Asymptotic Behaviour for a Parabolic System with Nonlinear Boundary Conditions

Julián Fernández Bonder* and Julio D. Rossi*
Departamento de Matemática, F.C.E y N., UBA
(1428) Buenos Aires, Argentina.

Abstract

In this paper we obtain the blow-up rate for positive solutions of a system of two heat equations, $u_{t}=\Delta u, v_{t}=\Delta v$, in a bounded smooth domain Ω, with boundary conditions $\frac{\partial u}{\partial \eta}=v^{p}, \frac{\partial v}{\partial \eta}=u^{q}$. Under some assumptions on the initial data u_{0}, v_{0} and p, q subcritical, we find that the behaviour of u and v is given by $\|u(\cdot, t)\|_{\infty} \sim(T-t)^{-\frac{p+1}{2(p q-1)}}$ and $\|v(\cdot, t)\|_{\infty} \sim(T-t)^{-\frac{q+1}{2(p q-1)}}$. As a corollary of the blow-up rate we obtain the localization of the blow-up set at the boundary of the domain. The main tool in the proof, is a nonexistence theorem for an elliptic system; we prove that the only nonnegative classical solution of the system $\Delta u=$ $0, \Delta v=0$ in \mathbb{R}_{+}^{n}, with boundary conditions $\frac{\partial u}{\partial \eta}=v^{p}, \frac{\partial v}{\partial \eta}=u^{q}$ on $\partial \mathbb{R}_{+}^{n}$ is the trivial solution $u \equiv 0, v \equiv 0$, when $p \leq \frac{n}{n-2}, q<\frac{n}{n-2}$ and $p q>1$.

1 Introduction.

In this paper we obtain the blow-up rate for positive solutions of the following parabolic system

$$
\begin{align*}
& \begin{cases}u_{t}=\Delta u & \text { in } \Omega \times(0, T), \\
v_{t}=\Delta v & \text { in } \Omega \times(0, T),\end{cases} \tag{1.1}\\
& \begin{cases}\frac{\partial u}{\partial \eta}=v^{p} & \text { on } \partial \Omega \times(0, T), \\
\frac{\partial v}{\partial \eta}=u^{q} & \text { on } \partial \Omega \times(0, T),\end{cases} \tag{1.2}\\
& \begin{cases}u(x, 0)=u_{0}(x) & \text { in } \Omega \\
v(x, 0)=v_{0}(x) & \text { in } \Omega\end{cases} \tag{1.3}
\end{align*}
$$

Parabolic reaction-diffusion problems or systems like (1.1)-(1.2) or of a more general form, allowing for example source terms or with different boundary

[^0]conditions, appear in several branches of applied mathematics. They have been used to model, for example, chemical reactions, heat transfer or population dynamics and have been studied by several authors. See [18] and the references therein.

The question of whether the solution develops sigularities in finite time has deserve a great deal of interest. In particular, for (1.1)- (1.3) it is well known (see [5], [20] and [21]) that if $p q>1$ the solution (u, v) blows up in finite time, i.e. there exists a finite time T such that

$$
\lim _{t \nearrow T}\|u(\cdot, t)\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)\|_{L^{\infty}(\Omega)}=+\infty
$$

We observe that both functions, u and v, go to infinity simultaneously at time T. In [1] the blow-up problem is considered for more general nonlinearities, in the equation and in the boundary conditions, in a general smooth domain Ω.

The question of how this blow-up phenomenum happens is therefore a natural one and a lot of work has been done in that direction. In the case of a single equation (i.e. $p=q$ and $u_{0}=v_{0}$ wich imply $u=v$) we cite the work of [13] where they prove that the blow-up rate in that case was

$$
\|u(\cdot, t)\|_{L^{\infty}(\Omega)} \sim(T-t)^{-\frac{1}{2(p-1)}} .
$$

For the blow-up rate of the system (1.1)-(1.3), we refer to [5], [19] and [22] where the authors consider only the radial case.

Here we obtain the blow-up rate problem for (1.1)-(1.3) in a general bounded smooth domain, under suitable assumptions on the exponents p, q and on the initial datum $\left(u_{0}, v_{0}\right)$. More precisely, throughout this paper we assume that $q \leq p$ (for symmetry reasons, this is not a restriction). Also we assume that, if $n \geq 3, p q>1, p \leq \frac{n}{n-2}, q<\frac{n}{n-2}$ and, if $n=2, p q>1$. On the initial data we suppose that are positive, verify a compatibility condition and $\Delta u_{0}, \Delta v_{0} \geq \alpha>$ 0 in order to guarantee $u_{t}, v_{t} \geq 0$.

The main result of the paper is:
Theorem 1.1 Under the above assumptions on p, q, u_{0} and v_{0}, there exists positive constants C, c such that

$$
\begin{aligned}
& c \leq \max _{\bar{\Omega}} u(\cdot, t)(T-t)^{\frac{p+1}{2(p q-1)}} \leq C \quad(t \nearrow T), \\
& c \leq \max _{\bar{\Omega}} v(\cdot, t)(T-t)^{\frac{q+1}{2(p q-1)}} \leq C \quad(t \nearrow T) .
\end{aligned}
$$

As a Corollary we obtain the localization of the blow-up set at the boundary of Ω.

Corollary 1.1 Let p, q, u_{0} and v_{0} be as in Theorem 1.1. Then if $\Omega^{\prime} \subset \subset \Omega$ there exists a constant $C=C\left(\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$ such that

$$
\|u(\cdot, t)\|_{L^{\infty}\left(\Omega^{\prime}\right)}+\|v(\cdot, t)\|_{L^{\infty}\left(\Omega^{\prime}\right)}<C \quad(t \in[0, T))
$$

(i.e. the blow-up set is localized at $\partial \Omega$).

The proof is based on a "blow-up" type argument introduced by GidasSpruck [11] and that was adapted for the parabolic case by [13]. Here, we use these ideas to deal with our system.

After this "blow-up" technique is used, the proof relays on the following Liouville-type theorems for an elliptic system in the half space with nonlinear bounday conditions:

Theorem 1.2 Suppose $n \geq 3$, and $p \leq \frac{n}{n-2}, q<\frac{n}{n-2}$ with $p q>1$. Let (u, v) be a classical nonnegative solution of the following problem:

$$
\left\{\begin{align*}
\Delta u=0 & \text { in } \mathbb{R}_{+}^{n} \tag{1.4}\\
\Delta v=0 & \text { in } \mathbb{R}_{+}^{n}
\end{align*}\right.
$$

with boundary conditions

$$
\begin{cases}\frac{\partial u}{\partial \eta}=v^{p} & \text { on } \partial \mathbb{R}_{+}^{n} \tag{1.5}\\ \frac{\partial v}{\partial \eta}=u^{q} & \text { on } \partial \mathbb{R}_{+}^{n}\end{cases}
$$

then $u \equiv 0, v \equiv 0$.
Theorem 1.3 Let $n=2$, and $p, q>0$. Let (u, v) be a classical nonnegative solution of (1.4), (1.5) with u bounded, then $u \equiv 0, v \equiv 0$.

These theorems are of independent interest. In fact it have been used by the authors to prove an existence result for an elliptic system with a nonlinear boundary condition in a bounded domain [6].

The proof of Theorem 1.2 is based on the Moving Plane Method, introduced by Alexandroff and then used by several authors to study the symmetry properties of many elliptic equations ([10], [4], [16], etc). In [14] the Moving Plane Method is used to study the single equation

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}_{+}^{n}, \\ \frac{\partial u}{\partial n}=u^{p} & \text { on } \partial \mathbb{R}_{+}^{n} .\end{cases}
$$

It is proved there that the only classical solution is $u \equiv 0$ when p is subcritical ($p<\frac{n}{n-2}$) and greater than one.

The paper is organized as follows, in $\S 2$, we prove Theorem 1.1, in $\S 3$ the nonexistence results (Theorems 1.2 and 1.3) and we leave for the Appendix some uniform Schauder estimates needed in the proof of Theorem 1.1.

2 Blow-up rate for the system

To prove Theorem 1.1 we need a result that gives the asymptotic behavior for solutions of

$$
\begin{cases}w_{t}=\Delta w & \text { in } \Omega \times[0, T), \tag{2.1}\\ \frac{\partial w}{\partial \eta}(\geq) \leq \frac{k}{(T-t)^{s}} & \text { on } \partial \Omega \times[0, T), \\ w(x, 0)=w_{0}(x)>0 & \text { on } \Omega,\end{cases}
$$

where $s>1 / 2$. We state this result as follows.
Lemma 2.1 Let w be a positive solution of (2.1) that blows-up at time T, then

$$
(c \leq)\|w(\cdot, t)\|_{\infty}(T-t)^{s-1 / 2} \leq C \quad(t \nearrow T)
$$

Proof: It is enough to prove the Lemma for w such that $w_{t} \geq 0$, because, given w_{0} we can choose an initial datum \widetilde{w}_{0} such that $\Delta \widetilde{w}_{0}>\delta>0$ (this guarantees $\widetilde{w}_{t} \geq 0$) below or above w_{0}, then we obtain the result by a comparison argument.

Let $\Gamma(x, t)$ be the fundamental solution of the heat equation, namely

$$
\Gamma(x, t)=\frac{1}{(4 \pi t)^{n / 2}} \exp \left(-\frac{|x|^{2}}{4 t}\right)
$$

Now for $x \in \partial \Omega$, using Green's identity and the jump relation (see [7]) we have

$$
\begin{equation*}
\frac{1}{2} w(x, t)=\int_{\Omega} \Gamma(x-y, t-z) w(y, z) d y+\int_{z}^{t} \int_{\partial \Omega} \frac{\partial w}{\partial \eta}(y, \tau) \Gamma(x-y, t-\tau) d S_{y} d \tau- \tag{r}
\end{equation*}
$$

$$
\begin{equation*}
-\int_{z}^{t} \int_{\partial \Omega} \frac{\partial \Gamma}{\partial \eta}(x-y, t-\tau) w(y, \tau) d S_{y} d \tau \tag{2.2}
\end{equation*}
$$

Now we set $W(t)=\sup _{\Omega} w(\cdot, t)$. Since Ω is smooth, for instance $\partial \Omega \in C^{1+\alpha}, \Gamma$ satisfies (see [7])

$$
\left|\frac{\partial \Gamma}{\partial \eta}(x-y, t-\tau)\right| \leq \frac{C}{(t-\tau)^{\mu}|x-y|^{n+1-2 \mu-\alpha}}
$$

if $\frac{\partial w}{\partial \eta} \leq \frac{k}{(T-t)^{s}}$ by (2.2) we obtain, for $1-\alpha / 2<\mu<1$

$$
\frac{1}{2} W(t) \leq W(z)+C \int_{z}^{t} \frac{k}{(T-\tau)^{s}(t-\tau)^{1 / 2}} d \tau+C W(t)(T-z)^{1-\mu}
$$

We choose z such that $C(T-z)^{1-\mu}<1 / 4$ then multiplying by $(T-t)^{s-1 / 2}$ we get

$$
\frac{(T-t)^{s-1 / 2}}{4} W(t) \leq(T-t)^{s-1 / 2} W(z)+C(T-t)^{s-1 / 2} \int_{z}^{t} \frac{k}{(T-\tau)^{s}(t-\tau)^{1 / 2}} d \tau
$$

One can check that the right hand side of the last inequality is bounded uniformly in t as we wanted to prove.

For the other inequality, if $\frac{\partial w}{\partial \eta} \geq \frac{k}{(T-t)^{s}}$,

$$
\frac{1}{2} W(t) \geq \int_{z}^{t} \int_{\partial \Omega} \frac{k}{(T-t)^{s}} \Gamma(x-y, t-\tau) d S_{y} d \tau-C W(t)(T-z)^{1-\mu}
$$

As before, we choose z such that $C(T-z)^{1-\mu}<1 / 2$ then

$$
\begin{gathered}
W(t) \geq \int_{z}^{t} \frac{k}{(T-t)^{s}}\left(\int_{\partial \Omega} \Gamma(x-y, t-\tau) d S_{y}\right) d \tau \geq \\
\geq c \int_{z}^{t} \frac{k}{(T-t)^{s}} \frac{1}{(t-\tau)^{1 / 2}} d \tau .
\end{gathered}
$$

As before, one can check that the right hand side multiplied by $(T-t)^{s-1 / 2}$, is bounded by below uniformly in t. This completes the proof.

Now we state two results.
Lemma 2.2 Let z be a positive solution of

$$
\begin{cases}z_{t}=\Delta z & \text { in } \Omega \times[0, T), \tag{2.3}\\ \frac{\partial z}{\partial \eta} \leq z^{\kappa} & \text { on } \partial \Omega \times[0, T), \\ z(x, 0)=z_{0}(x) & \text { in } \Omega\end{cases}
$$

with $\kappa>1$ and blow-up time T. Then there exists $c>0$ such that

$$
c \leq \max _{\Omega} z(\cdot, t)(T-t)^{\frac{1}{2(\kappa-1)}} .
$$

The proof can be found in [13].
The second result is a comparison between the pair of functions u and v^{γ} (with $\gamma=\frac{p+1}{q+1}$), where (u, v) is the solution of (1.1)-(1.3). This comparison result allows us to reduce the problem to a single equation and then apply Lemma 2.1. The proof of this Lemma can be found in [19] and [5].

Lemma 2.3 There exists a constant $C>0$ such that

$$
C u \geq v^{\frac{p+1}{q+1}}
$$

where (u, v) is a solution of (1.1)-(1.3).
Now we prove that the converse of Lemma 2.3 is, in some sence, true. In fact, we prove the following result (see [9] for a similar result for a semilinear system).

Lemma 2.4 Let

$$
\begin{equation*}
M(t)=\max _{\bar{\Omega}} u(\cdot, t), \quad N(t)=\max _{\bar{\Omega}} v(\cdot, t) . \tag{2.4}
\end{equation*}
$$

There exists a constant $\delta>0$ such that

$$
\delta \max \left\{M^{q+1}(t), N^{p+1}(t)\right\} \leq \min \left\{M^{q+1}(t), N^{p+1}(t)\right\} .
$$

Proof: We argue by contradiction. Assume that there exists a sequence $t_{n} \rightarrow T$ such that

$$
\max \left\{M^{q+1}\left(t_{n}\right), N^{p+1}\left(t_{n}\right)\right\}=M^{q+1}\left(t_{n}\right), \quad M^{-(q+1)}\left(t_{n}\right) N^{p+1}\left(t_{n}\right) \rightarrow 0
$$

Let $x_{n} \in \partial \Omega$ be a point such that $u\left(x_{n}, t_{n}\right)=M\left(t_{n}\right)$. We define

$$
\begin{aligned}
& \varphi_{n}(y, s)=\frac{1}{M\left(t_{n}\right)} u\left(\lambda_{n} R_{n} y+x_{n}, \lambda_{n}^{2} s+t_{n}\right) \\
& \psi_{n}(y, s)=\frac{1}{\lambda_{n}^{\frac{q+1}{1-p q}}} v\left(\lambda_{n} R_{n} y+x_{n}, \lambda_{n}^{2} s+t_{n}\right)
\end{aligned}
$$

Where R_{n} is an ortogonal transformation that maps the unit normal vector at x_{n} to $-e_{1}$. We choose $\lambda_{n}=M^{\frac{1-p q}{p+1}}\left(t_{n}\right)$. These functions φ_{n}, ψ_{n} satisfy $0 \leq \varphi_{n} \leq 1, \varphi_{n}(0,0)=1,0 \leq \psi_{n} \leq \frac{N\left(t_{n}\right)}{M^{\frac{q+1}{p+1}}\left(t_{n}\right)} \rightarrow 0$ and

$$
\begin{cases}\left(\varphi_{n}\right)_{s}=\Delta \varphi_{n}, & \left(\psi_{n}\right)_{s}=\Delta \psi_{n} \\ \frac{\partial \varphi_{n}}{\partial \eta}=\psi_{n}^{p}, & \frac{\partial \psi_{n}}{\partial \eta}=\varphi_{n}^{q}\end{cases}
$$

in $\Omega_{n} \times I_{n}$ where $\Omega_{n}=\left\{y \mid \lambda_{n} R_{n} y+x_{n} \in \Omega\right\}$ and $I_{n}=\left(-\lambda_{n}^{-2} t_{n}, 0\right]$. We observe that $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence Ω_{n} approaches to the half space $\mathbb{R}_{+}^{N}=\left\{y_{1}>0\right\}$ and $I_{n} \rightarrow(-\infty, 0]$. The Schauder estimates allows us to pass to the limit as $n \rightarrow \infty$ (using a subsequence, if necessary) in the space $C^{2+\mu, 1+\mu / 2}$ (see the appendix for the details) obtaining that $\varphi_{n} \rightarrow \varphi$, and $\psi_{n} \rightarrow \psi \equiv 0$. Hence we have $0=\frac{\partial \psi}{\partial \eta}(0,0)=\varphi^{p}(0,0)=1$, a contradiction.

Now we prove Theorem 1.1.
Proof of Theorem 1.1: We use a scaling argument similar to that of Lemma 2.4. With $M\left(t^{*}\right)$ and $N\left(t^{*}\right)$ given by (2.4) we define

$$
\begin{aligned}
& \varphi_{\lambda}(y, s)=\frac{1}{M\left(t^{*}\right)} u\left(\lambda R y+x^{*}, \lambda^{2} s+t^{*}\right) \\
& \psi_{\lambda}(y, s)=\frac{1}{N\left(t^{*}\right)} v\left(\lambda R y+x^{*}, \lambda^{2} s+t^{*}\right)
\end{aligned}
$$

where $T / 2<t^{*}<T$ and $u\left(x^{*}, t^{*}\right)=\max _{\bar{\Omega}} u\left(\cdot, t^{*}\right)$ and $R=R\left(t^{*}\right)$ is as in Lemma 2.4.

These functions $\varphi_{\lambda}, \psi_{\lambda}$ satisfy $0 \leq \varphi_{\lambda}, \psi_{\lambda} \leq 1, \varphi_{\lambda}(0,0)=1, \frac{\partial \varphi_{\lambda}}{\partial s}, \frac{\partial \psi_{\lambda}}{\partial s} \geq 0$ and

$$
\begin{cases}\left(\varphi_{\lambda}\right)_{s}=\Delta \varphi_{\lambda}, & \left(\psi_{\lambda}\right)_{s}=\Delta \psi_{\lambda}, \\ \frac{\partial \varphi_{\lambda}}{\partial \eta}=\lambda M^{-1} N^{p}\left(\psi_{\lambda}\right)^{p}, & \frac{\partial \psi_{\lambda}}{\partial \eta}=\lambda M^{q} N^{-1}\left(\varphi_{\lambda}\right)^{q}\end{cases}
$$

Now we choose $\lambda=\frac{N}{M^{q}}$ and observe that λ goes to zero as t^{*} goes to T because by Lemma $2.3, \lambda=\frac{N}{M^{q}} \leq c N^{1-q \frac{p+1}{q+1}} \rightarrow 0$.

We define $K_{\lambda}=\lambda M^{-1} N^{p}$ and observe that, by Lemmas 2.3 and 2.4, $0<$ $c \leq K_{\lambda} \leq C<+\infty$ as t^{*} goes to T.

We claim that there exists a constant C such that for every λ small

$$
\frac{\partial \psi_{\lambda}}{\partial s}(0,0) \geq C
$$

To prove this claim, suppose not. Then there exists a sequence $\lambda_{j} \rightarrow 0$ such that

$$
\frac{\partial \psi_{\lambda_{j}}}{\partial s}(0,0) \rightarrow 0
$$

As $\varphi_{\lambda_{j}}$ and $\psi_{\lambda_{j}}$ are uniformly bounded in $C^{2+\gamma, 1+\gamma / 2}$ (see the appendix for the details) we obtain a pair of positive functions φ, ψ such that $\varphi_{\lambda_{j}} \rightarrow \varphi$, $\psi_{\lambda_{j}} \rightarrow \psi, K_{\lambda_{j}} \rightarrow K_{0} \neq 0$ and verify $0 \leq \varphi, \psi \leq 1, \varphi(0,0)=1, \frac{\partial \varphi}{\partial s}, \frac{\partial \psi}{\partial s} \geq 0$ and

$$
\begin{cases}\varphi_{s}=\Delta \varphi, & \psi_{s}=\Delta \psi \\ \frac{\partial \varphi}{\partial \eta}=K_{0} \psi^{p}, & \frac{\partial \psi}{\partial \eta}=\varphi^{q}\end{cases}
$$

in $\mathbb{R}_{+}^{N} \times(-\infty, 0]$. We set $w=\psi_{s}$ and as w satisfies the heat equation, a boundary condition of the type $\frac{\partial w}{\partial \eta} \geq 0$ and $w(0,0)=0$, then by Hopf's lemma we obtain that $w \equiv 0$, that is ψ does not depend on s.

Let $z=\varphi_{s}, z$ is positive and satisfies the heat equation with a boundary condition of the form $\frac{\partial z}{\partial \eta} \geq 0$.

On the other hand we have that $0=\frac{\partial w}{\partial \eta}=q \varphi^{q-1} z$, but φ^{q-1} is not zero at the boundary of the domain $\mathbb{R}_{+}^{N} \times(-\infty, 0]$ (if it is zero at a point in the boundary it has a minimum there and then by Hopf's lemma it has to be zero everywhere, a contradiction), then z is zero on the boundary of $\mathbb{R}_{+}^{N} \times(-\infty, 0]$ and using again Hopf's lemma $z=0$ in all the domain. This proves that φ and ψ are independent of s and by Theorems 1.2 and 1.3 , we obtain a contradiction as $K_{0} \neq 0$.

So we have proved that

$$
\frac{\partial \psi_{\lambda}}{\partial s}(0,0) \geq C
$$

in terms of v, that is $\frac{\lambda^{2} v_{t}}{N} \geq C$. As N is Lipschitz continuous, this implies

$$
N^{1-2 \frac{p+1}{q+1} q} N^{\prime} \geq C
$$

Let $r=1-2 \frac{p+1}{q+1} q<-1$, now we integrate between t and T and obtain

$$
C(T-t) \leq \int_{t}^{T} N^{r}(t) N^{\prime}(t) d t \leq \int_{N(t)}^{+\infty} s^{r} d s=\frac{C}{N(t)^{-1-r}}
$$

Finally

$$
N(t) \leq \frac{C}{(T-t)^{\frac{q+1}{2(p q-1)}}}
$$

Using this bound for v, u verifies the heat equation and $\frac{\partial u}{\partial \eta}=v^{p} \leq \frac{C}{(T-t)^{\frac{p(q+1)}{2(p q-1)}}}$. Then by Lemma 2.1 we obtain

$$
M(t) \leq \frac{C}{(T-t)^{\frac{p+1}{2(p q-1)}}}
$$

Let us prove the reverse inequalities in order to finish the proof of Theorem 1.1. Now we begin by u. Using Lemma 2.3, u satisfies

$$
\left\{\begin{array}{c}
u_{t}=\Delta u, \\
\frac{\partial u}{\partial \eta}=v^{p} \leq C u^{p \gamma}
\end{array}\right.
$$

where $p \gamma=\frac{p(q+1)}{p+1}>1$, then Lemma 2.2 tells us that,

$$
M(t) \geq \frac{c}{(T-t)^{\frac{1}{2(p \gamma-1)}}}=\frac{c}{(T-t)^{\frac{p+1}{2(p q-1)}}} .
$$

By the previous bound, v satisfies the heat equation and $\frac{\partial v}{\partial \eta}=u^{q} \geq \frac{C}{(T-t)^{s}}$, in this case $s=\frac{q(p+1)}{2(p q-1)}>\frac{1}{2}$ and by Lemma 2.1, v satisfies

$$
N(t) \geq \frac{c}{(T-t)^{\frac{q+1}{2(p q-1)}}}
$$

so we have finished the proof of Theorem 1.1
We observe that with this blow-up rate we can localize the blow-up set at the boundary of the domain.
Proof of Corollary 1.1: We just observe that we fall into the hypothesis of Theorem 4.1 of [13].

3 Nonexistence results

Throughout this section, to apply the Moving plane method we use the following notation, for $\lambda \in R$ let

$$
\Sigma_{\lambda}=\left\{\left(x_{1}, \ldots, x_{n}\right) ; x_{1}>0, x_{n}<\lambda\right\}, \quad T_{\lambda}=\left\{\left(x_{1}, \ldots, x_{n}\right) ; x_{1} \geq 0, x_{n}=\lambda\right\}
$$

$$
\widetilde{\Sigma}_{\lambda}=\overline{\Sigma_{\lambda}}-\{(0, \ldots, 0,2 \lambda)\}, \quad B_{\mu}^{+}\left(y_{0}\right)=B_{\mu}\left(y_{0}\right) \cap\left\{x_{1}>0\right\}
$$

Let (u, v) be a positive solution of (1.4)-(1.5) and $\alpha_{1}=-\frac{p+1}{p q-1}, \alpha_{2}=-\frac{q+1}{p q-1}$ (we observe that, as $p q>1, \alpha_{1}$ and α_{2} are negatives). Then define

$$
\bar{u}(x)=\mu^{-\alpha_{1}} u(\mu x), \quad \bar{v}(x)=\mu^{-\alpha_{2}} v(\mu x)
$$

As u, v satisfy (1.4)-(1.5), \bar{u}, \bar{v} verify

$$
\begin{cases}\Delta \bar{u}(x)=0, & \Delta \bar{v}(x)=0, \tag{3.1}\\ \frac{\partial u}{\partial \eta}=\bar{v}^{p}, & \frac{\partial v}{\partial \eta}=\bar{u}^{q} .\end{cases}
$$

By (3.1), if $\bar{u} \equiv 0$, then $\bar{v} \equiv 0$, then we can suppose that $u \not \equiv 0, v \not \equiv 0$. Now we observe that if $\mu<1$

$$
\begin{align*}
& \sup _{x \in B_{1}^{+}(0)} \bar{u}(x) \leq \mu^{-\alpha_{1}} \sup _{x \in B_{\mu}^{+}(0)} u(x) \leq C \mu^{-\alpha_{1}}, \\
& \sup _{x \in B_{1}^{+}(0)} \bar{v}(x) \leq \mu^{-\alpha_{2}} \sup _{x \in B_{\mu}^{+}(0)} v(x) \leq C \mu^{-\alpha_{2}} \tag{3.2}
\end{align*}
$$

Also

$$
\begin{align*}
& \inf _{x \in B_{1}^{+}(0)} \bar{u}(x) \geq \mu^{-\alpha_{1}} \inf _{x \in B_{\mu}^{+}(0)} u(x) \geq c \mu^{-\alpha_{1}} \\
& \inf _{x \in B_{1}^{+}(0)} \bar{v}(x) \geq \mu^{-\alpha_{2}} \inf _{x \in B_{\mu}^{+}(0)} v(x) \geq c \mu^{-\alpha_{2}} \tag{3.3}
\end{align*}
$$

Let $\varepsilon_{1}, \varepsilon_{2}$ be the following numbers which are positive by the maximum principle,

$$
\varepsilon_{1}=\min _{|x|=1, x_{n} \geq 0} \bar{u}(x)>0, \quad \varepsilon_{2}=\min _{|x|=1, x_{n} \geq 0} \bar{v}(x)>0 .
$$

Next we observe that if $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$, then by a comparison argument,

$$
\left\{\begin{array}{l}
\bar{u}(x) \geq \frac{\varepsilon}{|x|^{n-2}} \quad|x| \geq 1 \quad x_{n}>0, \tag{3.4}\\
\bar{v}(x) \geq \frac{\varepsilon}{|x|^{n-2}} .
\end{array}\right.
$$

Now we use the Kelvin's inversion to define

$$
\varphi(x)=\frac{\bar{u}\left(\frac{x}{|x|^{2}}\right)}{|x|^{n-2}}, \quad \psi(x)=\frac{\bar{v}\left(\frac{x}{|x|^{2}}\right)}{|x|^{n-2}}
$$

As \bar{u}, \bar{v} satisfy (3.1), these functions φ, ψ satisfy

$$
\begin{cases}\Delta \varphi(x)=0, & \Delta \psi(x)=0, \\ \frac{\partial \varphi}{\partial \eta}(x)=\frac{\psi^{p}(x)}{|x|^{n-(n-2) p}}, & \frac{\partial \psi}{\partial \eta}(x)=\frac{\varphi^{q}(x)}{|x|^{n-(n-2) q}} .\end{cases}
$$

As a consequence of (3.4), we obtain

$$
\psi(x)=\frac{\bar{v}\left(\frac{x}{|x|^{2}}\right)}{|x|^{n-2}} \geq \varepsilon, \quad \varphi(x)=\frac{\bar{u}\left(\frac{x}{|x|^{2}}\right)}{|x|^{n-2}} \geq \varepsilon, \quad \text { in }|x| \leq 1 \quad x_{n}>0,
$$

Also, by (3.2)

$$
\begin{align*}
& \varphi(x)=\frac{\bar{u}\left(\frac{x}{|x|^{2}}\right)}{|x|^{n-2}} \leq \frac{\sup _{y \in B_{1}^{+}(0)} \bar{u}(y)}{|x|^{n-2}} \leq \frac{C \mu^{-\alpha_{1}}}{|x|^{n-2}} \quad \text { if }|x| \geq 1, \quad x_{n}>0 \tag{3.5}\\
& \psi(x)=\frac{\bar{v}\left(\frac{x}{|x|^{2}}\right)}{|x|^{n-2}} \leq \frac{\sup _{y \in B_{1}^{+}(0)} \bar{v}(y)}{|x|^{n-2}} \leq \frac{C \mu^{-\alpha_{2}}}{|x|^{n-2}} \quad \text { if }|x| \geq 1, \quad x_{n}>0
\end{align*}
$$

In order to prove symmetry properties of φ and ψ, we set

$$
\Phi_{\lambda}(x)=\varphi_{\lambda}(x)-\varphi(x), \quad \Psi_{\lambda}(x)=\psi_{\lambda}(x)-\psi(x)
$$

where for $\lambda<0$ we define

$$
\begin{aligned}
& \varphi_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\varphi\left(x_{1}, \ldots, x_{n-1}, 2 \lambda-x_{n}\right)=\varphi\left(x_{\lambda}\right), \\
& \psi_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\psi\left(x_{1}, \ldots, x_{n-1}, 2 \lambda-x_{n}\right)=\psi\left(x_{\lambda}\right) .
\end{aligned}
$$

Now we can begin the moving plane method.
Lemma 3.1 If $-\lambda$ is big enough, then

$$
\Phi_{\lambda}, \Psi_{\lambda} \geq 0 \quad \text { in } \widetilde{\Sigma}_{\lambda}
$$

Proof: Let us start by defining the following functions:

$$
\bar{\Phi}_{\lambda}(x)=|z|^{\beta} \Phi_{\lambda}(x), \quad \bar{\Psi}_{\lambda}(x)=|z|^{\beta} \Psi_{\lambda}(x)
$$

where $z=x+e_{1}=x+(1,0, \ldots, 0)$. This functions satisfy

$$
\begin{aligned}
& -\Delta \bar{\Phi}_{\lambda}+\frac{2 \beta}{|z|^{2}} z \cdot \nabla \bar{\Phi}_{\lambda}+\frac{\beta(n-2-\beta)}{|z|^{2}} \bar{\Phi}_{\lambda}=0, \\
& -\Delta \bar{\Psi}_{\lambda}+\frac{2 \beta}{|z|^{2}} z \cdot \nabla \bar{\Psi}_{\lambda}+\frac{\beta(n-2-\beta)}{|z|^{2}} \bar{\Psi}_{\lambda}=0 .
\end{aligned}
$$

We choose $\beta=\frac{n-2}{2}$ so that the coefficient of order zero in both equations is nonnegative.

At the boundary, this functions verify

$$
\begin{gathered}
-\left.\frac{\partial \bar{\Phi}_{\lambda}}{\partial x_{1}}\right|_{x_{1}=0}=-\left.\left(\frac{\partial|z|^{\beta}}{\partial x_{1}} \Phi_{\lambda}(x)+|z|^{\beta} \frac{\partial \Phi_{\lambda}}{\partial x_{1}}(x)\right)\right|_{x_{1}=0}= \\
=-\left.\left(\frac{\beta}{|z|^{2}} \bar{\Phi}_{\lambda}+|z|^{\beta} \frac{\partial}{\partial x_{1}}\left(\varphi_{\lambda}(x)-\varphi(x)\right)\right)\right|_{x_{1}=0}= \\
=-\frac{\beta}{|z|^{2}} \bar{\Phi}_{\lambda}+|z|^{\beta}\left(\frac{1}{\left|x_{\lambda}\right|^{n-(n-2) p}} \psi_{\lambda}^{p}-\frac{1}{|x|^{n-(n-2) p}} \psi^{p}\right) .
\end{gathered}
$$

Now, as $\left|x_{\lambda}\right| \leq|x|$ in $\overline{\Sigma_{\lambda}},(\lambda<0)$, by the mean value theorem,

$$
\begin{gathered}
\left(\frac{1}{\left|x_{\lambda}\right|^{n-(n-2) p}} \psi_{\lambda}^{p}-\frac{1}{|x|^{n-(n-2) p}} \psi^{p}\right) \geq \\
\geq \frac{1}{|x|^{n-(n-2) p}}\left(\psi_{\lambda}^{p}-\psi^{p}\right)=\frac{1}{|x|^{n-(n-2) p}}\left(p \xi^{p-1} \Psi_{\lambda}\right)
\end{gathered}
$$

where ξ lies between ψ_{λ} and ψ. Then

$$
\begin{equation*}
-\left.\frac{\partial \bar{\Phi}_{\lambda}}{\partial x_{1}}\right|_{x_{1}=0} \geq-\frac{\beta}{|z|^{2}} \bar{\Phi}_{\lambda}+\bar{\Psi}_{\lambda} \frac{1}{|x|^{n-(n-2) p}} p \xi^{p-1} \tag{3.6}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
-\left.\frac{\partial \bar{\Psi}_{\lambda}}{\partial x_{1}}\right|_{x_{1}=0} \geq-\frac{\beta}{|z|^{2}} \bar{\Psi}_{\lambda}+\bar{\Phi}_{\lambda} \frac{1}{|x|^{n-(n-2) q}} q \zeta^{q-1} \tag{3.7}
\end{equation*}
$$

where ζ lies between φ_{λ} and φ.
Now suppose that the statement of the lemma is false, that is,

$$
\inf _{x \in \widetilde{\Sigma}_{\lambda}} \bar{\Phi}_{\lambda}=-\delta<0
$$

We have

$$
\begin{aligned}
& \left|\bar{\Phi}_{\lambda}(x)\right|=|z|^{\beta}\left|\varphi_{\lambda}(x)-\varphi(x)\right| \leq|z|^{\beta}\left(\left|\varphi_{\lambda}(x)\right|+|\varphi(x)|\right) \leq \\
\leq & \left(\frac{C \mu^{-\alpha_{1}}}{\left|x_{\lambda}\right|^{n-2}}+\frac{C \mu^{-\alpha_{1}}}{|x|^{n-2}}\right)|z|^{\beta} \leq \frac{C \mu^{-\alpha_{1}}}{|x|^{\frac{n-2}{2}}}, \quad \text { if }|x| \text { is big enough. }
\end{aligned}
$$

Analogously

$$
\left|\bar{\Psi}_{\lambda}(x)\right| \leq \frac{C \mu^{-\alpha_{2}}}{|x|^{\frac{n-2}{2}}}
$$

Now, near the point $(0, \ldots, 0,2 \lambda)$ (more precisely, for $|x-(0, \ldots, 0,2 \lambda)| \leq 1$), we have

$$
\begin{aligned}
& \bar{\Phi}_{\lambda}(x) \geq|z|^{\beta}(\varepsilon-\varphi(x)) \geq|z|^{\beta}\left(\varepsilon-\frac{C \mu^{-\alpha_{1}}}{|x|^{n-2}}\right) \geq \\
\geq & |z|^{\beta}\left(\varepsilon-\frac{C \mu^{-\alpha_{1}}}{|\lambda|^{n-2}}\right)>0, \quad \text { if }-\lambda \text { is big enough. }
\end{aligned}
$$

In a similar way we obtain, for $|x-(0, \ldots, 0,2 \lambda)| \leq 1, \bar{\Psi}_{\lambda}(x)>0$. Then the infimum must be located in $x_{0} \in \bar{\Sigma}_{\lambda} \backslash B_{1}(0, \ldots, 0,2 \lambda)$.

By the maximum principle, $x_{0} \notin \operatorname{int}\left(\widetilde{\Sigma}_{\lambda}\right)$ and $x_{0} \notin \mathrm{~T}_{\lambda}$ because $\bar{\Phi}_{\lambda} \equiv 0$ in T_{λ}, then x_{0} must be in $\left\{\left(x_{1}, \ldots, x_{n}\right) / x_{1}=0\right\}$.

If $\bar{\Psi}_{\lambda}\left(x_{0}\right) \geq 0$ we are done because by (3.6) the normal derivative of $\bar{\Phi}_{\lambda}$ must be positive at x_{0} a fact that contradicts Hopf's Lemma.

If not, $\psi_{\lambda}\left(x_{0}\right)<\psi\left(x_{0}\right)$ and then $\inf \bar{\Psi}_{\lambda}(x)=\bar{\Psi}_{\lambda}\left(x_{1}\right)<0$, and by an analogous argument, $\varphi_{\lambda}\left(x_{1}\right)<\varphi\left(x_{1}\right)$.

Then we have, by (3.5)

$$
\begin{equation*}
\xi\left(x_{0}\right) \leq \frac{C \mu^{-\alpha_{2}}}{\left|x_{0}\right|^{n-2}}, \quad \zeta\left(x_{1}\right) \leq \frac{C \mu^{-\alpha_{1}}}{\left|x_{1}\right|^{n-2}} \tag{3.8}
\end{equation*}
$$

By Hopf's Lemma, we can suppose that the normal derivative of $\bar{\Phi}_{\lambda}$ is negative at x_{0}, that is, using (3.8)

$$
\begin{aligned}
0>- & \left.\frac{\partial \bar{\Phi}_{\lambda}}{\partial x_{1}}\right|_{x=x_{0}} \geq-\frac{\beta}{|z|^{2}} \bar{\Phi}_{\lambda}\left(x_{0}\right)+\bar{\Psi}_{\lambda}\left(x_{0}\right) \frac{1}{\left|x_{0}\right|^{n-(n-2) p}} p \xi^{p-1} \geq \\
& \geq-\frac{\beta}{1+\left|x_{0}\right|^{2}} \bar{\Phi}_{\lambda}\left(x_{0}\right)+\bar{\Psi}_{\lambda}\left(x_{0}\right) \frac{1}{\left|x_{0}\right|^{2}} p C \mu^{-\alpha_{2}(p-1)}
\end{aligned}
$$

Then, we have

$$
\frac{\beta}{1+\left|x_{0}\right|^{2}} \delta<-\frac{p}{\left|x_{0}\right|^{2}} C \mu^{-\alpha_{2}(p-1)} \bar{\Psi}_{\lambda}\left(x_{0}\right)
$$

Replacing in (3.7) we get

$$
\begin{align*}
& -\left.\frac{\partial \bar{\Psi}_{\lambda}}{\partial x_{1}}\right|_{x=x_{1}} \geq-\frac{\beta}{1+\left|x_{1}\right|^{2}} \bar{\Psi}_{\lambda}\left(x_{0}\right)-\frac{q}{\left|x_{1}\right|^{2}} C \mu^{-\alpha_{1}(q-1)} \delta \geq \\
& \geq \frac{\beta^{2}}{1+\left|x_{1}\right|^{2}} \delta \frac{\left|x_{0}\right|^{2}}{1+\left|x_{0}\right|^{2}} \frac{1}{p C \mu^{-\alpha_{2}(p-1)}}-\frac{q}{\left|x_{1}\right|^{2}} \delta C \mu^{-\alpha_{1}(q-1)} \geq \tag{3.9}\\
& \geq\left[\frac{\beta^{2}}{p C \mu^{-\alpha_{2}(p-1)}}-q C \mu^{-\alpha_{1}(q-1)}\right] \frac{\delta}{\left|x_{1}\right|^{2}} .
\end{align*}
$$

We observe that, as $p q>1$, if we choose μ small enough, we get that the last term is positive which is a contradiction, and the Lemma is proved.

Let us now start to move the plane.
Lemma 3.2 If $\lambda_{0}=\sup \left\{\lambda<0: \Phi_{\gamma}, \Psi_{\gamma} \geq 0\right.$ in $\left.\widetilde{\Sigma}_{\gamma} \forall \gamma<\lambda\right\}$ then

$$
\lambda_{0}=0
$$

Proof: Suppose that $\lambda_{0}<0$. By continuity, we have

$$
\Phi_{\lambda_{0}}, \Psi_{\lambda_{0}} \geq 0 \quad \text { in } \widetilde{\Sigma}_{\lambda_{0}}
$$

In the boundary $\left\{x_{1}=0\right\} \cap \bar{\Sigma}_{\lambda_{0}}$, by (3.6) and (3.7) this functions verify

$$
\begin{equation*}
\frac{\partial \Phi_{\lambda_{0}}}{\partial \eta}=\frac{\psi_{\lambda}^{p}}{\left|x_{\lambda}\right|^{n-(n-2) p}}-\frac{\psi^{p}}{|x|^{n-(n-2) p}} \geq \frac{p}{|x|^{n-p(n-2)}} \xi^{p-1} \Psi_{\lambda_{0}} \geq 0 \tag{3.10}
\end{equation*}
$$

$$
\frac{\partial \Psi_{\lambda_{0}}}{\partial \eta}=\frac{\varphi_{\lambda}^{q}}{\left|x_{\lambda}\right|^{n-(n-2) q}}-\frac{\varphi^{q}}{|x|^{n-(n-2) q}} \geq \frac{q}{|x|^{n-q(n-2)}} \zeta^{q-1} \Phi_{\lambda_{0}} \geq 0
$$

Now, by (3.10) (as $n-p(n-2) \geq 0, n-q(n-2)>0$ and $\left.\lambda_{0}<0\right), \Phi_{\lambda_{0}}, \Psi_{\lambda_{0}} \not \equiv 0$ in $\widetilde{\Sigma}_{\lambda_{0}}$, then, by the maximum principle, we have

$$
\begin{equation*}
\Phi_{\lambda_{0}}, \Psi_{\lambda_{0}}>0 \quad \text { in } \bar{\Sigma}_{\lambda_{0}}-\left\{T_{\lambda_{0}} \cup\left\{\left(0, \ldots, 0,2 \lambda_{0}\right)\right\}\right\} \tag{3.11}
\end{equation*}
$$

Now, let us define the following numbers, which by (3.11) are positive

$$
\begin{gathered}
\delta_{1}=\inf \left\{\Phi_{\lambda_{0}}: x_{1}>0,\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right|=\frac{\left|\lambda_{0}\right|}{2}\right\}, \\
\delta_{2}=\inf \left\{\Psi_{\lambda_{0}}: x_{1}>0,\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right|=\frac{\left|\lambda_{0}\right|}{2}\right\}, \\
\delta=\min \left\{\delta_{1}, \delta_{2}\right\} .
\end{gathered}
$$

The point $\left(0, \ldots, 0,2 \lambda_{0}\right)$ might be a singularity point for $\Phi_{\lambda_{0}}$ and $\Psi_{\lambda_{0}}$, to control this fact, we define h_{ε} to be the solution of the following problem:

$$
\left\{\begin{array}{cll}
\Delta h_{\varepsilon}=0 & \text { in } & \varepsilon<\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right|<\frac{1}{2}\left|\lambda_{0}\right|, x_{1}>0 \\
h_{\varepsilon}=\delta & \text { on } & \left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right|=\frac{1}{2}\left|\lambda_{0}\right|, x_{1} \geq 0 \\
h_{\varepsilon}=0 & \text { on } & \left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right|=\varepsilon, x_{1} \geq 0 \\
\frac{\partial h_{\varepsilon}}{\partial \eta}=0 & \text { on } & \varepsilon<\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right|<\frac{1}{2}\left|\lambda_{0}\right|, x_{1}=0
\end{array}\right.
$$

By the maximum principle, we have

$$
\Phi_{\lambda_{0}}, \Psi_{\lambda_{0}} \geq h_{\varepsilon} \quad \text { in } \varepsilon \leq\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right| \leq \frac{1}{2}\left|\lambda_{0}\right|,\left|x_{1}\right| \geq 0
$$

Now, let $\varepsilon \rightarrow 0$, and as $\lim _{\varepsilon \rightarrow 0^{+}} h_{\varepsilon}(x) \equiv \delta$, we obtain

$$
\Phi_{\lambda_{0}}, \Psi_{\lambda_{0}} \geq \delta \quad \text { in } 0<\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right| \leq \frac{1}{2}\left|\lambda_{0}\right|,\left|x_{1}\right| \geq 0
$$

As, in $\widetilde{\Sigma}_{\lambda_{0}} \bar{\Phi}_{\lambda_{0}} \geq \Phi_{\lambda_{0}}, \bar{\Psi}_{\lambda_{0}} \geq \Psi_{\lambda_{0}}$, we obtain

$$
\lim _{\lambda \backslash \lambda_{0}\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right| \leq\left|\lambda_{0}\right| / 2}^{x_{1} \geq 0} \inf _{\lambda} \bar{\Phi}_{\lambda} \geq \inf _{\substack{\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right| \leq\left|\lambda_{0}\right| / 2 \\ x_{1} \geq 0}} \Phi_{\lambda_{0}} \geq \delta
$$

and an analogous inequality holds for $\bar{\Psi}_{\lambda}$.
By the definition of λ_{0}, there exists a sequence $\left(\lambda_{k}\right), \lambda_{k} \searrow \lambda_{0}$ such that

$$
\inf _{x \in \widetilde{\Sigma}_{\lambda_{k}}} \bar{\Phi}_{\lambda_{k}}(x)<0 \quad \text { or } \quad \inf _{x \in \widetilde{\Sigma}_{\lambda_{k}}} \bar{\Psi}_{\lambda_{k}}(x)<0
$$

Let us suppose that

$$
\begin{equation*}
\inf _{x \in \widetilde{\Sigma}_{\lambda_{k}}} \bar{\Phi}_{\lambda_{k}}(x)<0 \tag{3.12}
\end{equation*}
$$

Clearly, $\lim _{|x| \rightarrow \infty} \bar{\Phi}_{\lambda_{k}}(x)=0$, then the infimum (3.12) must be located in some point $x^{k} \in \bar{\Sigma}_{\lambda_{k}}-B_{\frac{\left|\lambda_{0}\right|}{2}}\left(0, \ldots, 0,2 \lambda_{0}\right)$ if $\left|\lambda_{k}-\lambda_{0}\right|$ is small enough.

Now, x^{k} cannot be an interior point by the equation that satisfies $\bar{\Phi}_{\lambda_{k}}$, and as $\bar{\Phi}_{\lambda_{k}} \equiv 0$ in $T_{\lambda_{k}}$, thus x^{k} must be located on the lateral wall

$$
\left\{x / x_{1}=0, x_{n}<\lambda_{k},\left|x-\left(0, \ldots, 0,2 \lambda_{0}\right)\right| \geq \frac{\left|\lambda_{0}\right|}{2}\right\}
$$

Then the tangential derivative $\frac{\partial \bar{\Phi}_{\lambda_{k}}}{\partial x_{n}}\left(x^{k}\right)=0$. Now, as $\bar{\Phi}_{\lambda_{k}}, \bar{\Psi}_{\lambda_{k}}$ verify (3.6) and (3.7), the infimum of $\bar{\Psi}_{\lambda_{k}}$ must also be less than 0 , and by analogous considerations must be located in the lateral wall too.

By the boundary conditions (3.6), (3.7) and by (3.9) we have that $\bar{\Phi}_{\lambda_{k}}$ cannot take a negative minimum at a point on the boundary $\left\{x_{1}=0\right\} \cap\{|x|>1\}$, then we must have $\left|x^{k}\right| \leq 1$. Therefore we can assume (via a subsequence) that $\lim _{k \rightarrow \infty} x^{k}=x_{0}$.

Then we have

$$
\begin{equation*}
\bar{\Phi}_{\lambda_{0}}\left(x_{0}\right)=0, \quad \frac{\partial \bar{\Phi}_{\lambda_{0}}}{\partial x_{n}}=0, \quad x_{0} \in T_{\lambda_{0}} \cap\left\{x_{1}=0\right\} \tag{3.13}
\end{equation*}
$$

and, as a consequence of (3.13), we get

$$
\begin{equation*}
\frac{\partial \Phi_{\lambda_{0}}}{\partial x_{n}}\left(x_{0}\right)=0 \tag{3.14}
\end{equation*}
$$

Let g be the solution of the following elliptic problem

$$
\left\{\begin{array}{cl}
\Delta g=0 & \text { in }\left\{3 / 2 \lambda_{0}<x_{n}<\lambda_{0}, x_{1}^{2}+\cdots+x_{n-1}^{2}<1\right\}, \\
g(x)=0 & \text { on }\left\{x_{n}=\lambda_{0}\right\} \cap\left\{x_{1}^{2}+\cdots+x_{n-1}^{2} \leq 1\right\}, \\
g(x)=0 & \text { on }\left\{x_{1}^{2}+\cdots+x_{n-1}^{2}=1\right\} \cap\left\{3 / 2 \lambda_{0} \leq x_{n} \leq \lambda_{0}\right\}, \\
g(x)=\eta & \text { on }\left\{x_{n}=3 / 2 \lambda_{0}\right\} \cap\left\{x_{1}^{2}+\cdots+x_{n-1}^{2} \leq 1\right\},
\end{array}\right.
$$

where $\eta=\inf \left\{\Phi_{\lambda_{0}}(x): x_{n}=3 / 2 \lambda_{0}, x_{1}^{2}+\cdots+x_{n-1}^{2} \leq 1\right\}>0$. By construction, we have

$$
\Phi_{\lambda_{0}} \geq g
$$

Now, as g is symmetric respect to $\left\{x_{1}=0\right\}$, we have

$$
\frac{\partial g}{\partial \eta}(x)=-\frac{\partial g}{\partial x_{1}}(x)=0 \quad \text { on }\left\{x_{1}=0\right\}
$$

and as $\Phi_{\lambda_{0}}\left(x_{0}\right)=g\left(x_{0}\right)=0$,

$$
\frac{\partial \Phi_{\lambda_{0}}}{\partial x_{n}}\left(x_{0}\right) \leq \frac{\partial g}{\partial x_{n}}\left(x_{0}\right) .
$$

But, by Hopf's Lemma, $\frac{\partial g}{\partial x_{n}}\left(x_{0}\right)$ must be negative which is a contradiction to (3.14) and proves our claim.

End of the proof of Theorem 1.2: ¿From the last Lemma we have that

$$
\varphi\left(x_{1}, \ldots,-x_{n}\right) \geq \varphi\left(x_{1}, \ldots, x_{n}\right), \quad x_{n}<0
$$

As the same is valid for $x_{n}>0$ we obtain that φ is symmetric with respect to the x_{n} axis.

The same argument shows that φ is symmetric with respect to every direction perpendicular to x_{1}, and hence

$$
\varphi(x)=q\left(x_{1},\left|\left(x_{2}, \ldots, x_{n}\right)\right|\right) .
$$

We conclude that u and v depends also of x_{1} and $\left|\left(x_{2}, \ldots, x_{n}\right)\right|$. As the origin is arbitrary we obtain that u and v are functions of x_{1} only and we can easily see that this is not possible unless $u \equiv v \equiv 0$.

Proof of Theorem 1.3: As before, if $u \equiv 0$, then $v \equiv 0$, then we can suppose that u and v are not identically zero. By the maximum principle, we have

$$
c=\inf _{|x|=2 R ; x_{1} \geq 0} v(x)>0
$$

and by hypothesis $\|u\|_{L^{\infty}} \leq L$.
We now construct the auxiliary function

$$
\psi(x)=c \frac{(2 R)^{\varepsilon}}{|x|^{\varepsilon}} .
$$

A direct calculation shows that

$$
\begin{cases}-\Delta \psi<0 & \text { for } x \neq 0 \text { since } n=2 \text { and } \varepsilon>0, \\ \frac{\partial \psi}{\partial \eta}=0 \leq \frac{\partial v}{\partial \eta} & \text { on }\left\{x_{1}=0\right\}, \\ \psi(x)=c \leq v(x) & \text { on }\left\{x_{1}=2 R\right\} \cap\left\{x_{1} \geq 0\right\}, \\ \lim _{M \rightarrow \infty} \inf _{|x|>M}(v(x)-\psi(x)) \geq 0 .\end{cases}
$$

It follows from the maximum principle that

$$
v(x) \geq \psi(x), \quad \text { for }|x| \geq 2 R, x_{1} \geq 0
$$

Now, letting $\varepsilon \rightarrow 0^{+}$, we obtain

$$
v(x) \geq c, \quad \text { for }|x| \geq 2 R, x_{1} \geq 0
$$

Next, let $K>2 R$ be a large positive number and take a smooth cut-off function $\zeta(x)$ such that

$$
\begin{array}{ll}
\zeta(x) \equiv 0 & \text { on }\{|x| \leq K\} \cup\{|x| \geq 4 K\}, \\
\zeta(x) \equiv 1 & \text { on }\{2 K \leq|x| \leq 3 K\}, \\
0 \leq \zeta(x) \leq 1, & |\nabla \zeta(x)| \leq \frac{C}{K} .
\end{array}
$$

Multiplying the equation $\Delta u=0$ by $u^{-1} \zeta^{2}$ and integrating by parts, we obtain

$$
\begin{gathered}
\int_{\left\{x_{1}=0\right\}} \frac{\zeta^{2}}{u} v^{p} d S+\iint_{\left\{x_{1}>0\right\}} \zeta^{2} \frac{|\nabla u|^{2}}{u^{2}} d x=\iint_{\left\{x_{1}>0\right\}} 2 \zeta \nabla \zeta \frac{\nabla u}{u} d x \leq \\
\leq \iint_{\left\{x_{1}>0\right\}}|\nabla \zeta|^{2} d x+\iint_{\left\{x_{1}>0\right\}} \zeta^{2} \frac{|\nabla u|^{2}}{u^{2}} d x .
\end{gathered}
$$

It follows that

$$
\int_{\left\{x_{1}=0\right\}} \frac{\zeta^{2}}{u} v^{p} d S \leq \iint_{\left\{x_{1}>0\right\}}|\nabla \zeta|^{2} d x,
$$

which implies that

$$
\frac{c^{p}}{L} K \leq \int_{2 K}^{3 K} \frac{v^{p}}{u}\left(0, x_{2}\right) d x_{2} \leq \frac{C^{2}}{K^{2}}\left|B_{4 K}(0)\right| \leq \frac{C}{K^{2}} K^{2} \leq C .
$$

This is a contradiction if K is large enough.

A Appendix

In this Appendix we prove the uniform bounds needed in the proof of Theorem 1.1. The main difficulty comes from the fact that q can be less than one, so one of the nonlinearities needs not be Lipschitz.

Let Ω be a bounded domain with boundary $\partial \Omega \in C^{2+\alpha}, \Omega_{\lambda}=\left\{y \in \mathbb{R}^{n}\right.$: $\left.\lambda R y+x^{*} \in \Omega\right\}$ and $\varphi_{\lambda}, \psi_{\lambda}$ the solutions of

$$
\begin{cases}\frac{\partial \varphi_{\lambda}}{\partial s}=\Delta \varphi_{\lambda} & \text { in } \Omega_{\lambda} \times\left[-\frac{T}{2 \lambda^{2}}, 0\right] \tag{A.1}\\ \frac{\partial \psi_{\lambda}}{\partial s}=\Delta \psi_{\lambda} & \text { in } \Omega_{\lambda} \times\left[-\frac{T}{2 \lambda^{2}}, 0\right]\end{cases}
$$

with the following boundary conditions

$$
\left\{\begin{array}{cc}
\frac{\partial \varphi_{\lambda}}{\partial \eta}=K_{\lambda} \psi_{\lambda}^{p} & \text { in } \partial \Omega_{\lambda} \times\left[-\frac{T}{2 \lambda^{2}}, 0\right], \tag{A.2}\\
\frac{\partial \psi_{\lambda}}{\partial \eta}=\varphi_{\lambda}^{q} & \text { in } \partial \Omega_{\lambda} \times\left[-\frac{T}{2 \lambda^{2}}, 0\right] .
\end{array}\right.
$$

These functions φ_{λ} and ψ_{λ} also verify

$$
\begin{equation*}
0 \leq \varphi_{\lambda}(y, s) ; \psi_{\lambda}(y, s) \leq 1, \quad \frac{\partial \varphi_{\lambda}}{\partial s}(y, s) ; \frac{\partial \psi_{\lambda}}{\partial s}(y, s) \geq 0 \tag{A.3}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{\lambda}(0,0)=1 \tag{A.4}
\end{equation*}
$$

Let $D_{K}=\Omega_{\lambda} \cap\{|y|<K\} \times\left(-K^{2}, 0\right)$. For each point $(y, s) \in \mathbb{R}_{+}^{n} \times(-\infty, 0]$, there exists a cylinder $D_{2 R}(y, s) \subset \mathbb{R}_{+}^{n} \times(-\infty, 0]$. Therefore, following the argument of [3] we obtain a countable number of cylinders $\left\{D_{2 R_{i}}\right\}_{i \in N}$ such that $D_{2 R_{i}} \subset \mathbb{R}_{+}^{n} \times(-\infty, 0]$ and $\left\{D_{R_{i}}\right\}_{i \in N}$ covers $\mathbb{R}_{+}^{n} \times(-\infty, 0]$ where $D_{R_{i}}$ is the cylinder with its top having the same center as the top of the cylinder $D_{2 R_{i}}$, but with half the radius.

Since Ω_{λ} approaches \mathbb{R}_{+}^{n} as $\lambda \rightarrow 0^{+}$(see [3]), the families $\left\{\varphi_{\lambda}\right\}$ and $\left\{\psi_{\lambda}\right\}$ will be defined on each cylinder if λ is small enough. Therefore, by (A.1), (A.3) and the Schauder interior estimates, we obtain that

$$
\begin{aligned}
\left\|\varphi_{\lambda}\right\|_{C^{2+\alpha, 1+\alpha / 2}}\left(D_{R_{i}}\right) \leq C\left\|\varphi_{\lambda}\right\|_{L^{\infty}\left(D_{2 R_{i}}\right)} \leq C, \\
\left\|\psi_{\lambda}\right\|_{C^{2+\alpha, 1+\alpha / 2}}\left(D_{R_{i}}\right) \leq C\left\|\psi_{\lambda}\right\|_{L^{\infty}\left(D_{2 R_{i}}\right)} \leq C,
\end{aligned}
$$

for each i (see [7]), where the constant C is independent of λ.
Since the sets $\left\{\varphi_{\lambda}\right\},\left\{\psi_{\lambda}\right\}$ forms bounded sets in $C^{2+\alpha, 1+\alpha / 2}\left(D_{R_{i}}\right)$, we obtain that $\left\{\varphi_{\lambda}\right\},\left\{\psi_{\lambda}\right\}$ are precompact in $C^{2+\beta, 1+\beta / 2}\left(D_{R_{i}}\right)$ for $0<\beta<\alpha$ (see [12]). Therefore, by the diagonal method, we form a sequence $\lambda_{j} \rightarrow 0^{+}$such that

$$
\begin{equation*}
\varphi_{\lambda_{j}} \rightarrow \varphi \quad \text { and } \quad \psi_{\lambda_{j}} \rightarrow \psi \tag{A.5}
\end{equation*}
$$

in $C^{2+\beta, 1+\beta / 2}\left(D_{R_{i}}\right)$ for each i.
Now, let us obtain some boundary estimates for φ_{λ} and ψ_{λ}. Let $C>0$ such that $K_{\lambda} \leq C \forall \lambda$, then we have

$$
\left\|\frac{\partial \varphi_{\lambda}}{\partial \eta}\right\|_{L^{\infty}\left(\partial D_{2 K} \cap \partial \Omega_{\lambda}\right)} \leq C, \quad\left\|\frac{\partial \psi_{\lambda}}{\partial \eta}\right\|_{L^{\infty}\left(\partial D_{2 K} \cap \partial \Omega_{\lambda}\right)} \leq 1
$$

therefore, from [15], we obtain

$$
\left\|\varphi_{\lambda}\right\|_{C^{\alpha, \alpha / 2}\left(\overline{D_{K}}\right)} ;\left\|\psi_{\lambda}\right\|_{C^{\alpha, \alpha / 2}\left(\overline{D_{K}}\right)} \leq C_{K} .
$$

Also, if $B=\partial D_{2 K} \cap \partial \Omega_{\lambda}$

$$
\begin{gathered}
\left\|\frac{\partial \psi_{\lambda}}{\partial \eta}\right\|_{C^{\gamma, \gamma / 2}(B)}=\left\|K_{\lambda} \varphi_{\lambda}^{q}\right\|_{C^{\gamma, \gamma / 2}(B)} \leq C\left\|\varphi_{\lambda}^{q}\right\|_{C^{\gamma, \gamma / 2}(B)} \leq \\
\leq C\left(\left\|\varphi_{\lambda}^{q}\right\|_{L^{\infty}(B)}+\left[\varphi_{\lambda}^{q}\right]_{C^{\gamma, \gamma / 2}(B)}\right) \leq \\
\leq C\left(1+\sup _{\left(y_{i}, s\right) \in B ; y_{1} \neq y_{2}} \frac{\left|\varphi_{\lambda}^{q}\left(y_{1}, s\right)-\varphi_{\lambda}^{q}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}}+\right. \\
\left.+\sup _{\left(y, s_{i}\right) \in B ; s_{1} \neq s_{2}} \frac{\left|\varphi_{\lambda}^{q}\left(y, s_{1}\right)-\varphi_{\lambda}^{q}\left(y, s_{2}\right)\right|}{\left|s_{1}-s_{2}\right|^{\gamma / 2}}\right) .
\end{gathered}
$$

If $q \geq 1$, from the mean value theorem, we get

$$
\frac{\left|\varphi_{\lambda}^{q}\left(y_{1}, s\right)-\varphi_{\lambda}^{q}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}}=q|\xi|^{q-1} \frac{\left|\varphi_{\lambda}\left(y_{1}, s\right)-\varphi_{\lambda}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}}
$$

where ξ is an intermediate value between $\varphi_{\lambda}\left(y_{1}, s\right)$ and $\varphi_{\lambda}\left(y_{2}, s\right)$, then we obtain

$$
\frac{\left|\varphi_{\lambda}^{q}\left(y_{1}, s\right)-\varphi_{\lambda}^{q}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}} \leq q \frac{\left|\varphi_{\lambda}\left(y_{1}, s\right)-\varphi_{\lambda}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}} .
$$

In a similar way, we obtain

$$
\frac{\left|\varphi_{\lambda}^{q}\left(y, s_{1}\right)-\varphi_{\lambda}^{q}\left(y, s_{2}\right)\right|}{\left|s_{1}-s_{2}\right|^{\gamma / 2}} \leq q \frac{\left|\varphi_{\lambda}\left(y, s_{1}\right)-\varphi_{\lambda}\left(y, s_{2}\right)\right|}{\left|s_{1}-s_{2}\right|^{\gamma / 2}}
$$

Now, if $0<q<1$,

$$
\begin{aligned}
\frac{\left|\varphi_{\lambda}^{q}\left(y_{1}, s\right)-\varphi_{\lambda}^{q}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}} & =\frac{\left|\varphi_{\lambda}^{q}\left(y_{1}, s\right)-\varphi_{\lambda}^{q}\left(y_{2}, s\right)\right|}{\left|\varphi_{\lambda}\left(y_{1}, s\right)-\varphi_{\lambda}\left(y_{2}, s\right)\right|^{q}}\left(\frac{\left|\varphi_{\lambda}\left(y_{1}, s\right)-\varphi_{\lambda}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma / q}}\right)^{q} \leq \\
& \leq \sup _{x, y \in(0,1)} \frac{\left|x^{q}-y^{q}\right|}{|x-y|^{q}}\left(\frac{\left|\varphi_{\lambda}\left(y_{1}, s\right)-\varphi_{\lambda}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma / q}}\right)^{q} \leq \\
& \leq C\left(\frac{\left|\varphi_{\lambda}\left(y_{1}, s\right)-\varphi_{\lambda}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma / q}}\right)^{q} .
\end{aligned}
$$

Then if we set $\gamma \leq \min \{\alpha q ; \alpha\},\left\|\frac{\partial \psi_{\lambda}}{\partial \eta}\right\|_{C^{\gamma, \gamma / 2}(B)} \leq C_{K}$. Analogously, we get $\left\|\frac{\partial \varphi_{\lambda}}{\partial \eta}\right\|_{C^{\gamma, \gamma / 2}(B)} \leq C_{K}$, with $\gamma \leq \min \{\alpha ; \alpha q\}$ (observe that $p \geq q$). This implies (see [17]) that $\left\|\varphi_{\lambda}\right\|_{C^{1+\gamma, 1 / 2+\gamma / 2}\left(\overline{D_{K / 2}}\right)},\left\|\psi_{\lambda}\right\|_{C^{1+\gamma, 1 / 2+\gamma / 2}\left(\overline{D_{K / 2}}\right)} \leq C_{K}$, where the constant C_{K} is independent of λ.

Then, by the same argument as before, we can assume that the limit functions $\varphi, \psi \in C^{1+\beta, 1 / 2+\beta / 2}\left(\overline{\mathbb{R}_{+}^{n}} \times(-\infty, 0]\right) \cap C^{2+\beta, 1+\beta / 2}\left(\mathbb{R}_{+}^{n} \times(-\infty, 0]\right)$ for $0<\beta<\gamma$. Also, we can assume that $K_{\lambda_{j}} \rightarrow K_{0}$.

By this estimates, we obtain that φ, ψ verify

$$
\begin{align*}
& \begin{cases}\frac{\partial \varphi}{\partial s}=\Delta \varphi & \text { in } \mathbb{R}_{+}^{n} \times(-\infty, 0] \\
\frac{\partial \psi}{\partial s}=\Delta \psi & \text { in } \mathbb{R}_{+}^{n} \times(-\infty, 0]\end{cases} \tag{A.6}\\
& \left\{\begin{array}{cc}
\frac{\partial \varphi}{\partial \eta}=K_{0} \psi^{p} & \text { in }\left\{y_{1}=0\right\} \times(-\infty, 0] \\
\frac{\partial \psi}{\partial \eta}=\varphi^{q} & \text { in }\left\{y_{1}=0\right\} \times(-\infty, 0]
\end{array}\right. \tag{A.7}\\
& \varphi(0,0)=1, \quad 0 \leq \varphi, \psi \leq 1 \tag{A.8}
\end{align*}
$$

So by the regularity theory of parabolic PDEs [15], we find that $\psi, \varphi \in C^{\infty}$ for the y and s directions up to the boundary $\left\{y_{1}=0\right\}$.

By (A.3), (A.5) and the fact that the functions $\varphi_{s}(y, s), \psi_{s}(y, s)$ are continuous up to the boundary $\left\{y_{1}=0\right\}$, we get that

$$
\varphi_{s}(y, s), \psi_{s}(y, s) \geq 0 \text { for } 0 \leq y_{1}<\infty,-\infty<s \leq 0
$$

Now, by (A.8) and Hopf's lemma we obtain that for a fixed $K>0$ there exists $\delta_{K}>0$ such that $\varphi, \psi \geq \delta_{K}>0$ on $H_{K} \equiv \partial \mathbb{R}_{+}^{n} \cap\{|y| \leq K\} \times\left[-K^{2}, 0\right]$.

Therefore, by the use of this lower bound for φ, ψ and the fact that $\varphi_{\lambda_{j}} \rightarrow$ $\varphi ; \psi_{\lambda_{j}} \rightarrow \psi$ uniformly on H_{K}, we have that there exists $\epsilon_{K}>0$ such that for sufficiently large $j, \varphi_{\lambda_{j}}, \psi_{\lambda_{j}} \geq \epsilon_{K}>0$ on H_{K}.

We can use this fact to obtain more regularity on the boundary. We have

$$
\begin{aligned}
& \text { that } \\
& \qquad \begin{array}{l}
{\left[\frac{\partial \varphi_{\lambda_{j}}}{\partial \eta}\right]_{C^{1+\gamma, 1 / 2+\gamma / 2}\left(H_{K}\right)}=\left[\psi_{\lambda_{j}}^{p}\right]_{C^{1+\gamma, 1 / 2+\gamma / 2}\left(H_{K}\right)}=} \\
=\sup _{|a|=1}\left[D_{y}^{a}\left(\psi_{\lambda_{j}}^{p}\right)\right]_{C_{y}^{\gamma}\left(H_{K}\right)}+\left[\psi_{\lambda_{j}}^{p}\right]_{C_{s}^{1 / 2+\gamma / 2}\left(H_{K}\right)}= \\
=\sup _{|a|=1}\left[p \psi_{\lambda_{j}}^{p-1} D_{y}^{a}\left(\psi_{\lambda_{j}}\right)\right]_{C_{y}^{\gamma}\left(H_{K}\right)}+C_{K} \leq \\
\leq \sup _{|a|=1} \sup _{\left(y_{i}, s\right) \in H_{K} ; y_{1} \neq y_{2}} \frac{\left|p \psi_{\lambda_{j}}^{p-1} D_{y}^{a}\left(\psi_{\lambda_{j}}\right)\left(y_{1}, s\right)-p \psi_{\lambda_{j}}^{p-1} D_{y}^{a}\left(\psi_{\lambda_{j}}\right)\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}}+C_{K} \leq \\
\leq \sup _{|a|=1} \sup _{\left(y_{i}, s\right) \in H_{K} ; y_{1} \neq y_{2}} \leq \psi_{\lambda_{j}}^{p-1}\left(y_{1}, s\right) \left\lvert\, \frac{\left|D_{y}^{a}\left(\psi_{\lambda_{j}}\left(y_{1}, s\right)\right)-D_{y}^{a}\left(\psi_{\lambda_{j}}\left(y_{2}, s\right)\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}}+\right. \\
+\sup _{|a|=1} \sup _{\left(y_{i}, s\right) \in H_{K} ; y_{1} \neq y_{2}}\left|D_{y}^{a}\left(\psi_{\lambda_{j}}\left(y_{2}, s\right)\right)\right| \frac{\left|p \psi_{\lambda_{j}}^{p-1}\left(y_{1}, s\right)-p \psi_{\lambda_{j}}^{p-1}\left(y_{2}, s\right)\right|}{\left|y_{1}-y_{2}\right|^{\gamma}}+C_{K} .
\end{array}
\end{aligned}
$$

Now, by our previous estimates, the first term is bounded by a constant C_{K}, and because of the lower bound for $\varphi_{\lambda_{j}}, \psi_{\lambda_{j}}$ and the mean value theorem, the second term is bounded by another constant. Therefore,

$$
\left\|\frac{\partial \varphi_{\lambda_{j}}}{\partial \eta}\right\|_{C^{1+\gamma, 1 / 2+\gamma / 2}\left(H_{K}\right)} \leq C_{K}
$$

and in a similar way

$$
\left\|\frac{\partial \psi_{\lambda_{j}}}{\partial \eta}\right\|_{C^{1+\gamma, 1 / 2+\gamma / 2}\left(H_{K}\right)} \leq C_{K}
$$

This implies that

$$
\left\|\varphi_{\lambda_{j}}\right\|_{C^{2+\gamma, 1+\gamma / 2}\left(H_{K / 2}\right)} ;\left\|\varphi_{\lambda_{j}}\right\|_{C^{2+\gamma, 1+\gamma / 2}\left(H_{K / 2}\right)} \leq C_{K}
$$

where the constant C_{K} is independent of λ (see [12]).

So again, by compactness and if necessary by further refinment of the sequence, we obtain that

$$
\begin{aligned}
& \left\|\varphi_{\lambda_{j}}-\varphi\right\|_{C^{2+\beta, 1+\beta / 2}\left(H_{K / 2}\right)} \rightarrow 0 \\
& \left\|\psi_{\lambda_{j}}-\psi\right\|_{C^{2+\beta, 1+\beta / 2}\left(H_{K / 2}\right)} \rightarrow 0
\end{aligned}
$$

for $0<\beta<\gamma$. ㅁ

References

[1] G. Acosta and J. D. Rossi, Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition, Z. Angew Math. Phys., Vol 48 (5) (1997), 711-724.
[2] H. Amann, Dynamic theory of quasilinear parabolic systems III. Global Existence, Math. Z. Vol. 202(2) (1989), 219-254.
[3] D. Biewer, Ph. D. Thesis, Univ. Notre Dame (1995).
[4] H. Berestycki and L. Niremberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1-37.
[5] K. Deng, Blow-up rates for parabolic systems, Z. Angew Math. Phys. vol 46. (1995), 110-118.
[6] J. Fernández Bonder and J.D. Rossi, Existence for an elliptic system with nonlinear boundary conditions via fixed point methods, to appear in Adv. in Diff. Eq.
[7] A. Friedman, Partial Differential Equations of Parabolic Type, PrenticeHall, Englewood Cliffs, NJ (1964).
[8] M. Fila and P. Quittner, The blow-up rate for the heat equation with a nonlinear boundary condition, Math. Meth. Appl. Sci. vol 14. (1991), 197205.
[9] M. Fila and P. Quittner, The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl. Vol 238, (1999), 468-476.
[10] B. Gidas, W.M. Ni and L. Niremberg, Symmetry and related properties via maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
[11] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Part. Diff. Eq., 6 (1981), 883-901.
[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, NY (1983).
[13] B. Hu and H. M. Yin, The profile near blow-up time for the solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. vol 346 (1) (1995), 117-135.
[14] B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Diff. and Int. Eq., V. 7, Nro. 2, 1994, 301-313.
[15] O. Ladyzenskaja, V. Solonnikov y N. Uralceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs. vol 23. (1968)
[16] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Comm. Partial Differential Equations, 16 (1991), 491-526.
[17] G. M. Liberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. di Math. Pura ed Appl. 148 (1987), 77-99.
[18] C. V. Pao. Nonlinear parabolic and elliptic equations. Plenum Press 1992.
[19] J. D. Rossi, The blow-up rate for a system of heat equations with nontrivial coupling at the boundary, Math. Meth. Appl. Sci., Vol 20 (1997), 1-11.
[20] J. D. Rossi and N. Wolanski, Global existence and nonexistence for a parabolic system with nonlinear boundary conditions, Diff. Int. Eq. Vol 11 (1) (1998), 179-190.
[21] M. Wang and S. Wang, Quasilinear reaction-diffusion systems with nonlinear boundary conditions, J. Math. Anal. Appl. Vol. 231 (1999), 21-33.
[22] M. Wang, S. Wang and C. Xie, The blow-up rate for reaction-diffusion systems with nonlinear boundary conditions. Preprint (1997).

[^0]: *Supported by Universidad de Buenos Aires under grantEX071 and CONICET (Argentina) AMS-Subj.class : 35B40, 35J65, 35K60.
 Keywords : blow-up, asymptotic behaviour, nonlinear boundary conditions.

