(λnRny + xn, λ

2
ns+ tn),

ψn(y, s) =
1

λ
q+1
1−pq
n

v(λnRny + xn, λ
2
ns+ tn).

Where Rn is an ortogonal transformation that maps the unit normal vector
at xn to −e1. We choose λn = M

1−pq
p+1 (tn). These functions ϕn, ψn satisfy

0 ≤ ϕn ≤ 1, ϕn(0, 0) = 1, 0 ≤ ψn ≤ N(tn)

M
q+1
p+1 (tn)

→ 0 and

{
(ϕn)s = ∆ϕn, (ψn)s = ∆ψn,
∂ϕn

∂η = ψpn,
∂ψn

∂η = ϕqn,

in Ωn×In where Ωn = {y | λnRny+xn ∈ Ω} and In = (−λ−2
n tn, 0]. We observe

that λn → 0 as n→∞. Hence Ωn approaches to the half space IRN+ = {y1 > 0}
and In → (−∞, 0]. The Schauder estimates allows us to pass to the limit as
n → ∞ (using a subsequence, if necessary) in the space C2+µ,1+µ/2 (see the
appendix for the details) obtaining that ϕn → ϕ, and ψn → ψ ≡ 0. Hence we
have 0 = ∂ψ

∂η (0, 0) = ϕp(0, 0) = 1, a contradiction. 2

Now we prove Theorem 1.1.

Proof of Theorem 1.1: We use a scaling argument similar to that of Lemma
2.4. With M(t∗) and N(t∗) given by (2.4) we define

ϕλ(y, s) =
1

M(t∗)
u(λRy + x∗, λ2s+ t∗),

ψλ(y, s) =
1

N(t∗)
v(λRy + x∗, λ2s+ t∗),

where T/2 < t∗ < T and u(x∗, t∗) = maxΩ u(·, t
∗) and R = R(t∗) is as in

Lemma 2.4.
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These functions ϕλ, ψλ satisfy 0 ≤ ϕλ, ψλ ≤ 1, ϕλ(0, 0) = 1, ∂ϕλ

∂s ,
∂ψλ

∂s ≥ 0
and {

(ϕλ)s = ∆ϕλ, (ψλ)s = ∆ψλ,
∂ϕλ

∂η = λM−1Np(ψλ)p, ∂ψλ

∂η = λMqN−1(ϕλ)q.

Now we choose λ = N
Mq and observe that λ goes to zero as t∗ goes to T

because by Lemma 2.3, λ = N
Mq ≤ cN1−q p+1

q+1 → 0.
We define Kλ = λM−1Np and observe that, by Lemmas 2.3 and 2.4, 0 <

c ≤ Kλ ≤ C < +∞ as t∗ goes to T .
We claim that there exists a constant C such that for every λ small

∂ψλ
∂s

(0, 0) ≥ C.

To prove this claim, suppose not. Then there exists a sequence λj → 0 such
that

∂ψλj

∂s
(0, 0) → 0.

As ϕλj
and ψλj

are uniformly bounded in C2+γ,1+γ/2 (see the appendix for
the details) we obtain a pair of positive functions ϕ, ψ such that ϕλj

→ ϕ,
ψλj

→ ψ, Kλj
→ K0 6= 0 and verify 0 ≤ ϕ,ψ ≤ 1, ϕ(0, 0) = 1, ∂ϕ

∂s ,
∂ψ
∂s ≥ 0 and{

ϕs = ∆ϕ, ψs = ∆ψ,
∂ϕ
∂η = K0ψ

p, ∂ψ
∂η = ϕq,

in IRN+ × (−∞, 0]. We set w = ψs and as w satisfies the heat equation, a
boundary condition of the type ∂w

∂η ≥ 0 and w(0, 0) = 0, then by Hopf’s lemma
we obtain that w ≡ 0, that is ψ does not depend on s.

Let z = ϕs, z is positive and satisfies the heat equation with a boundary
condition of the form ∂z

∂η ≥ 0.
On the other hand we have that 0 = ∂w

∂η = qϕq−1z, but ϕq−1 is not zero
at the boundary of the domain IRN+ × (−∞, 0] (if it is zero at a point in the
boundary it has a minimum there and then by Hopf’s lemma it has to be zero
everywhere, a contradiction), then z is zero on the boundary of IRN+ × (−∞, 0]
and using again Hopf’s lemma z = 0 in all the domain. This proves that ϕ and
ψ are independent of s and by Theorems 1.2 and 1.3, we obtain a contradiction
as K0 6= 0.

So we have proved that

∂ψλ
∂s

(0, 0) ≥ C

in terms of v, that is λ2vt

N ≥ C. As N is Lipschitz continuous, this implies

N1−2 p+1
q+1 qN ′ ≥ C.
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Let r = 1− 2p+1
q+1q < −1, now we integrate between t and T and obtain

C(T − t) ≤
∫ T

t

Nr(t)N ′(t) dt ≤
∫ +∞

N(t)

sr ds =
C

N(t)−1−r .

Finally

N(t) ≤ C

(T − t)
q+1

2(pq−1)

.

Using this bound for v, u verifies the heat equation and ∂u
∂η = vp ≤ C

(T−t)
p(q+1)
2(pq−1)

.

Then by Lemma 2.1 we obtain

M(t) ≤ C

(T − t)
p+1

2(pq−1)

.

Let us prove the reverse inequalities in order to finish the proof of Theorem
1.1. Now we begin by u. Using Lemma 2.3, u satisfies{

ut = ∆u,
∂u
∂η = vp ≤ Cupγ

where pγ = p(q+1)
p+1 > 1, then Lemma 2.2 tells us that,

M(t) ≥ c

(T − t)
1

2(pγ−1)
=

c

(T − t)
p+1

2(pq−1)

.

By the previous bound, v satisfies the heat equation and ∂v
∂η = uq ≥ C

(T−t)s , in

this case s = q(p+1)
2(pq−1) >

1
2 and by Lemma 2.1, v satisfies

N(t) ≥ c

(T − t)
q+1

2(pq−1)

so we have finished the proof of Theorem 1.1.2
We observe that with this blow-up rate we can localize the blow-up set at

the boundary of the domain.
Proof of Corollary 1.1: We just observe that we fall into the hypothesis of
Theorem 4.1 of [13].2

3 Nonexistence results

Throughout this section, to apply the Moving plane method we use the following
notation, for λ ∈ R let

Σλ = {(x1, ..., xn);x1 > 0, xn < λ}, Tλ = {(x1, ..., xn);x1 ≥ 0, xn = λ},
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Σ̃λ = Σλ − {(0, ..., 0, 2λ)}, B+
µ (y0) = Bµ(y0) ∩ {x1 > 0}.

Let (u, v) be a positive solution of (1.4)-(1.5) and α1 = − p+1
pq−1 , α2 = − q+1

pq−1

(we observe that, as pq > 1, α1 and α2 are negatives). Then define

u(x) = µ−α1u(µx), v(x) = µ−α2v(µx).

As u, v satisfy (1.4)-(1.5), u, v verify{
∆u(x) = 0, ∆v(x) = 0,
∂u
∂η = vp, ∂v

∂η = uq.
(3.1)

By (3.1), if u ≡ 0, then v ≡ 0, then we can suppose that u 6≡ 0, v 6≡ 0. Now we
observe that if µ < 1

supx∈B+
1 (0) u(x) ≤ µ−α1 supx∈B+

µ (0) u(x) ≤ Cµ−α1 ,

supx∈B+
1 (0) v(x) ≤ µ−α2 supx∈B+

µ (0) v(x) ≤ Cµ−α2 .
(3.2)

Also

infx∈B+
1 (0) u(x) ≥ µ−α1 infx∈B+

µ (0) u(x) ≥ cµ−α1 ,

infx∈B+
1 (0) v(x) ≥ µ−α2 infx∈B+

µ (0) v(x) ≥ cµ−α2 .
(3.3)

Let ε1, ε2 be the following numbers which are positive by the maximum princi-
ple,

ε1 = min
|x|=1,xn≥0

u(x) > 0, ε2 = min
|x|=1,xn≥0

v(x) > 0.

Next we observe that if ε = min{ε1, ε2}, then by a comparison argument,{
u(x) ≥ ε

|x|n−2 |x| ≥ 1 xn > 0,
v(x) ≥ ε

|x|n−2 .
(3.4)

Now we use the Kelvin’s inversion to define

ϕ(x) =
u( x
|x|2 )

|x|n−2
, ψ(x) =

v( x
|x|2 )

|x|n−2
.

As u, v satisfy (3.1), these functions ϕ, ψ satisfy{
∆ϕ(x) = 0, ∆ψ(x) = 0,
∂ϕ
∂η (x) = ψp(x)

|x|n−(n−2)p ,
∂ψ
∂η (x) = ϕq(x)

|x|n−(n−2)q .

As a consequence of (3.4), we obtain

ψ(x) =
v( x
|x|2

)

|x|n−2 ≥ ε, ϕ(x) =
u( x

|x|2
)

|x|n−2 ≥ ε, in |x| ≤ 1 xn > 0,
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Also, by (3.2)

ϕ(x) =
u( x

|x|2
)

|x|n−2 ≤
sup

y∈B
+
1

(0)
u(y)

|x|n−2 ≤ Cµ−α1

|x|n−2 if |x| ≥ 1, xn > 0,

ψ(x) =
v( x
|x|2

)

|x|n−2 ≤
sup

y∈B
+
1

(0)
v(y)

|x|n−2 ≤ Cµ−α2

|x|n−2 if |x| ≥ 1, xn > 0.

(3.5)

In order to prove symmetry properties of ϕ and ψ, we set

Φλ(x) = ϕλ(x)− ϕ(x), Ψλ(x) = ψλ(x)− ψ(x),

where for λ < 0 we define

ϕλ(x1, ...., xn) = ϕ(x1, ..., xn−1, 2λ− xn) = ϕ(xλ),

ψλ(x1, ..., xn) = ψ(x1, ..., xn−1, 2λ− xn) = ψ(xλ).

Now we can begin the moving plane method.

Lemma 3.1 If −λ is big enough, then

Φλ,Ψλ ≥ 0 in Σ̃λ.

Proof: Let us start by defining the following functions:

Φλ(x) = |z|βΦλ(x), Ψλ(x) = |z|βΨλ(x),

where z = x+ e1 = x+ (1, 0, ..., 0). This functions satisfy

−∆Φλ + 2β
|z|2 z · ∇Φλ + β(n−2−β)

|z|2 Φλ = 0,
in Σλ

−∆Ψλ + 2β
|z|2 z · ∇Ψλ + β(n−2−β)

|z|2 Ψλ = 0.

We choose β = n−2
2 so that the coefficient of order zero in both equations is

nonnegative.
At the boundary, this functions verify

−∂Φλ
∂x1

|x1=0= −
(
∂|z|β

∂x1
Φλ(x) + |z|β ∂Φλ

∂x1
(x)
)
|x1=0=

= −
(

β

|z|2
Φλ + |z|β ∂

∂x1
(ϕλ(x)− ϕ(x))

)
|x1=0=

= − β

|z|2
Φλ + |z|β

(
1

|xλ|n−(n−2)p
ψpλ −

1
|x|n−(n−2)p

ψp
)
.

Now, as |xλ| ≤ |x| in Σλ, (λ < 0), by the mean value theorem,
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(
1

|xλ|n−(n−2)p
ψpλ −

1
|x|n−(n−2)p

ψp
)
≥

≥ 1
|x|n−(n−2)p

(ψpλ − ψp) =
1

|x|n−(n−2)p

(
pξp−1Ψλ

)
where ξ lies between ψλ and ψ. Then

−∂Φλ
∂x1

|x1=0≥ − β

|z|2
Φλ + Ψλ

1
|x|n−(n−2)p

pξp−1. (3.6)

Analogously

−∂Ψλ

∂x1
|x1=0≥ − β

|z|2
Ψλ + Φλ

1
|x|n−(n−2)q

qζq−1 (3.7)

where ζ lies between ϕλ and ϕ.
Now suppose that the statement of the lemma is false, that is,

inf
x∈Σ̃λ

Φλ = −δ < 0.

We have

|Φλ(x)| = |z|β |ϕλ(x)− ϕ(x)| ≤ |z|β (|ϕλ(x)|+ |ϕ(x)|) ≤

≤
(
Cµ−α1

|xλ|n−2
+
Cµ−α1

|x|n−2

)
|z|β ≤ Cµ−α1

|x|n−2
2

, if |x| is big enough.

Analogously

|Ψλ(x)| ≤
Cµ−α2

|x|n−2
2

.

Now, near the point (0, ..., 0, 2λ) (more precisely, for |x− (0, ..., 0, 2λ)| ≤ 1),
we have

Φλ(x) ≥ |z|β (ε− ϕ(x)) ≥ |z|β
(
ε− Cµ−α1

|x|n−2

)
≥

≥ |z|β
(
ε− Cµ−α1

|λ|n−2

)
> 0, if −λ is big enough.

In a similar way we obtain, for |x− (0, ..., 0, 2λ)| ≤ 1, Ψλ(x) > 0. Then the
infimum must be located in x0 ∈ Σλ\B1(0, ..., 0, 2λ).

By the maximum principle, x0 6∈ int(Σ̃λ) and x0 6∈ Tλ because Φλ ≡ 0 in
Tλ, then x0 must be in {(x1, ..., xn)/x1 = 0}.

If Ψλ(x0) ≥ 0 we are done because by (3.6) the normal derivative of Φλ must
be positive at x0 a fact that contradicts Hopf’s Lemma.
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If not, ψλ(x0) < ψ(x0) and then inf Ψλ(x) = Ψλ(x1) < 0, and by an analo-
gous argument, ϕλ(x1) < ϕ(x1).

Then we have, by (3.5)

ξ(x0) ≤
Cµ−α2

|x0|n−2
, ζ(x1) ≤

Cµ−α1

|x1|n−2
. (3.8)

By Hopf’s Lemma, we can suppose that the normal derivative of Φλ is neg-
ative at x0, that is, using (3.8)

0 > −∂Φλ
∂x1

|x=x0≥ − β

|z|2
Φλ(x0) + Ψλ(x0)

1
|x0|n−(n−2)p

pξp−1 ≥

≥ − β

1 + |x0|2
Φλ(x0) + Ψλ(x0)

1
|x0|2

pCµ−α2(p−1).

Then, we have

β

1 + |x0|2
δ < − p

|x0|2
Cµ−α2(p−1)Ψλ(x0).

Replacing in (3.7) we get

−∂Ψλ

∂x1
|x=x1≥ − β

1 + |x1|2
Ψλ(x0)−

q

|x1|2
Cµ−α1(q−1)δ ≥

≥ β2

1 + |x1|2
δ

|x0|2

1 + |x0|2
1

pCµ−α2(p−1)
− q

|x1|2
δCµ−α1(q−1) ≥ (3.9)

≥
[

β2

pCµ−α2(p−1)
− qCµ−α1(q−1)

]
δ

|x1|2
.

We observe that, as pq > 1, if we choose µ small enough, we get that the
last term is positive which is a contradiction, and the Lemma is proved. 2

Let us now start to move the plane.

Lemma 3.2 If λ0 = sup{λ < 0 : Φγ ,Ψγ ≥ 0 in Σ̃γ ∀ γ < λ} then

λ0 = 0.

Proof: Suppose that λ0 < 0. By continuity, we have

Φλ0 ,Ψλ0 ≥ 0 in Σ̃λ0 .

In the boundary {x1 = 0} ∩ Σλ0 , by (3.6) and (3.7) this functions verify

∂Φλ0

∂η
=

ψpλ
|xλ|n−(n−2)p

− ψp

|x|n−(n−2)p
≥ p

|x|n−p(n−2)
ξp−1Ψλ0 ≥ 0, (3.10)
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∂Ψλ0

∂η
=

ϕqλ
|xλ|n−(n−2)q

− ϕq

|x|n−(n−2)q
≥ q

|x|n−q(n−2)
ζq−1Φλ0 ≥ 0.

Now, by (3.10) (as n−p(n−2) ≥ 0, n−q(n−2) > 0 and λ0 < 0), Φλ0 ,Ψλ0 6≡ 0
in Σ̃λ0 , then, by the maximum principle, we have

Φλ0 ,Ψλ0 > 0 in Σλ0 − {Tλ0 ∪ {(0, ..., 0, 2λ0)}}. (3.11)

Now, let us define the following numbers, which by (3.11) are positive

δ1 = inf{Φλ0 : x1 > 0, |x− (0, ..., 0, 2λ0)| =
|λ0|
2
},

δ2 = inf{Ψλ0 : x1 > 0, |x− (0, ..., 0, 2λ0)| =
|λ0|
2
},

δ = min{δ1, δ2}.

The point (0, ..., 0, 2λ0) might be a singularity point for Φλ0 and Ψλ0 , to
control this fact, we define hε to be the solution of the following problem:

∆hε = 0 in ε < |x− (0, ..., 0, 2λ0)| < 1
2 |λ0|, x1 > 0,

hε = δ on |x− (0, ..., 0, 2λ0)| = 1
2 |λ0|, x1 ≥ 0,

hε = 0 on |x− (0, ..., 0, 2λ0)| = ε, x1 ≥ 0,
∂hε

∂η = 0 on ε < |x− (0, ..., 0, 2λ0)| < 1
2 |λ0|, x1 = 0.

By the maximum principle, we have

Φλ0 ,Ψλ0 ≥ hε in ε ≤ |x− (0, ..., 0, 2λ0)| ≤ 1
2 |λ0|, |x1| ≥ 0.

Now, let ε→ 0, and as limε→0+ hε(x) ≡ δ, we obtain

Φλ0 ,Ψλ0 ≥ δ in 0 < |x− (0, ..., 0, 2λ0)| ≤ 1
2 |λ0|, |x1| ≥ 0.

As, in Σ̃λ0 Φλ0 ≥ Φλ0 , Ψλ0 ≥ Ψλ0 , we obtain

lim
λ↘λ0

inf
|x−(0,...,0,2λ0)|≤|λ0|/2

x1≥0

Φλ ≥ inf
|x−(0,...,0,2λ0)|≤|λ0|/2

x1≥0

Φλ0 ≥ δ

and an analogous inequality holds for Ψλ.
By the definition of λ0, there exists a sequence (λk), λk ↘ λ0 such that

inf
x∈Σ̃λk

Φλk
(x) < 0 or inf

x∈Σ̃λk

Ψλk
(x) < 0.

Let us suppose that
inf

x∈Σ̃λk

Φλk
(x) < 0. (3.12)
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Clearly, lim|x|→∞ Φλk
(x) = 0, then the infimum (3.12) must be located in

some point xk ∈ Σλk
−B |λ0|

2
(0, ..., 0, 2λ0) if |λk − λ0| is small enough.

Now, xk cannot be an interior point by the equation that satisfies Φλk
, and

as Φλk
≡ 0 in Tλk

, thus xk must be located on the lateral wall

{x/x1 = 0, xn < λk, |x− (0, ..., 0, 2λ0)| ≥
|λ0|
2
}.

Then the tangential derivative ∂Φλk

∂xn
(xk) = 0. Now, as Φλk

, Ψλk
verify (3.6)

and (3.7), the infimum of Ψλk
must also be less than 0, and by analogous

considerations must be located in the lateral wall too.
By the boundary conditions (3.6), (3.7) and by (3.9) we have that Φλk

cannot
take a negative minimum at a point on the boundary {x1 = 0}∩{|x| > 1}, then
we must have |xk| ≤ 1. Therefore we can assume (via a subsequence) that
limk→∞ xk = x0.

Then we have

Φλ0(x0) = 0,
∂Φλ0

∂xn
= 0, x0 ∈ Tλ0 ∩ {x1 = 0} (3.13)

and, as a consequence of (3.13), we get

∂Φλ0

∂xn
(x0) = 0. (3.14)

Let g be the solution of the following elliptic problem


∆g = 0 in {3/2λ0 < xn < λ0, x

2
1 + · · ·+ x2

n−1 < 1},
g(x) = 0 on {xn = λ0} ∩ {x2

1 + · · ·+ x2
n−1 ≤ 1},

g(x) = 0 on {x2
1 + · · ·+ x2

n−1 = 1} ∩ {3/2λ0 ≤ xn ≤ λ0},
g(x) = η on {xn = 3/2λ0} ∩ {x2

1 + · · ·+ x2
n−1 ≤ 1},

where η = inf{Φλ0(x) : xn = 3/2λ0, x
2
1 + · · ·+x2

n−1 ≤ 1} > 0. By construction,
we have

Φλ0 ≥ g.

Now, as g is symmetric respect to {x1 = 0}, we have

∂g
∂η (x) = − ∂g

∂x1
(x) = 0 on {x1 = 0}

and as Φλ0(x0) = g(x0) = 0,

∂Φλ0

∂xn
(x0) ≤

∂g

∂xn
(x0).

But, by Hopf’s Lemma, ∂g
∂xn

(x0) must be negative which is a contradiction
to (3.14) and proves our claim. 2
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End of the proof of Theorem 1.2: ¿From the last Lemma we have that

ϕ(x1, ...,−xn) ≥ ϕ(x1, ..., xn), xn < 0.

As the same is valid for xn > 0 we obtain that ϕ is symmetric with respect
to the xn axis.

The same argument shows that ϕ is symmetric with respect to every direc-
tion perpendicular to x1, and hence

ϕ(x) = q(x1, |(x2, ..., xn)|).

We conclude that u and v depends also of x1 and |(x2, ..., xn)|. As the origin
is arbitrary we obtain that u and v are functions of x1 only and we can easily
see that this is not possible unless u ≡ v ≡ 0.2

Proof of Theorem 1.3: As before, if u ≡ 0, then v ≡ 0, then we can suppose
that u and v are not identically zero. By the maximum principle, we have

c = inf
|x|=2R; x1≥0

v(x) > 0

and by hypothesis ‖u‖L∞ ≤ L.
We now construct the auxiliary function

ψ(x) = c
(2R)ε

|x|ε
.

A direct calculation shows that
−∆ψ < 0 for x 6= 0 since n = 2 and ε > 0,

∂ψ
∂η = 0 ≤ ∂v

∂η on {x1 = 0},

ψ(x) = c ≤ v(x) on {x1 = 2R} ∩ {x1 ≥ 0},

lim
M→∞

inf
|x|>M

(v(x)− ψ(x)) ≥ 0.

It follows from the maximum principle that

v(x) ≥ ψ(x), for |x| ≥ 2R, x1 ≥ 0.

Now, letting ε→ 0+, we obtain

v(x) ≥ c, for |x| ≥ 2R, x1 ≥ 0.

Next, let K > 2R be a large positive number and take a smooth cut-off
function ζ(x) such that
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ζ(x) ≡ 0 on {|x| ≤ K} ∪ {|x| ≥ 4K},
ζ(x) ≡ 1 on {2K ≤ |x| ≤ 3K},
0 ≤ ζ(x) ≤ 1, |∇ζ(x)| ≤ C

K .

Multiplying the equation ∆u = 0 by u−1ζ2 and integrating by parts, we
obtain

∫
{x1=0}

ζ2

u
vpdS +

∫ ∫
{x1>0}

ζ2 |∇u|2

u2
dx =

∫ ∫
{x1>0}

2ζ∇ζ∇u
u
dx ≤

≤
∫ ∫

{x1>0}
|∇ζ|2dx+

∫ ∫
{x1>0}

ζ2 |∇u|2

u2
dx.

It follows that ∫
{x1=0}

ζ2

u
vpdS ≤

∫ ∫
{x1>0}

|∇ζ|2dx,

which implies that

cp

L
K ≤

∫ 3K

2K

vp

u
(0, x2)dx2 ≤

C2

K2
|B4K(0)| ≤ C

K2
K2 ≤ C.

This is a contradiction if K is large enough. 2

A Appendix

In this Appendix we prove the uniform bounds needed in the proof of Theorem
1.1. The main difficulty comes from the fact that q can be less than one, so one
of the nonlinearities needs not be Lipschitz.

Let Ω be a bounded domain with boundary ∂Ω ∈ C2+α, Ωλ = {y ∈ IRn :
λRy + x∗ ∈ Ω} and ϕλ, ψλ the solutions of{

∂ϕλ

∂s = ∆ϕλ in Ωλ × [− T
2λ2 , 0],

∂ψλ

∂s = ∆ψλ in Ωλ × [− T
2λ2 , 0],

(A.1)

with the following boundary conditions{
∂ϕλ

∂η = Kλψ
p
λ in ∂Ωλ × [− T

2λ2 , 0],
∂ψλ

∂η = ϕqλ in ∂Ωλ × [− T
2λ2 , 0].

(A.2)

These functions ϕλ and ψλ also verify

0 ≤ ϕλ(y, s);ψλ(y, s) ≤ 1,
∂ϕλ
∂s

(y, s);
∂ψλ
∂s

(y, s) ≥ 0, (A.3)
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ϕλ(0, 0) = 1. (A.4)

Let DK = Ωλ∩{|y| < K}× (−K2, 0). For each point (y, s) ∈ IRn+× (−∞, 0],
there exists a cylinder D2R(y, s) ⊂ IRn+ × (−∞, 0]. Therefore, following the
argument of [3] we obtain a countable number of cylinders{D2Ri}i∈N such that
D2Ri ⊂ IRn+ × (−∞, 0] and {DRi}i∈N covers IRn+ × (−∞, 0] where DRi is the
cylinder with its top having the same center as the top of the cylinder D2Ri

,
but with half the radius.

Since Ωλ approaches IRn+ as λ → 0+ (see [3]), the families {ϕλ} and {ψλ}
will be defined on each cylinder if λ is small enough. Therefore, by (A.1), (A.3)
and the Schauder interior estimates, we obtain that

‖ϕλ‖C2+α,1+α/2(DRi
) ≤ C‖ϕλ‖L∞(D2Ri

) ≤ C,

‖ψλ‖C2+α,1+α/2(DRi) ≤ C‖ψλ‖L∞(D2Ri
) ≤ C,

for each i (see [7]), where the constant C is independent of λ.
Since the sets {ϕλ}, {ψλ} forms bounded sets in C2+α,1+α/2(DRi

), we obtain
that {ϕλ}, {ψλ} are precompact in C2+β,1+β/2(DRi

) for 0 < β < α (see [12]).
Therefore, by the diagonal method, we form a sequence λj → 0+ such that

ϕλj
→ ϕ and ψλj

→ ψ (A.5)

in C2+β,1+β/2(DRi
) for each i.

Now, let us obtain some boundary estimates for ϕλ and ψλ. Let C > 0 such
that Kλ ≤ C ∀λ, then we have

‖∂ϕλ
∂η

‖L∞(∂D2K∩∂Ωλ) ≤ C, ‖∂ψλ
∂η

‖L∞(∂D2K∩∂Ωλ) ≤ 1

therefore, from [15], we obtain

‖ϕλ‖Cα,α/2(DK); ‖ψλ‖Cα,α/2(DK) ≤ CK .

Also, if B = ∂D2K ∩ ∂Ωλ

‖∂ψλ
∂η

‖Cγ,γ/2(B) = ‖Kλϕ
q
λ‖Cγ,γ/2(B) ≤ C‖ϕqλ‖Cγ,γ/2(B) ≤

≤ C
(
‖ϕqλ‖L∞(B) + [ϕqλ]Cγ,γ/2(B)

)
≤

≤ C

(
1 + sup

(yi,s)∈B;y1 6=y2

|ϕqλ(y1, s)− ϕqλ(y2, s)|
|y1 − y2|γ

+

+ sup
(y,si)∈B;s1 6=s2

|ϕqλ(y, s1)− ϕqλ(y, s2)|
|s1 − s2|γ/2

)
.
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If q ≥ 1, from the mean value theorem, we get

|ϕqλ(y1, s)− ϕqλ(y2, s)|
|y1 − y2|γ

= q|ξ|q−1 |ϕλ(y1, s)− ϕλ(y2, s)|
|y1 − y2|γ

where ξ is an intermediate value between ϕλ(y1, s) and ϕλ(y2, s), then we obtain

|ϕqλ(y1, s)− ϕqλ(y2, s)|
|y1 − y2|γ

≤ q
|ϕλ(y1, s)− ϕλ(y2, s)|

|y1 − y2|γ
.

In a similar way, we obtain

|ϕqλ(y, s1)− ϕqλ(y, s2)|
|s1 − s2|γ/2

≤ q
|ϕλ(y, s1)− ϕλ(y, s2)|

|s1 − s2|γ/2
.

Now, if 0 < q < 1,

|ϕqλ(y1, s)− ϕqλ(y2, s)|
|y1 − y2|γ

=
|ϕqλ(y1, s)− ϕqλ(y2, s)|
|ϕλ(y1, s)− ϕλ(y2, s)|q

(
|ϕλ(y1, s)− ϕλ(y2, s)|

|y1 − y2|γ/q

)q
≤

≤ sup
x,y∈(0,1)

|xq − yq|
|x− y|q

(
|ϕλ(y1, s)− ϕλ(y2, s)|

|y1 − y2|γ/q

)q
≤

≤ C

(
|ϕλ(y1, s)− ϕλ(y2, s)|

|y1 − y2|γ/q

)q
.

Then if we set γ ≤ min{αq;α}, ‖∂ψλ

∂η ‖Cγ,γ/2(B) ≤ CK . Analogously, we get
‖∂ϕλ

∂η ‖Cγ,γ/2(B) ≤ CK , with γ ≤ min{α;αq} (observe that p ≥ q). This implies
(see [17]) that ‖ϕλ‖C1+γ,1/2+γ/2(DK/2)

, ‖ψλ‖C1+γ,1/2+γ/2(DK/2)
≤ CK , where the

constant CK is independent of λ.
Then, by the same argument as before, we can assume that the limit func-

tions ϕ,ψ ∈ C1+β,1/2+β/2(IRn+ × (−∞, 0]) ∩ C2+β,1+β/2(IRn+ × (−∞, 0]) for
0 < β < γ. Also, we can assume that Kλj → K0.

By this estimates, we obtain that ϕ, ψ verify{
∂ϕ
∂s = ∆ϕ in IRn+ × (−∞, 0]
∂ψ
∂s = ∆ψ in IRn+ × (−∞, 0]

(A.6)

{
∂ϕ
∂η = K0ψ

p in {y1 = 0} × (−∞, 0]
∂ψ
∂η = ϕq in {y1 = 0} × (−∞, 0]

(A.7)

ϕ(0, 0) = 1, 0 ≤ ϕ,ψ ≤ 1 (A.8)

So by the regularity theory of parabolic PDEs [15], we find that ψ,ϕ ∈ C∞
for the y and s directions up to the boundary {y1 = 0}.
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By (A.3), (A.5) and the fact that the functions ϕs(y, s), ψs(y, s) are contin-
uous up to the boundary {y1 = 0}, we get that

ϕs(y, s), ψs(y, s) ≥ 0 for 0 ≤ y1 <∞, −∞ < s ≤ 0.

Now, by (A.8) and Hopf’s lemma we obtain that for a fixed K > 0 there
exists δK > 0 such that ϕ,ψ ≥ δK > 0 on HK ≡ ∂IRn+ ∩ {|y| ≤ K} × [−K2, 0].

Therefore, by the use of this lower bound for ϕ,ψ and the fact that ϕλj →
ϕ; ψλj

→ ψ uniformly on HK , we have that there exists εK > 0 such that for
sufficiently large j, ϕλj

, ψλj
≥ εK > 0 on HK .

We can use this fact to obtain more regularity on the boundary. We have
that [

∂ϕλj

∂η

]
C1+γ,1/2+γ/2(HK)

=
[
ψpλj

]
C1+γ,1/2+γ/2(HK)

=

= sup
|a|=1

[
Da
y(ψ

p
λj

)
]
Cγ

y (HK)
+
[
ψpλj

]
C

1/2+γ/2
s (HK)

=

= sup
|a|=1

[
pψp−1

λj
Da
y(ψλj )

]
Cγ

y (HK)
+ CK ≤

≤ sup
|a|=1

sup
(yi,s)∈HK ; y1 6=y2

|pψp−1
λj

Da
y(ψλj

)(y1, s)− pψp−1
λj

Da
y(ψλj

)(y2, s)|
|y1 − y2|γ

+ CK ≤

≤ sup
|a|=1

sup
(yi,s)∈HK ; y1 6=y2

|pψp−1
λj

(y1, s)|
|Da

y(ψλj
(y1, s))−Da

y(ψλj
(y2, s))|

|y1 − y2|γ
+

+ sup
|a|=1

sup
(yi,s)∈HK ; y1 6=y2

|Da
y(ψλj

(y2, s))|
|pψp−1

λj
(y1, s)− pψp−1

λj
(y2, s)|

|y1 − y2|γ
+ CK .

Now, by our previous estimates, the first term is bounded by a constant CK ,
and because of the lower bound for ϕλj

, ψλj
and the mean value theorem, the

second term is bounded by another constant. Therefore,

‖
∂ϕλj

∂η
‖C1+γ,1/2+γ/2(HK) ≤ CK

and in a similar way

‖
∂ψλj

∂η
‖C1+γ,1/2+γ/2(HK) ≤ CK .

This implies that

‖ϕλj
‖C2+γ,1+γ/2(HK/2)

; ‖ϕλj
‖C2+γ,1+γ/2(HK/2)

≤ CK ,

where the constant CK is independent of λ (see [12]).
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So again, by compactness and if necessary by further refinment of the se-
quence, we obtain that

‖ϕλj
− ϕ‖C2+β,1+β/2(HK/2)

→ 0,

‖ψλj − ψ‖C2+β,1+β/2(HK/2)
→ 0,

for 0 < β < γ.2
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[17] G. M. Liberman, Hölder continuity of the gradient of solutions of uni-
formly parabolic equations with conormal boundary conditions, Ann. di
Math. Pura ed Appl. 148 (1987), 77-99.

[18] C. V. Pao. Nonlinear parabolic and elliptic equations. Plenum Press 1992.

[19] J. D. Rossi, The blow-up rate for a system of heat equations with non-
trivial coupling at the boundary, Math. Meth. Appl. Sci., Vol 20 (1997),
1-11.

[20] J. D. Rossi and N. Wolanski, Global existence and nonexistence for a
parabolic system with nonlinear boundary conditions, Diff. Int. Eq. Vol 11
(1) (1998), 179-190.

[21] M. Wang and S. Wang, Quasilinear reaction-diffusion systems with non-
linear boundary conditions, J. Math. Anal. Appl. Vol. 231 (1999), 21-33.

[22] M. Wang, S. Wang and C. Xie, The blow-up rate for reaction-diffusion
systems with nonlinear boundary conditions. Preprint (1997).

21


