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Abstract. We study the asymptotic behavior of a semidiscrete numerical
approximation for a pair of heat equations ut = ∆u, vt = ∆v in Ω × (0, T );

fully coupled by the boundary conditions ∂u
∂η

= up11vp12 , ∂v
∂η

= up21vp22

on ∂Ω× (0, T ), where Ω is a bounded smooth domain in Rd. We focus in the
existence or not of non-simultaneous blow-up for a semidiscrete approximation
(U, V ). We prove that if U blows up in finite time then V can fail to blow up
if and only if p11 > 1 and p21 < 2(p11 − 1), which is the same condition as
the one for non-simultaneous blow-up in the continuous problem. Moreover,
we find that if the continuous problem has non-simultaneous blow-up then
the same is true for the discrete one. We also prove some results about the
convergence of the scheme and the convergence of the blow-up times.

1. Introduction.

In this paper we study the behavior of semidiscrete approximations of the fol-
lowing system. A pair of heat equations

(1.1) ut = ∆u, vt = ∆v in Ω× (0, T ),

fully coupled by the nonlinear flux boundary condition, given by

(1.2)
∂u

∂η
= up11vp12 ,

∂v

∂η
= up21vp22 on ∂Ω× (0, T ),

and initial data u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω. Throughout this paper,
∂/∂η denotes the outward unit normal derivative. We assume that Ω is a bounded
smooth domain in Rd, pij ≥ 0 and u0, v0 are positive, bounded, compatible with
the boundary data and smooth enough to guarantee that u, v are regular. Solutions
to this problem exist locally in time, [4]. The time T is the maximal existence time
for the solution, which may be finite or infinite.

The study of reaction-diffusion systems have deserved a great deal of interest in
recent years and have been used to model, for example, heat transfer, population
dynamics and chemical reactions (see [14, 17] and references therein). Therefore
the study of its numerical approximations become a relevant issue. Specially the
study of the dynamic of such approximations, since the natural interest in this
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kind of problems is the prediction of the long-time behavior of the solutions, see
[11, 13, 18], etc.

A remarkable, and well known fact, is that solutions of (1.1)-(1.2) may develop
singularities in finite time, no matter how smooth the initial data are. In fact, if T
is finite, the solution (u, v) blows up in the sense that

lim sup
t↗T

(‖u(·, t)‖L∞ + ‖v(·, t)‖L∞) = +∞.

The blow-up phenomenon for parabolic equations and systems has been widely
studied in recent years, see for example [17]. For our problem, there exist solutions
(u, v) that blow up in finite time, T , if and only if the exponents pij verify any of
the conditions, p11 > 1, p22 > 1 or (p11 − 1)(p22 − 1) < p12p21, see [16]. A priori
there is no reason why both functions u and v should go to infinity simultaneously
at time T . In fact, in [15] the authors prove under adequate hypotheses that there
are initial data such that u blows up while v does not if and only if p11 > 1 and
p21 < p11 − 1. They denote this phenomenon as non-simultaneous blow-up.

Here we prove similar results for numerical approximations of (1.1)-(1.2). For
previous work on numerical approximations of blowing up solutions we refer to
[1, 2, 3, 6, 7, 8, 10, 12], the survey [5] and references therein.

We will consider a general method for the space discretization with adequate
assumptions on the coefficients, keeping the time variable t continuous. More pre-
cisely, we assume that for every h > 0 small (h is the parameter of the method),
there exists a set of nodes {x1, . . . , xN} ⊂ Ω (N = N(h)), such that the numerical
approximation of (u, v) at the nodes xk, is given by

U(t) = (u1(t), . . . , uN (t)), V (t) = (v1(t), . . . , vN (t)).

That is (uk(t), vk(t)) stands for an approximation of (u(xk, t), v(xk, t)). We assume
that (U, V ) is the solution of the following ODE

MU ′(t) = −AU(t) + B(Up11(t)V p12(t)),

MV ′(t) = −AV (t) + B(Up21(t)V p22(t)),
(1.3)

with initial data given by uk(0) = u0(xk), vk(0) = v0(xk). In (1.3) and hereafter,
all operations between vectors are understood coordinate by coordinate.

The precise assumptions on the matrices involved in the method are:

(H1) M is a diagonal matrix with positive entries mk.
(H2) B is a diagonal matrix with nonnegative entries bk.
(H3) A is a nonnegative symmetric matrix, with nonpositive coefficients off the

diagonal (that is aij ≤ 0 if i 6= j) and aii > 0.
(H4)

∑N
j=1 aij = 0.

This last assumption implies, to begin with, that there is no nontrivial steady state
for (1.3) (see Lemma 3.2).

The final hypothesis on the scheme is the following: if we define the graph G
with vertices on the nodes xk and we say that two nodes xk, xj are connected if
and only if akj 6= 0, then we assume

(H5) The graph G is connected.
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It is easy to check that hypotheses (H1)-(H5) imply the maximum principle.

We will say that a node xk (o more generally, a node k) is a boundary node if
and only if bk 6= 0.

We remark that in general M , B and A depend on h.

Writing these equations explicitly we obtain the following ODE system,

mku′k(t) = −
N∑

j=1

akjuj(t) + bkup11
k (t)vp12

k (t), 1 ≤ k ≤ N,

mkv′k(t) = −
N∑

j=1

akjvj(t) + bkup21
k (t)vp22

k (t), 1 ≤ k ≤ N,

(1.4)

with initial data uk(0) = u0(xk), vk(0) = v0(xk), for 1 ≤ k ≤ N .

As an example, we can consider a linear finite element approximation of problem
(1.1) on a regular acute triangulation of Ω (see [9]). In this case, let Wh be the
subspace of piecewise linear functions in H1(Ω).

We impose that uh , vh : [0, Th) → Wh, verifies∫

Ω

((uh)tw)I = −
∫

Ω

∇uh∇w +
∫

∂Ω

((uh)p11(vh)p12w)I ,

∫

Ω

((vh)tw)I = −
∫

Ω

∇vh∇w +
∫

∂Ω

((uh)p21(vh)p22w)I ,

for every w ∈ Wh. Here (·)I stands for the linear Lagrange interpolation at the
nodes of the mesh. If we call (U(t), V (t)) the restriction of (uh(·, t), vh(·, t)) to the
nodes of the mesh, then (U, V ) verifies a system of the form (1.3). Our assump-
tions on the matrices M and B hold because we are using mass lumping and our
assumptions on A are satisfied as we are considering an acute regular mesh. In this
example, M is called the lumped mass matrix and A the stiffness matrix. In this
case, k is a boundary node, if and only if xk ∈ ∂Ω.

As another example if Ω is a cube, Ω = (0, 1)d, we can use a semidiscrete finite
differences method to approximate the solution u(x, t) obtaining an ODE system
of the form (1.4), and again, k is a boundary node, if and only if xk ∈ ∂Ω.

We begin our analysis of (1.4) proving that this method converges uniformly over
{x1, . . . , xN} × [0, T − τ ] under the assumption of consistency of the method. For
a precise definition of consistency, see Definition 2.1.

In fact, we prove the following result.

Theorem 1.1. Let (u, v) be a regular solution of (1.1)-(1.2) and (U, V ) the nu-
merical approximation given by (1.4). If the method is consistent in the sense of
Definition 2.1, then there exists a constant C, independent of h, such that

max
1≤k≤N

sup
t∈[0,T−τ ]

|u(xk, t)− uk(t)|+ |v(xk, t)− vk(t)| ≤ Cρ(h),

where ρ is the modulus of consistency of the method.

As a first step for our analysis of the behavior of solutions of (1.4), we want to
describe when the blow-up phenomenon occurs for the discrete problem. We say
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that a solution of (1.4) has finite blow-up time if there exists a finite time Th such
that

lim
t↗Th

(‖U(t)‖∞ + ‖V (t)‖∞) = lim
t↗Th

(
max

k
uk(t) + max

k
uk(t)

)
= +∞.

The following Theorem characterizes the existence of blowing up solutions for
(1.3).

Theorem 1.2. Every solution (U, V ) of (1.3) blows up in finite time if and only
if the exponents pij verify any of the conditions,

p11 > 1, p22 > 1 or (p11 − 1)(p22 − 1) < p12p21.

We want to remark that the conditions on the exponents are the same as for the
continuous problem, see [16].

Moreover, we prove under further assumptions on the exponents pij , that the
blow-up time for the numerical solution converges to the one of the continuous
problem under adequate hypotheses on the initial data.

Theorem 1.3. Let (u, v) be a solution of (1.1)-(1.2) with blow-up time T and
initial datum (u0, v0) satisfying ∆u0, ∆v0 ≥ κ > 0. Let (U, V ) be the corresponding
numerical solution. If the scheme is consistent in the sense of Definition 2.1 and
if one of the following p11 > 1, p22 > 1, or p21, p12 > 1 hold, then the blow-up time
Th of the numerical solution converges to T , i.e.

lim
h→0

Th = T.

We observe that the hypotheses ∆u0,∆v0 ≥ κ > 0, imply monotonicity in time
for the solution (u, v). That is ut, vt > 0. This monotonicity property also holds for
our numerical solution (U, V ) (see Lemma 4.1) and it is crucial for our arguments.

Finally we arrive to the main point of the paper. For certain choices of the
parameters pij there are initial data for which one of the components of the system
remains bounded while the other blows up. The next two theorems characterize
the range of parameters for which non-simultaneous blow-up occurs in the discrete
problem.

Theorem 1.4. Let (U, V ) a solution of (1.4) such that U blows up at finite time
Th and V remains bounded up to that time. Then p11 > 1 and p21 < p11 − 1.

Theorem 1.5. If p11 > 1 and p21 < p11 − 1, then for every initial datum V0 for
(1.4) there exists an initial datum U0 such that U blows up in finite time Th and V
remains bounded up to that time.

We want to remark that this characterization is the same as the one for the
continuous problem, see [15].

We end this paper showing that the non-simultaneous blow-up is reproduced by
our scheme.

Theorem 1.6. Let u0, v0 be initial data for (1.1)-(1.2) satisfying ∆u0, ∆v0 ≥ κ > 0
such that u blows up at time T and v remains bounded up to that time. Then, if
the scheme is consistent in the sense of Definition 2.1, U blows up while V remains
bounded, for every h small enough.
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The paper is organized as follows: in §2 we prove the convergence result (Theo-
rem 1.1), in §3 the blow-up result (Theorem 1.2), in §4 we study the convergence
of the blow-up times (Theorem 1.3), and finally in §5 we arrive at the main part of
the paper, namely we prove the non-simultaneous blow-up results, Theorems 1.4,
1.5 and 1.6.

2. Convergence of the numerical scheme.

In this section we prove a uniform convergence result for the numerical scheme
(1.4). Throughout this section, we consider 0 < τ < T fixed.

We want to show that (U, V ) → (u, v) as h → 0, uniformly in {x1, . . . , xN} ×
[0, T − τ ]. This is a natural requirement since in such time intervals the exact
solution is regular. Approximations of regular solutions in one space dimension
for a scalar problem with a nonlinear boundary condition have been analyzed in
[10]. Also, in [3] the authors analyze the approximation in several space dimensions
under similar hypotheses that we make here.

The precise assumption that we make on the scheme is the consistency of the
method. We precise this concept in the following definition.

Definition 2.1. Let w be a regular solution of

wt = ∆w + g(x, t) in Ω× (0, T ),
∂w

∂η
= f(x, t) on ∂Ω× (0, T ).

We say that the scheme (1.3) is consistent if for any t ∈ (0, T − τ) it holds

(2.1) mkwt(xk, t) = −
N∑

j=1

akjw(xj , t) + mkg(xk, t) + bkf(xk, t) + ρk,h(t),

and there exists a function ρ : R+ → R+ such that

max
k

|ρk,h(t)|
mk

≤ ρ(h), for every t ∈ (0, T − τ),

with ρ(h) → 0 if h → 0. The function ρ is called the modulus of consistency of the
method.

Let us begin with a comparison lemma that will be used throughout the paper.

Definition 2.2. We say that (U, V ) is a supersolution of (1.3) if

MU
′ ≥ −AU + B(U

p11
V

p12),

MV
′ ≥ −AV + B(V

p21
V

p22).

We say that U is a subsolution of (1.3) if

MU ′ ≤ −AU + B(Up11V p12),

MV ′ ≤ −AV + B(V p21V p22).

The inequalities are understood coordinate by coordinate.

Lemma 2.1. Let (U, V ) and (U, V ) be a super and a subsolution of (1.3) respec-
tively such that (U, V )(0) ≥ (U, V )(0). Then

(U, V )(t) ≥ (U, V )(t).
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Proof. Let (W,Z) = (U−U, V −V ). Assume first that W (0), Z(0) > 0. We observe
that W verifies

MW ′ ≥ −AW + B
(
U

p11
V

p12 − Up11V
p12 + Up11V

p12 − Up11V p12

)

= −AW + B

[
V

p12

(
U

p11 − Up11

U − U

)
W

]
+ B

[
Up11

(
V

p12 − V p12

V − V

)
Z

]
.

And a similar inequality holds for Z. Now, set δ = min{W (0), Z(0)} and suppose
that the statement of the Lemma is false. Thus, let t0 be the first time such
that min{W (t0), Z(t0)} = δ/2. We can assume that W attains the minimum. At
that time, there must be a node k such that wk(t0) = δ/2. But on the one hand
w′k(t0) ≤ 0 and, on the other hand, by (H3) and (H4), at that time t0,

mkw′k ≥ −
N∑

j=1

akjwj + bkvp12
k

(
up11

k − up11
k

uk − uk

)
wk + bkup11

k

(
vp12

k − vp12
k

vk − vk

)
zk

> −
N∑

i=1

akj
δ

2
+ bkvp12

k p11ξ
p11−1
k wk + bkup11

k p12η
p12−1
k zk > 0,

where ξk ∈ (uk, uk), ηk ∈ (vk, vk), a contradiction. Using the continuity of solutions
of (1.3) with respect to the initial data and an approximation argument, the result
follows for general initial data. ¤

Now we are ready to prove our convergence result.

Proof of Theorem 1.1. Let us start by defining the error functions

(2.2) e1,k(t) = u(xk, t)− uk(t), e2,k(t) = v(xk, t)− vk(t).

By (2.1), these functions verify

mke′1,k(t) = −
N∑

i=1

aike1,i(t) + bk(up11(xk, t)vp12(xk, t)− up11
k (t)vp12

k (t)) + ρ1
k,h(t),

mke′2,k(t) = −
N∑

i=1

aike2,i(t) + bk(up21(xk, t)vp22(xk, t)− up21
k (t)vp22

k (t)) + ρ2
k,h(t).

Let t0 = max{t : t < T−τ, maxk |ei,k(t)| ≤ 1, i = 1, 2}. We will see that t0 = T−τ
for h small enough. In [0, t0] we have

mke′1,k(t) ≤ −
N∑

j=1

ajke1,j(t) + Kbke1,k(t) + Kbke2,k(t) + ρ1
k,h(t),

where

K = max { (‖v‖L∞(Ω×[0,T−τ ]) + 1)p12p11(‖u‖L∞(Ω×[0,T−τ ]) + 1)p11−1,

(‖u‖L∞(Ω×[0,T−τ ]) + 1)p11p12(‖v‖L∞(Ω×[0,T−τ ]) + 1)p12−1
}

.

An analogous inequality holds for e2,k. Hence, in [0, t0], E1 = (e1,1; . . . ; e1,N ), E2 =
(e2,1; . . . ; e2,N ) is a solution of

ME′
1 ≤ −AE1 + KB(E1 + E2) + ρ(h)M(1, ..., 1)t,

ME′
2 ≤ −AE2 + KB(E1 + E2) + ρ(h)M(1, ..., 1)t.



SIMULTANEOUS VS. NON-SIMULTANEOUS BLOW-UP 7

Let us now define the following function (W,Z) = (w1, . . . , wN , z1, . . . , zN ) that
will be used as a supersolution.

Let a ∈ C2(Ω) be such that a(x) ≥ δ > 0 in Ω, ∂a/∂η > 2Ka on ∂Ω and let
b(t) = exp(Lt) where L is to be determined.

Then, it is easy to check that, if L is large, w(x, t) = Ca(x)b(t)ρ(h) verifies

wt > ∆w, in Ω× [0, T − τ ],
∂w

∂η
> 2Kw, on ∂Ω× [0, T − τ ].

Now, by the consistency of the scheme, one can verify that

W = Z = Cb(t)ρ(h)(a(x1), ..., a(xN ))

is a supersolution of

MW ′ > −AW + KB(W + Z) + ρ(h)M(1, ..., 1)t,

MZ ′ > −AZ + KB(W + Z) + ρ(h)M(1, ..., 1)t,

for C big enough depending on K but not on h.

Next as 0 = Ei(0) ≤ W (0) = Z(0) for i = 1, 2, it follows by a comparison
argument (Lemma 2.1) that

Ei(t) ≤ W (t) = Z(t), ∀t ∈ [0, t0], i = 1, 2.

By a symmetric argument, it follows that

|Ei(t)| ≤ Cb(T − τ)‖a‖L∞(Ω)ρ(h).

From this fact, as ρ(h) → 0, it is easy to see that t0 = T − τ for h small enough,
and the result follows. ¤

3. Blow-up for the numerical scheme.

In this section we prove a blow-up result for the numerical scheme, Theorem 1.2.

First, we cite an auxiliary Lemma (whose proof can be found in [16]) about a
related ordinary differential equation.

Lemma 3.1. ([16], Theorem 2.1) Let (x(s), y(s)) be a positive solution of

(3.1) x′ = xp11yp12 , y′ = xp21yp22 .

Then (x, y) blows up in finite time if and only if one of the following conditions
holds:

p11 > 1, p22 > 1 or (p11 − 1)(p22 − 1) < p12p21.

Next, we prove a couple of Lemmas concerning a dynamic property of a single
equation.

Lemma 3.2. Let Z be a nonnegative solution of

(3.2) 0 = −AZ + cBZβ ,

with β, c > 0. Then Z ≡ 0.
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Proof. First we observe that summing up all the equations of the system (3.2) we
get, by (H4),

0 = −
N∑

j,k=1

akjzj + c

N∑

k=1

bkzβ
k = −

N∑

j=1

zj

(
N∑

k=1

akj

)
+ c

N∑

k=1

bkzβ
k = c

N∑

k=1

bkzβ
k .

Therefore, by (H2), zk = 0 for every boundary node k. Since by (H1)-(H5) the
maximum principle holds for our numerical scheme, the conclusion of the Lemma
follows. ¤

Lemma 3.3. Let W be a positive solution of the following equation

(3.3) MW ′ = −AW + cBW β

with β > 1 and c > 0. Then W blows up in finite time.

Proof. First we observe that

Φ(W ) =
1
2
〈A1/2W,A1/2W 〉 − c

β + 1
〈BW β ,W 〉

is a Lyapunov functional for (3.3), therefore a solution W either converges to a
stationary solution or it is unbounded. The first is impossible since, by Lemma 3.2,
Z ≡ 0 is the unique stationary solution of (3.3) and the minimum principle holds
for (3.3). Therefore W is unbounded and, as the maximum must be attained at a
boundary node k, wk satisfies

mkw′k ≥ −akkwk + cbkwβ
k ≥ δwβ

k .

Hence wk cannot be globally defined, as we wanted to show. ¤

Finally, let us prove a Lemma that allows us to compare U with V in the case
of strong coupling.

Lemma 3.4. Let p11 ≤ 1, p22 ≤ 1 and (p11 − 1)(p22 − 1) < p12p21 and let
α = (p12 − p22 + 1)/(p21 − p11 + 1). Observe that our assumptions on pij imply
that α > 0. If α ≥ 1 then there exists a constant C > 0 independent of h such that
the solution of (1.4) satisfies

(3.4) Cuk(t) ≥ vα
k (t), 1 ≤ k ≤ N

and if α < 1 then there exists a constant C > 0 independent of h such that the
solution of (1.4) satisfies

(3.5) Cvk(t) ≥ u
1/α
k (t), 1 ≤ k ≤ N.

Proof. Assume first that α ≥ 1. Let zk(t) = Cuk(t) and wk(t) = vα
k (t), with C a

positive constant. The function Z satisfies,

MZ ′ = −AZ + C1−p11BZp11W p12/α.

Using the convexity of the function xα (α ≥ 1) and (H3) we have that

αvα−1
k


−

N∑

j=1

akjvj


 ≤


−

N∑

j=1

akjv
α
j


 ,
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hence,

MW ′ ≤ −AW +
α

Cp21
B(Zp21W

p22−1
α +1).

Choosing C > 0 large enough (but independent of h, as u0 and v0 are strictly
positive) we can assume that

(3.6) zk(0) = Cuk(0) > vα
k (0) = wk(0).

We argue by contradiction. Assume, that there exists a first time t0 and a node xk

such that
zk(t0) = wk(t0).

Using that (C1−p11 − α
Cp21 ) > 0 (this can be done by choosing C large). Observing

that p11 + p12α = (p22 − 1)/α + 1 + p21 and using (H4), at t = t0 we have

0 ≥ mk(zk − wk)′(t0)

≥ −
N∑

j=1

akj(zj − wj)(t0) + bk

(
C1−p11 − α

Cp21

)
z

p11+(p12/α)
k > 0,

a contradiction.

The case α < 1 is analogous. ¤

Now we prove Theorem 1.2, which states a necessary and sufficient condition for
the existence of blowing up solutions of the discrete problem (1.3).

Proof of Theorem 1.2. First, let us see that if (U, V ) blows up then p11 > 1, p22 > 1
or (p11 − 1)(p22 − 1) < p12p21.

Let us call x =
N∑

k=1

uk, y =
N∑

k=1

vk. By (H4) we get

min
k

mkx′ ≤
N∑

k=1

bkup11
k vp12

k ≤ N max
k

bkxp11yp12 , min
k

mky′ ≤ N max
k

bkxp21yp22 .

Hence (x, y) is a subsolution for the system (3.1). Then if (U, V ) blows up the
conditions of Lemma 3.1 are satisfied.

To conclude with the proof, if p11 > 1, as vk(t) ≥ minj vj(0) > δ > 0, U verifies

MU ′ ≥ −AU + cBUp11

that is, U is a supersolution of (3.3). Therefore, by Lemma 3.3, U blows up.

The case p22 > 1 is analogous, arguying with V instead of U .

For the case p11 ≤ 1, p22 ≤ 1 and (p11 − 1)(p22 − 1) < p12p21, we proceed as
follows. Let α be as in Lemma 3.4. Then we can assume that α ≥ 1 and, using
Lemma 3.4, we obtain

MV ′ ≥ −AV + CBV p21α+p22 .

Now, our assumption on the exponents pij implies that p21α + p22 > 1, and the
result follows as in the previous cases. ¤
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4. Convergence of the blow-up times

Let us begin proving a couple of Lemmas.

Lemma 4.1. Let (U, V ) be a solution of (1.3) with p11 > 1. such that u′k(0) ≥
δup11

k (0) and v′k(0) ≥ 0, 1 ≤ k ≤ N . Then u′k(t) ≥ δup11
k (t) and v′k(t) ≥ 0,

1 ≤ k ≤ N for every t < Th.

Proof. First, we claim that both u′k(t) and v′k(t) are nonnegative. In order to
do that, let us define wk(t) = u′k(t) and zk(t) = v′k(t). Therefore, by simple
computation, (W,Z) verifies

MW ′ = −AW + D1W + D2Z, MZ ′ = −AZ + D3W + D4Z,

where Di are time dependent matrices with nonnegative coefficients.

As W (0), Z(0) ≥ 0, by the minimum principle, the claim follows.

Now, let us check that u′k(t) ≥ δup11
k (t). Let wk(t) = u′k(t)− δup11

k (t). We want
to use the minimum principle to show that wk(t) is positive. To this end, we observe
that wk verifies

mkw′k +
N∑

j=1

akjwj = mk(u′′k − δp11u
p11−1
k u′k) +

N∑

j=1

akj(u′j − δup11
j )

= −δmkp11u
p11−1
k u′k + bk(p11u

p11−1
k u′kvp12

k + p12v
p12−1
k v′kup11

k )− δ

N∑

j=1

akju
p11
j

≥ −δmkp11u
p11−1
k u′k + bkp11u

p11−1
k u′kvp12

k − δ

N∑

j=1

akju
p11
j

= −δp11u
p11−1
k




N∑

j=1

akjuj + bkup11
k vp12

k


 + bkp11u

p11−1
k u′kvp12

k − δ

N∑

j=1

akju
p11
j

= bkp11u
p11−1
k vp12

k wk − δ


∑

j 6=k

akj(u
p11
j − p11u

p11−1
k uj) + akk(1− p11)u

p11
k




= bkp11u
p11−1
k vp12

k wk − δ


∑

j 6=k

akj(u
p11
j − p11u

p11−1
k (uj − uk)− up11

k )

+
N∑

j=1

akj(1− p11)u
p11
k


 .

As f(u) = up11 is convex (p11 > 1), by our hypotheses on the matrix A it follows
that W = (w1, . . . , wN ) verifies

MW ′ ≥ −AW + Bp11(Up11−1V p12W ) ≥ −AW + cBW.

As W (0) > 0 and the minimum principle holds for this equation, the result follows.
¤
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Lemma 4.2. Let (U, V ) be a solution of (1.3) with p11, p22 ≤ 1 and p12, p21 > 1
such that u′k(0) ≥ δvp12

k (0) and v′k(0) ≥ δup21
k (0), 1 ≤ k ≤ N . Then u′k(t) ≥ δvp12

k (t)
and v′k(t) ≥ δup21

k (t), 1 ≤ k ≤ N for every t < Th.

Proof. The proof is similar to the previous lemma, so we only make a sketch. Let
wk(t) = u′k(t) − δvp12

k (t) and zk(t) = v′k(t) − δup21
k (t). Then, arguing as in the

previous Lemma, using the convexity of the function f(s) = sq, q > 1, it follows
that W,Z verifies

MW ′ ≥ −AW + cBZ, MZ ′ ≥ −AZ + cBW.

Finally, we use the minimum principle and our assumption on the initial data to
finish the proof. ¤

Now we prove the main result of the section, the convergence of the blow-up
times.

Proof of Theorem 1.3. We begin with the case p11 > 1 and p22 ≤ 1. We have that
u blows up at finite time T . Also the pair (U, V ) blows up at finite time Th.

As the scheme is consistent one can check that ∆u0,∆v0 ≥ κ > 0 implies the
hypotheses of the previous lemma for h small enough, with δ independent of h.
So we have that u′k(t) ≥ δup11

k (t) and v′k(t) ≥ 0. Now, applying Lemma 4.1 and
integrating we obtain ∫ Th

t

u′k(s)
up11

k

ds ≥ δ(Th − t),

so

(4.1) δ(Th − t) ≤
∫ +∞

maxk uk(t)

1
xp11

dx.

Since p11 > 1, given ε > 0 we can choose K large and independent of h such that

1
δ

∫ +∞

K

1
xp11

dx ≤ ε

2
.

As u blows up at time T there exists τ < ε
2 such that

‖u(·, T − τ)‖∞ ≥ 2K.

Then, by Theorem 1.1, for h small,

max
k

uk(T − τ) ≥ K.

By (4.1)

|Th − (T − τ)| ≤ 1
δ

∫ +∞

K

1
xp11

dx <
ε

2
,

therefore
|Th − T | ≤ |Th − (T − τ)|+ τ < ε.

The case p11 ≤ 1 and p22 > 1 is analogous. For the case p11, p22 > 1 we observe
that the pair (u, v) blows up at time T and so does (U, V ) at time Th. Suppose that
u blows up, as estimate (4.1) is still valid, the rest of the argument can be applied.
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Finally we consider the case p11, p22 ≤ 1, and 1 < p12, p21. Here we use Lemma
4.2 instead of Lemma 4.1 and obtain

u′k(t) ≥ δvp12
k (t), v′k(t) ≥ δup21

k (t)

with δ > 0 is independent of h. Now, let α be as in Lemma 3.4. If α ≥ 1 (the other
case is analogous), by Lemma 3.4, we get

v′k(t) ≥ cvp21α
k ,

as p21α > 1, the proof now follows as in the previous cases. ¤

5. Non-simultaneous blow-up.

In this Section we consider positive solutions of (1.4) with h fixed and we denote
with C a positive constant that may depend on h and may vary from one line to
another.

Proof of Theorem 1.4. As V is bounded, by (1.4) we have

mku′k(t) ≤ −
N∑

j=1

akjuj(t) + bkup11
k (t)Cp12 .

Let k be a boundary node that is blowing up. Then there exists a time t0 such that
for every t ∈ [t0, Th) it holds

(5.1) u′k(t) ≤ −
N∑

j=1

akj

mk
uj(t) + Cup11

k (t) ≤ Cup11
k (t).

If p11 ≤ 1, uk is bounded, a contradiction. Then p11 must be strictly greater than
one.

For the second condition we need to get a bound from below for the blow-up
rate of uk. For t ∈ [t0, Th) we can integrate (5.1) between t and Th to obtain

∫ Th

t

u′k(s)
up11

k (s)
ds ≤ C(Th − t).

Changing variables we get
∫ +∞

uk(t)

1
sp11

ds ≤ C(Th − t),

hence

(5.2) uk(t) ≥ C(Th − t)−1/(p11−1).

As there exists δ > 0 such that vk(t) > δ, for 1 ≥ k ≥ N , t ∈ [t0, Th) and using
(5.2), we obtain

mkv′k(t) ≥ −
N∑

j=1

akjvj(t) +
C

(Th − t)
p21

p11−1
δp22 .

As vk(t) is bounded, we have that p21 < p11−1. This fact completes the proof. ¤
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Proof of Theorem 1.5. Let V0 any initial data for V . There exists t0, δ > 0 such
that vk(t) ≥ δ for all 0 ≤ t ≤ t0, k = 1 . . . N . Let k be a boundary node. For
t ∈ (0, t0), uk verifies

mku′k(t) ≥ −
N∑

k=1

akjuj(t) + bkup11
k (t)δp22 ≥ −akkuk(t) + Cup11

k (t),

now, if we choose uk(0) large, as p11 > 1, uk(t) cannot be globally defined. There-
fore (U(t), V (t)) blows up at finite time Th < t0. Also, the blow-up rate is bounded
by

max
k

uk(t) ≤ C

(Th − t)
1

p11−1
.

Then V verifies
MV ′(t) ≤ −AV + BC(Th − t)−

p21
p11−1 V p22 .

As p21 < (p11 − 1), if Th is small enough, V remains bounded until time Th. Now
we can choose U(0) large such that (U, V ) blows up at time Th small enough to
ensure that V is bounded hence U blows up and the result follows. ¤

Finally we will face the proof of Theorem 1.6.

Proof of Theorem 1.6. As u blows up and v remains bounded, by [15] we have that
p11 > 1 and p21 < p11− 1. Hence by Theorem 1.2 the pair (U, V ) blows up in finite
time Th and by Lemma 4.1 we have that u′k(t) ≥ δup11

k (t) with δ independent of h,
and therefore we obtain

max
k

uk(t) ≤ C

(Th − t)
1

p11−1
,

with C independent of h. Thus vk verifies

(5.3) mkv′k ≤ −
N∑

j=1

ajkvj +
Kbkvp22

(Th − t)
p21

p11−1
.

Let w be the solution of

(5.4)

wt = ∆w in Ω× (t0, Th),

∂w

∂η
=

2K

(Th − t)
p21

p11−1
wp22 on ∂Ω× (t0, Th),

w(x, t0) = 2L on Ω,

where L is a uniform bound for v. It is shown in [15] that if Th− t0 is small enough
(depending only on L) then w remains bounded up to Th. Now by our consistency
assumption on the scheme it follows that

W (t) = (w1(t), w2(t), ..., wN (t)) = (w(x1, t), w(x2, t), ..., w(xN , t)),

is a supersolution of (5.3) and since the scheme is convergent, for h small enough,
we have V (t0) ≤ W (t0). Therefore, by Lemma 2.1, V (t) ≤ W (t), so V (t) remains
bounded and hence U(t) blows up. ¤



14 G. ACOSTA, J. FERNÁNDEZ BONDER, P. GROISMAN, AND J. D. ROSSI

Acknowledgments: We want to thank the referee for the throughout reading of
the manuscript and several suggestions that help us to improve the presentation of
the paper.

References

[1] L.M. Abia, J.C. Lopez-Marcos and J. Martinez. Blow-up for semidiscretizations of reaction
diffusion equations. Appl. Numer. Math. Vol 20 (1996), 145–156.

[2] L.M. Abia, J.C. Lopez-Marcos and J. Martinez. On the blow-up time convergence of semidis-
cretizations of reaction diffusion equations. Appl. Numer. Math. Vol 26 (1998), 399–414.

[3] G. Acosta, J. Fernández Bonder, P. Groisman and J.D. Rossi. Numerical approximation of a
parabolic problem with nonlinear boundary condition in several space dimensions. Preprint.

[4] H. Amann. Parabolic evolution equations and nonlinear boundary conditions, J. Differential
Equations. Vol 72 (1988), 201–269.

[5] C. Bandle and H. Brunner. Blow-up in diffusion equations: a survey. J. Comput. Appl. Math.
Vol 97 (1998), 3–22.

[6] M. Berger and R.V. Kohn. A rescaling algorithm for the numerical calculation of blowing up
solutions. Comm. Pure Appl. Math. Vol 41 (1988), 841–863.

[7] C.J. Budd, W. Huang and R.D. Russell. Moving mesh methods for problems with blow-up.
SIAM Jour. Sci. Comput. Vol 17(2) (1996), 305–327.

[8] Y.G. Chen. Asymptotic behaviours of blowing up solutions for finite difference analogue of
ut = uxx + u1+α. J. Fac. Sci. Univ. Tokyo, Sec IA, Math. Vol 33 (1986), 541–574.

[9] P. Ciarlet. The finite element method for elliptic problems. North Holland, 1978.
[10] R.G. Durán, J.I. Etcheverry and J.D. Rossi. Numerical approximation of a parabolic problem

with a nonlinear boundary condition. Discrete Contin. Dynam. Systems. Vol 4 (3) (1998),
497–506.

[11] C.M. Elliot and A.M. Stuart. Global dynamics of discrete semilinear parabolic equations.
SIAM J. Numer. Anal. Vol 30 (1993), 1622-1663.

[12] J. Fernández Bonder and J. D. Rossi. Blow-up vs. spurious steady solutions. Proc. Amer.
Math. Soc. Vol 129 (2001), no. 1, 139–144.

[13] A.R. Humphries, D.A. Jones and A.M. Stuart. Approximation of dissipative partial differen-
tial equations over long time intervals. Griffiths, D. F. (ed.) et al., Numerical analysis 1993.
Harlow: Longman Scientific & Technical. Pitman Res. Notes Math. Ser. 303, 180-207 (1994).

[14] C.V. Pao. Nonlinear parabolic and elliptic equations. Plenum Press, New York, 1992.
[15] J.P. Pinasco and J.D. Rossi. Simultaneous vs. nonsimultaneous blow-up. New Zealand J.

Math. Vol 29 (2000), no. 1, 55–59.
[16] J.D. Rossi. On existence and nonexistence in the large for an N dimensional system of heat

equations with nontrivial coupling at the boundary. New Zealand J. Math. Vol 26 (1997), no.
2, 275–285.

[17] A. Samarski, V.A. Galaktionov, S.P. Kurdyunov and A.P. Mikailov. Blow-up in quasilinear
parabolic equations. Walter de Gruyter, Berlin, 1995.

[18] A.M. Stuart and A.R. Humphries. Dynamical systems and numerical analysis. Cambridge
Monographs on Applied and Computational Mathematics. 2. Cambridge: Cambridge Uni-
versity Press. xxi, 1998.

Instituto de Ciencias, Univ. Nac. Gral. Sarmiento, J.M. Gutierrez entre Verdi y
J.L. Suarez (1613), Los Polvorines, Buenos Aires, Argentina

E-mail address: gacosta@ungs.edu.ar
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