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Abstract. In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ωn ⊂ R2

such that Ωn → Ω in the sense of the Hausdorff complementary topology, verify that the number
of connected components of its complements are bounded, then the solutions of the Dirichlet
problem for the Laplacian with source f ∈ L2(R2) converges to the solution of the limit domain
with same source. In this paper, we extend Šverák result to variable exponent spaces.

1. Introduction

One important problem in partial differential equations is the stability of solutions with
respect to perturbations on the domain. This problem has fundamental applications in numerical
computations of the solutions and is also fundamental in optimal shape design problems. See
[1, 12, 20] and references therein.

The famous example of Cioranescu and Murat [6] shows that this problem presents severe
difficulties when treated in full generality. In fact, in [6] the authors take D = [0, 1]× [0, 1] ⊂ R2

and define the domains Ωn = D \∪n−1
i,j=1Brn(xni,j) where the centers of the balls xni,j = (i/n, j/n),

1 ≤ i, j ≤ n− 1 and the radius rn = n−2. Then these domains Ωn converge to the empty set in
the Hausdorff complementary topology, but if un ∈ H1

0 (Ωn) is the solution to{
−∆un = f in Ωn,

un = 0 on ∂Ωn,

then un ⇀ u∗ weakly in H1
0 (D) to the solution of{

−∆u∗ + 2
πu
∗ = f in D,

u∗ = 0 on ∂D.

This example can be generalized to other space dimensions, to different bounded sets D and
also to different types of holes. See the original work [6] and also [24].

There are some simple cases where the continuity can be granted. For instance, if Ω is convex
and {Ωn}n∈N is an increasing sequence of convex polygons such that Ω = ∪n∈NΩn, then the
solutions of the approximating domains Ωn converges to the one of Ω. This fact can be traced
back to the late 50’s and the beginning of the 60’s, see [2, 13, 14, 15]. Then, this result can be
generalized in terms of the capacity of the symmetric differences of Ω and Ωn. See the book of
Henrot, [12].

In practical applications, when one does not have control on the sequence of approximating
domains, this hypothesis is uncheckable, so a different condition is needed. Šverák in [23] gave
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such a condition. In fact, given a bounded domain D ⊂ R2 and a sequence of domains Ωn ⊂ D
such that Ωn → Ω in the sense of the Hausdorff complementary topology the condition that
guaranty the convergence of the solutions in Ωn to the one in Ω is that the number of connected
components of D \ Ωn be bounded. c.f. with the example of Cioranescu-Murat.

The reason why Šverák’s result holds in dimension 2 is because the capacity of curves in
dimension 2 is positive, while in higher dimension curves have zero capacity.

Šverák’s result was later generalized to nonlinear elliptic equations of p−Laplace type. In
fact, in [4], the authors prove the continuity of the solutions of

{
−∆pun = f in Ωn ⊂ RN ,
un = 0 on ∂Ωn,

when the domains Ωn converges to Ω in the Hausdorff complementary topology under the
assumption that the number of connected components of its complements remains bounded.
The idea of the proof is similar to the original one of Šverák and so they end up with the
restriction p > N − 1 that is needed for the curves to have positive p−capacity.

Recall that ∆pu = div(|∇u|p−2∇u) is the so-called p−laplace operator.

In recent years a lot of attention have been put in nonlinear elliptic equations with nonstandard
growth. One of the most representative of such equations is the so-called p(x)−laplacian, that

is defined as ∆p(x)u = div(|∇u|p(x)−2∇u). This operator became very popular due to many new
interesting applications, for instance in the mathematical modeling of electrorheological fluids
(see [21]) and also in image processing (see [5]). Here, the exponent p(x) is assumed to be
measurable and bounded away from 1 and infinity.

So, the purpose of this paper is the extension of the result of Šverák (and also the results of
[4]) to the variable exponent setting.

Organization of the paper. The rest of the paper is organized as follows. In section 2 we
collect some preliminaries on variable exponent spaces that are needed in this paper. The
standard reference for this is the book [7]. Some results are slight variations of the ones found
in [7] and in these cases we present full proofs of those facts (c.f. Theorem 2.24).

In section 3, we study the Dirichlet problem for the p(x)−laplacian, the main result being
the continuity of the solution with respect to the source. Although some of the results are well
known, we decided to present the proofs of all of the results since we were unable to find a
reference for these.

In section 4 we analyze the dependence of the solution of the Dirichlet problem for the
p(x)−laplacian with respect to variations on the domain. Our two main theorems here are
Theorem 4.7 where a capacity condition on the sequence of approximating domains is given
in order for the continuity of solutions to hold, and Theorem 4.8 where it is shown that the
continuity only depends on the approximating domains and not on the source term.

In section 5 after giving some capacity estimates that are needed in the remaining of the
paper, collect all of our results and prove the main result of the paper, namely the extension of
Šverák’s result to the variable exponent setting, i.e. Theorem 5.9.
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2. Preliminaries

2.1. Definitions and well-known results. Given Ω ⊂ RN a bounded open set, we consider
the class of exponents P(Ω) given by

P(Ω) := {p : Ω→ [1,∞) : p is measurable and bounded}.

The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) :=
{
f ∈ L1

loc(Ω): ρp(x)(f) <∞
}
,

where the modular ρp(x) is given by

ρp(x)(f) :=

∫
Ω
|f |p(x) dx.

This space is endowed with the luxemburg norm

‖f‖Lp(x)(Ω) = ‖f‖p(x),Ω = ‖f‖p(x) := sup
{
λ > 0: ρp(x)(

f
λ) < 1

}
.

The infimum and the supremum of the exponent p play an important role in the estimates
as the next elementary proposition shows. For further references, the following notation will be
imposed

1 ≤ p− := inf
Ω
p ≤ sup

Ω
p =: p+ <∞.

The proof of the following proposition can be found in [9, Theorem 1.3, p.p. 427].

Proposition 2.1. Let f ∈ Lp(x)(Ω), then

min{‖f‖p−p(x), ‖f‖
p+
p(x)} ≤ ρp(x)(f) ≤ max{‖f‖p−p(x), ‖f‖

p+
p(x)}.

Remark 2.2. Proposition 2.1, is equivalent to

min{ρp(x)(f)
1

p− , ρp(x)(f)
1

p+ } ≤ ‖f‖p(x) ≤ max{ρp(x)(f)
1

p− , ρp(x)(f)
1

p+ }.

We will use the following form of Hölder’s inequality for variable exponents. The proof, which
is an easy consequence of Young’s inequality, can be found in [7, Lemma 3.2.20].

Proposition 2.3 (Hölder’s inequality). Assume p− > 1. Let u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),
then ∫

Ω
|uv| dx ≤ 2‖u‖p(x)‖v‖p′(x),

where p′(x) is, as usual, the conjugate exponent, i.e. p′(x) := p(x)/(p(x)− 1).

The variable exponent Sobolev space W 1,p(x) is defined by

W 1,p(x)(Ω) :=
{
u ∈W 1,1

loc (Ω): u ∈ Lp(x)(Ω) and ∂iu ∈ Lp(x)(Ω) i = 1, . . . , N
}
,

where ∂iu stands fot the i−th partial weak derivative of u.

This space posses a natural modular given by

ρ1,p(x)(u) :=

∫
Ω
|u|p(x) + |∇u|p(x) dx,

so u ∈W 1,p(x)(Ω) if and only if ρ1,p(x)(u) <∞.
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The corresponding luxenburg norm associated to this modular is

‖u‖W 1,p(x)(Ω) = ‖u‖1,p(x),Ω = ‖u‖1,p(x) := sup
{
λ > 0: ρ1,p(x)(

u
λ) < 1

}
.

Observe that this norm turns out to be equivalent to ‖u‖ := ‖u‖p(x) + ‖∇u‖p(x).

One important subspace of W 1,p(x)(Ω) is the functions with zero boundary values. This is the
content of the next definition.

Definition 2.4. We define W
1,p(x)
0 (Ω) as the closure in W 1,p(x)(Ω) of functions with compact

support.

In most applications is very helpful to have test functions to be dense in W
1,p(x)
0 (Ω). It is well

known, see [7], that this property fails in general, even for continuous exponents p(x). In order
to have this desired property one need to impose some regularity conditions on the exponent
p(x).

Definition 2.5. We say that p : Ω→ R is log-Hölder continuous in Ω if

(2.1) sup
x,y∈Ω
x 6=y

log(|x− y|−1)|p(x)− p(y)| <∞.

Set P log(Ω) = {p ∈ P(Ω): p satisfies (2.1)}.

Under this condition, the following theorem holds,

Theorem 2.6 (Theorem 9.1.6 in [7]). Assume that p ∈ P log(Ω), then C∞c (Ω) is dense in

W
1,p(x)
0 (Ω).

The proof of the following theorem can be found in [7, Theorem 8.2.4].

Theorem 2.7 (Poincaré’s inequality.). Let p ∈ P log(Ω). Then there exists a constant c > 0
such that

‖u‖p(x) ≤ c‖∇u‖p(x), u ∈W 1,p(x)
0 (Ω).

Remark 2.8. Thanks to Poincaré inequality, as usual, in W
1,p(x)
0 (Ω) the following norm will be

used,

‖u‖
W

1,p(x)
0 (Ω)

= ‖∇u‖p(x).

This norm, is equivalent to the usual norm in W 1,p(x)(Ω) for functions u ∈W 1,p(x)
0 (Ω).

Definition 2.9. We denote by W−1,p′(x)(Ω) the topological dual space of W
1,p(x)
0 (Ω).

The duality product between f ∈W−1,p′(x)(Ω) and u ∈W 1,p(x)
0 (Ω) will be denoted, as usual,

by 〈f, u〉.
The norm in this space will be denoted by

‖f‖W−1,p′(x)(Ω) = ‖f‖−1,p′(x) := sup{〈f, u〉 : u ∈W 1,p(x)
0 (Ω), ‖∇u‖p(x) ≤ 1}.

We now present a result which we will find most useful later.

Proposition 2.10. The space L∞(Ω) is dense in W−1,p′(x)(Ω).
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Proof. By Hölder’s inequality we have that W
1,p+
0 (Ω) ⊂W 1,p(x)

0 (Ω) ⊂W 1,p−
0 (Ω) with continuous

embeddings. Since C∞c (Ω) ⊂ W
1,p+
0 (Ω) and p ∈ P log(Ω) we have the embeddings are dense.

Therefore,

W−1,(p−)′(Ω) ⊂W−1,p′(x)(Ω) ⊂W−1,(p+)′(Ω),

with dense embeddings. Finally, since L∞(Ω) is dense in W−1,(p−)′(Ω), we have that L∞(Ω) is

dense in W−1,p′(x)(Ω). �

Analogous to the constant exponent case, we have the following characterization ofW−1,p′(x)(Ω).

Proposition 2.11. Let f ∈W−1,p′(x)(Ω). Then, there exists {fi}Ni=0 ⊂ Lp
′(x)(Ω) such that

〈f, u〉 =

∫
Ω
f0u dx−

N∑
i=1

∫
Ω
fi∂iu dx.

We will then say that f = f0 +
∑N

i=1 ∂ifi. Moreover,

‖f‖∗ = inf

{
N∑
i=0

‖fi‖p′(x) : f = f0 +
N∑
i=1

∂ifi, fi ∈ Lp
′(x)(Ω), i = 0, . . . , N

}
,

defines an equivalent norm in W−1,p′(x)(Ω).

Proof. The characterization of W−1,p′(x)(Ω) follows exactly as in the constant exponent case. It
remains to see the equivalence of the norms ‖ · ‖−1,p′(x) and ‖ · ‖∗.

Observe that ‖ · ‖∗ clearly defines a norm in W−1,p′(x)(Ω).

Let us now take f0, f1, . . . , fn ∈ Lp
′(x)(Ω) such that f = f0 +

∑N
i=1 ∂ifi and consider v ∈

W
1,p(x)
0 (Ω) such that ‖∇v‖p(x) = 1.

By Hölder’s inequality (Proposition 2.3) and Poincaré’s inequality (Theorem 2.7), we have

〈f, v〉 =

∫
Ω

(
f0v +

N∑
i=1

fi∂iv

)
dx

≤ 2‖f0‖p′(x)‖v‖p(x) + 2

N∑
i=1

‖fi‖p′(x)‖∂iv‖p(x)

≤ C

(
‖f0‖p′(x) +

N∑
i=1

‖fi‖p′(x)

)
.

Therefore,

‖f‖−1,p′(x) = inf
‖∇v‖p(x)=1

〈f, v〉 ≤ C

(
‖f0‖p′(x) +

N∑
i=1

‖fi‖p′(x)

)
,

so

‖f‖−1,p′(x) ≤ C‖f‖∗
Now, the reverse inequality is a direct consequence of the Open Mapping Theorem (cf. [3]). �
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Remark 2.12. Let now D ⊂ RN be a bounded, open set and let Ω ⊂ D be open. Then, we have

that W
1,p(x)
0 (Ω) ⊂ W

1,p(x)
0 (D), the inclusion being canonical, extending by zero. This inclusion

induces W−1,p′(x)(D) ⊂ W−1,p′(x)(Ω) by restriction. Therefore, when dealing with sets Ω that

are subsets of D, if one is considering f ∈W−1,p′(x)(D) and u ∈W 1,p(x)
0 (Ω) there is no ambiguity

in the notation 〈f, u〉.

2.2. p(x)-capacity and pointwise properties of Sobolev functions. We need the concept

of capacity modified to deal with pointwise properties of functions in W
1,p(x)
0 (Ω). This is the

concept of p(x)−capacity. See [7, Chapter 10].

Definition 2.13. Given E ⊂ RN , we consider the set

Sp(x)(E) =
{
u ∈W 1,p(x)(RN ) : u ≥ 0 and u ≥ 1 in an open set containing E

}
.

If Sp(x)(E) 6= ∅, we define p(x)−Sobolev capacity of E as follows

capp(x)(E) = inf
u∈Sp(x)(E)

∫
RN

|u|p(x) + |∇u|p(x)dx = inf
u∈Sp(x)(E)

ρ1,p(x)(u).

If Sp(x)(E) = ∅, we set capp(x)(E) =∞.

Definition 2.14. Let p ∈ P log(Ω) and K ⊂ Ω compact, we define the p(x)−relative capacity as

cap∗p(x)(K,Ω) = inf
u∈Rp(x)(K,Ω)

ρp(x),Ω(∇u)

where Rp(x)(K,Ω) = {u ∈W 1,p(x)
0 (Ω): u > 1 in K and u ≥ 0}.

If U ⊂ Ω is an open set, we define capp(x)(U,Ω) = sup
K⊂U

K compact

cap∗p(x)(K,Ω).

Finally, if E ⊂ Ω is arbitrary, we define the p(x)− relative capacity of E with respect to Ω as

capp(x)(E,Ω) = inf
E⊂U⊂Ω
U open

capp(x)(U,Ω).

The main advantage of the relativa capacity is the fact that is possible to obtain a capacitary
potential, i.e. a function whose modular gives the capacity of a set.

To this end, let A ⊂ D and consider the class

ΓA =
{
v ∈W 1,p(x)

0 (D) : v ≥ 1 a.e. in an open set containing A
}
,

the closure being taken in W
1,p(x)
0 (D).

Remark 2.15. Observe that since ΓA ⊂W 1,p(x)
0 (D) is closed and convex (the closure of a convex

set is convex), it follows that is weakly convex. This fact will be used in the next proposition.

Now we show that the relative capacity of a set is realized by a function in ΓA.

Proposition 2.16. If ΓA 6= ∅, then there exists a unique uA ∈ ΓA such that

capp(x)(A,D) =

∫
D
|∇uA|p(x) dx.
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Proof. Consider {vn}n∈N ⊂W
1,p(x)
0 (D) such that vn ≥ 1 a.e. in an open set containing A and∫

D
|∇vn|p(x) dx→ capp(x)(A,D).

By Theorem 2.7 and Proposition 2.1, we have

‖∇vn‖p(x) ≤ max{ρp(x)(∇vn)
1

p+ , ρp(x)(∇vn)
1

p− }.

Then, {vn}n∈N is bounded in W
1,p(x)
0 (D), which is a reflexive space. By Alaoglu’s Theorem,

there is a subsequence vnj ⇀ v∞ en W
1,p(x)
0 (D). By Remark 2.15, v∞ ∈ ΓA.

Observe that ∫
D
|∇v∞|p(x) dx ≤ lim inf

∫
D

∣∣∇vnj

∣∣p(x)
dx = capp(x)(A,D).

Since the reverse inequality is obvious, the first part of the Proposition is proved.

The uniqueness is an immediate consequence of the strict convexity of the modular, since
p− > 1. We leave the details to the reader. �

We can now give the definition of capacitary potential.

Definition 2.17. We define the capacitary potential of A such as the only uA that verifies∫
D
|∇uA|p(x) dx = inf

v∈ΓA

∫
D
|∇v|p(x) dx = capp(x)(A,D).

It is well known that when dealing with pointwise properties of Sobolev functions, the concept
of almost everywhere needs to be changed to quasi everywhere. This is the content of the next
definition.

Definition 2.18. An statement is valid p(x)−quasi everywhere (p(x)−q.e.) if it is valid except
in a set of null Sobolev p(x)−capacity.

Definition 2.19. Let D ⊂ RN be an open bounded set, Ω ⊂ D is p(x)−quasi open if there is a
decreasing sequence {Wn}n∈N of open sets such that capp(x)(Wn, D) converges to 0 and Ω∪Wn

is an open set for each n.

Definition 2.20. A function u : Ω→ R is p(x)−quasi continuous if for every ε > 0, there is an
open set U such that capp(x)(U) < ε and u|Ω\U is continuous.

The proof of the next theorem can be found in [7, Corollary 11.1.5].

Theorem 2.21. Let p ∈ P log(Ω) with 1 < p− ≤ p+ < ∞. Then for each u ∈ W 1,p(x)(Ω) there

exists a p(x)−quasicontinuous function v ∈W 1,p(x)(Ω) such that u = v almost everywhere in Ω.

Remark 2.22. It is easy to see that two p(x)−quasi continuous representatives of a given function

u ∈W 1,p(x)(Ω) can only differ in a set of zero p(x)−capacity. Therefore, the unique p(x)−quasi

continuous representative (defined p(x)−q.e.) of u ∈W 1,p(x)(Ω) will be denoted by ũ.

The proof of the next proposition can be found in [7, Section 11.1.11].

Proposition 2.23. Let vj → v in W
1,p(x)
0 (D). Then, there is a subsequence {vjk}k∈N such that

ṽjk → ṽ p(x)−q.e.
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Now we need a characterization of the space W
1,p(x)
0 (Ω) as the restriction of quasi continuous

functions that vanishes quasi everywhere on RN \ Ω. This theorem is esentialy contained in [7,
Corollary 11.2.5, Theorem 11.2.5]. We include here the proof since a minor modification of the
above mentioned result is needed and for the reader’s convenience.

Theorem 2.24 (Characterization Theorem). Let D ⊂ RN be an open set, Ω ⊂ D an open
subset and p ∈ P log(Ω). Then,

u ∈W 1,p(x)
0 (Ω)⇔ u ∈W 1,p(x)

0 (D) and ũ = 0 p(x)− q.e. in D \ Ω.

Proof. Let u ∈W 1,p(x)
0 (Ω), then, it is immediate that u ∈W 1,p(x)

0 (D).

Now, let {ϕn}n∈N ⊂ C∞c (Ω) such that ϕn → u in W
1,p(x)
0 (Ω) (and therefore in W

1,p(x)
0 (D)).

Let {ϕnj}j∈N ⊂ {ϕn}n∈N be a subsequence such that ϕnj → ũ p(x)−q.e. Then, since ϕnj = 0
in D \ Ω, we have that ũ = 0 p(x)−q.e. in D \ Ω.

To see the converse, let us assume that D = RN (or else, we extend by zero). Since u =

u+−u−, we can assume that u ≥ 0. Moreover, since min{u, n} ∈W 1,p(x)(RN ) converges to u in

W 1,p(x)(RN ), we can assume that u is bounded. Finally, let us consider ξ ∈ C∞c (B(0, 2)) such
that 0 ≤ ξ ≤ 1 and ξ ≡ 1 in B(0, 1). Setting ξn(x) = ξ(xn), we have that ξnu converges to u

in W 1,p(x)(RN ). Therefore we can assume that u(x) = 0 for every x ∈ (B(0, R))c with R large
enough.

Therefore, we need to prove the converse for bounded, compactly supported and nonnegative

functions u ∈W 1,p(x)
0 (RN ) such that ũ = 0 p(x)−q.e. in Ωc.

Since ũ is p(x)−quasi continuous, there is a decreasing sequence of open sets {Wn}n∈N such
that capp(x)(Wn, D)→ 0 and ũ|RN\Wn

is continuous.

We can assume that Wn contains the set of null capacity of RN \ Ω where ũ 6= 0. Therefore,
ũ = 0 in (Ω ∪Wn)c = Ωc ∩W c

n.

Given δ > 0, set Vn = {x : ũ(x) < δ} ∪Wn. Since ũ is continuous in RN \Wn, Vn is an open
set. Therefore, V c

n is a closed set. It is also bounded since V c
n ⊂ B(0, R). Then, V c

n is compact.

Let uWn be the capacitary potential of Wn, then (u− δ)+(1− uWn) = 0 a.e. in Ω \ V c
n .

Consider now a regularizing sequence {φj}j∈N. Therefore, for j sufficiently large we have that

φj ∗
[
(u− δ)+(1− uWn)

]
∈ C∞(Ω).

Observe that
ρp(x)(∇uWn) = capp(x)(Wn, D)→ 0.

By Proposition 2.1, we can conclude that ‖∇uWn‖p(x) → 0 and, by Poincaré’s inequality,

‖uWn‖1,p(x) → 0. Therefore, 1− uWn → 1 in W 1,p(x)(D) when n→∞.

Obviously, (u− δ)+ → u+ = u in W 1,p(x)(D) when δ → 0 and observe that∥∥(u− δ)+(1− uWn)− u
∥∥

1,p(x)
≤‖1− uWn‖1,p(x)

∥∥(u− δ)+ − u
∥∥

1,p(x)

+ ‖u‖1,p(x) ‖uWn‖1,p(x) .

Finally, taking the limit when when j →∞, n→∞ and δ → 0, we have that

φj ∗
[
(u− δ)+(1− uWn)

]
→ u,

which completes the proof. �
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We end this subsection with a lemma that will be much helpful in the sequel.

Lemma 2.25. Let v ∈ W 1,p(x)
0 (RN ) and w ∈ W 1,p(x)

0 (D) such that |v| ≤ w a.e. in D. Then,

v ∈W 1,p(x)
0 (D).

Proof. It is enough to see that v+ ∈ W 1,p(x)
0 (D) (for v− we prodece similarly and haven shown

this result for v+ and v−, we can state that is valid for v = v+ − v−).

Since w ≥ 0, by density we can consider {wn}n∈N ⊂ C∞c (D)+ such that {wn}n∈N converges

to w in W 1,p(x)(D).

Therefore, inf{wn, v+}, which has compact support in D (for each wn has so) converges to
inf{w, v+} which coincides with v+ since |v| ≤ w a.e. in D.

Then, taking an adequate regularizing sequence, we obtain a sequence of C∞c (D) convergent
to v+, which completes the proof. �

3. The Dirichlet problem for the p(x)−laplacian.

We define the p(x)−laplacian as

∆p(x)u := div(|∇u|p(x)−2∇u).

Observe that when p(x) = 2 this operator agrees with the classical Laplace operator, and when
p(x) = p is constant is the well-known p−laplacian.

The Dirichlet problem for the p(x)−laplacian consists of finding u ∈W 1,p(x)
0 (Ω) such that

(3.1)

{
−∆p(x)u = f en Ω,

u = 0 en ∂Ω,

where f ∈ Lp′(x)(Ω) or, more generally, f ∈W−1,p′(x)(Ω).

In its weak formulation, this problem consists of finding u ∈W 1,p(x)
0 (Ω) such that∫

Ω
|∇u|p(x)−2∇u∇v dx = 〈f, v〉 for every v ∈W 1,p(x)

0 (Ω).

Setting

I(v) :=

∫
Ω

1

p(x)
|∇v|p(x) dx− 〈f, v〉,

the problem can be reformulated as finding u ∈W 1,p(x)
0 (Ω) such that

I(u) = min{I(v) : v ∈W 1,p(x)
0 (Ω)}.

By standard methods, we obtain the following result

Theorem 3.1. Assume p− > 1. Then there exists a unique minimizer of I(v) in W
1,p(x)
0 (Ω)

and a unique weak solution of (3.1) u ∈W 1,p(x)
0 (Ω).

Proof. The proof is standard and uses the direct method of the calculus of variations. We omit
the details. �

Remark 3.2. The unique weak solution of (3.1) will be denoted by ufΩ.
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Proposition 3.3. Let f ∈ W−1,p′(x)(Ω) and let A > 0 be such that ‖f‖−1,p′(x) ≤ A. Then,
there exists a constant C depending only on A, p− and p+ such that

‖∇ufΩ‖p(x) ≤ C.

Proof. Let us assume that ‖∇ufΩ‖p(x) > 1 (otherwise, the result is clear). By Proposition 2.1,∫
Ω
|∇ufΩ|

p(x) = 〈f, ufΩ〉 ≤ ‖f‖−1,p′(x)‖u
f
Ω‖p(x) ≤ ‖f‖−1,p′(x)(ρp(x)(u

f
Ω))

1
p− .

Therefore, ∫
Ω
|∇ufΩ|

p(x) ≤ ‖f‖
p−

p−−1

−1,p′(x),

which completes the proof. �

In what follows, the monontonicity of the p(x)−laplacian is crucial. This fact is a consequence
of the following well-known lemma that is proved in [22, p.p. 210].

Lemma 3.4. There is a constant c1 > 0 such that for every a, b ∈ RN ,

(|b|p−2b− |a|p−2a) · (b− a) ≥

{
c1|b− a|p if p ≥ 2,

c1
|b−a|2

(|b|+|a|)2−p if p ≤ 2.

Remark 3.5. Observe that if u ∈W 1,p(x)
0 (Ω), then −∆p(x)u ∈W−1,p′(x)(Ω). In fact,

〈−∆p(x)u, v〉 =

∫
Ω
|∇u|p(x)−2∇u∇v dx.

Definition 3.6. Let f ∈W−1,p′(x)(Ω). We say that f ≥ 0 if 〈f, v〉 ≥ 0 for every v ∈W 1,p(x)
0 (Ω)

such that v ≥ 0.

Let f, g ∈W−1,p′(x)(Ω). We say that g ≤ f if f − g ≥ 0.

We now prove the comparison principle for (3.1)

Lemma 3.7 (Comparison Principle). Let u, v ∈W 1,p(x)
0 (D) be such that{

−∆p(x)u ≤ −∆p(x)v in D,

u ≤ v on ∂D.

Then, u ≤ v en D.

Proof. Let us call g := −∆p(x)u and f := −∆p(x)v. Then, by Remark 3.5, we obtain that, given

ϕ ∈W 1,p(x)
0 (D), ∫

D
(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ϕ(x) dx = 〈g − f, ϕ〉.

In particular, taking ϕ = (u− v)+ ∈W 1,p(x)
0 (D), since g ≤ f we have that∫

D
(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v)+ dx = 〈g − f, (u− v)+〉 ≤ 0.
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Taking into account that ∇(u− v)+ = (∇u−∇v)χ{u>v}, we conclude that∫
{u>v}

(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)(∇u−∇v) dx ≤ 0.

Now, let us define Ω′1 := {x ∈ D : p(x) ≥ 2} and Ω′′1 := {x ∈ D : p(x) < 2}. Therefore,
D = Ω′1 ∪ Ω′′1 (disjoint union).

Now, by Lemma 3.4, there is a constant c > 0 such that∫
{u≥v}

(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)(∇u−∇v) dx

≥ c
∫
{u≥v}∩Ω′1

|∇u−∇v|p(x) dx+ c

∫
{u≥v}∩Ω′′1

|∇u−∇v|2

(|∇u|+ |∇v|)2−p(x)
dx.

Therefore, since ∇(u− v)+ = (∇u−∇v)χu>v, we conclude that

0 ≥
∫

Ω′1

|∇(u− v)+|p(x) dx,+

∫
Ω′′1

|∇(u− v)+|2

(|∇u|+ |∇v|)2−p(x)
dx.

Then, ∇(u− v)+ = 0 in D. So (u− v)+ is constant in D. Since (u− v)+ ∈W 1,p(x)
0 (D), we have

that (u− v)+ = 0. Therefore u− v ≤ 0, which completes the proof. �

Corollary 3.8 (Weak maximum principle). Let f ∈ W−1,p′(x)(Ω) be such that f ≥ 0. Then

ufΩ ≥ 0.

Proof. Just apply Lemma 3.7 with u = 0 and v = ufΩ. �

The following proposition gives the monotonicity property of the solution with respect to the
domain. The proof follows the ideas of [12, Theorem 3.2.5.] where the linear case p(x) = 2 is
treated. Nevertheless, since the p(x)−laplacian is nonlinear, the monotonicity property of this
operator comes into play replacing linearity in the argument.

Proposition 3.9 (Property of monotonicity with respect to the domain.). Let Ω1 ⊂ Ω2 and

f ∈W−1,p′(x)(Ω2) be such that f ≥ 0. Then, ufΩ1
≤ ufΩ2

.

Proof. We will denote u1 = ufΩ1
and u2 = ufΩ2

.

Given v ∈W 1,p(x)
0 (Ω1) ⊂W 1,p(x)

0 (Ω2),

(3.2)

∫
Ωi

|∇ui|p(x)−2∇ui∇v dx = 〈f, v〉, i = 1, 2.

Therefore,

(3.3)

∫
Ω1

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)∇v dx = 0,

for every v ∈W 1,p(x)
0 (Ω1).

Since f ≥ 0, we have that u2 ≥ 0. Then, (u1 − u2)+ ≤ u+
1 ∈ W

1,p(x)
0 (Ω1) and hence, by

Lemma 2.25, (u1 − u2)+ ∈W 1,p(x)
0 (Ω1). Therefore∫

Ω1

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)∇(u1 − u2)+ dx = 0.
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Now, let us define Ω′1 := {x ∈ Ω1 : p(x) ≥ 2} and Ω′′1 := {x ∈ Ω1 : p(x) < 2}. Therefore,
Ω1 = Ω′1 ∪ Ω′′1 (disjoint union).

Now, by Lemma 3.4, there is a constant c > 0 such that

0 =

∫
{u1≥u2}∩Ω1

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx

≥ c
∫
{u1≥u2}∩Ω′1

|∇u−∇v|p(x) dx+ c

∫
{u1≥u2}∩Ω′′1

|∇u−∇v|2

(|∇u|+ |∇v|)2−p(x)
dx.

Therefore, since ∇(u− v)+ = (∇u−∇v)χu>v, we conclude that

0 ≥
∫

Ω′1

|∇(u− v)+|p(x) dx,+

∫
Ω′′1

|∇(u− v)+|2

(|∇u|+ |∇v|)2−p(x)
dx.

Then,∇(u1−u2)+ = 0 in Ω1. Hence, (u1−u2)+ is constant in Ω1. Since (u1−u2)+ ∈W 1,p(x)
0 (Ω1),

we have that (u1 − u2)+ = 0. Therefore u1 − u2 ≤ 0, which completes the proof. �

We now end this section with an stability result for solutions of the Dirichlet problem

Theorem 3.10. Let D ⊂ RN be open, and let fi ∈ W−1,p′(x)(D), i = 1, 2. There exists a
constant C > 0 depending only on p−, p+ and max{‖fi‖−1,p′(x)} such that, if Ω ⊂ D,∫

D
|∇uf1Ω −∇u

f2
Ω |

p(x) dx ≤ C(‖f1 − f2‖−1,p′(x) + ‖f1 − f2‖β−1,p′(x)),

where the constant β > 0 depends only on p− and p+.

Theorem 3.10 immediately implies the following Corollary.

Corollary 3.11. Let fn, f ∈W−1,p′(x)(Ω) be such that ‖fn − f‖−1,p′(x) → 0. Then

‖∇ufnΩ −∇u
f
Ω‖p(x) → 0.

Now we proceed with the proof of the Theorem.

Proof of Theorem 3.10. Let us denote ui = ufiΩ .

Given ϕ ∈W 1,p(x)
0 (Ω), we have that

(3.4)

∫
Ω
|∇ui|p(x)−2∇ui∇ϕdx = 〈fi, ϕ〉, i = 1, 2.

In particular, considering ϕ = u1 − u2 ∈W 1,p(x)
0 (Ω) and subtracting, we obtain∫

Ω
(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx

= 〈f1 − f2, u1 − u2〉
≤ ‖f1 − f2‖−1,p′(x)‖∇u1 −∇u2‖p(x)

≤ ‖f1 − f2‖−1,p′(x)(‖∇u1‖p(x) + ‖∇u2‖p(x))

≤ C‖f1 − f2‖−1,p′(x)

where we have used Proposition 3.3 in the last inequality.
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On the other hand, naming Ω1 = Ω ∩ {p(x) ≥ 2} and Ω2 = Ω ∩ {p(x) < 2}, we have that∫
Ω

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx

=

2∑
i=1

∫
Ωi

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx.

Let us study each of these integrals. By Lemma 3.4,∫
Ω1

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx ≥ c
∫

Ω1

|∇(u1 − u2)|p(x) dx.

Let us now analyze the integral over Ω2.∫
Ω2

|∇(u1 − u2)|p(x)dx =

∫
Ω2

(|∇u1|+ |∇u2|)
(2−p(x))p(x)

2

(
|∇(u1 − u2)|

(|∇u1|+ |∇u2|)
2−p(x)

2

)p(x)

dx

≤ 2‖(|∇u1|+ |∇u2|)
(2−p(x))p(x)

2 ‖ 2
2−p(x)

∥∥∥∥∥∥
(

|∇(u1 − u2)|

(|∇u1|+ |∇u2|)
2−p(x)

2

)p(x)
∥∥∥∥∥∥

2
p(x)

≤ 2

(∫
Ω2

(|∇u1|+ |∇u2|)p(x)dx

)α(∫
Ω2

|∇(u1 − u2)|2

(|∇u1|+ |∇u2|)2−p(x)
dx

)β
.

for some constants α and β depending only on p− and p+. Let us observe that for the first
inequality we took into account Hölder’s inequality and for the second one, Observation 2.2.

Let us now find a bound for the first factor. In fact, by Proposition 3.3.∫
Ω2

(|∇u1|+ |∇u2|)p(x) dx ≤ 2p+−1

∫
Ω2

(|∇u1|p(x) + |∇u2|p(x)) dx ≤ C.

Observe that, by Lemma 3.4, we are able to find a bound for the second factor.∫
Ω2

|∇(u1 − u2)|2

(|∇u1|+ |∇u2|)2−p(x)
dx ≤ C

∫
Ω2

(|∇u1|p(x)−2∇u1 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx.

Then,∫
Ω2

|∇(u1 − u2)|p(x) dx ≤ C
(∫

Ω2

(|∇u1|p(x)−2∇u2 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx

)β
≤ C

(∫
Ω

(|∇u1|p(x)−2∇u2 − |∇u2|p(x)−2∇u2)(∇u1 −∇u2) dx

)β
≤ C‖f1 − f2‖β−1,p′(x).

So we can conclude that∫
Ω
|∇(u1 − u2)|p(x) dx ≤ C(‖f1 − f2‖−1,p′(x) + ‖f1 − f2‖β−1,p′(x)).

This finishes the proof. �
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4. Continuity of the Dirichlet problem with respect to perturbations on the
domain.

In this section we investigate the dependence of the solutions of the Dirichlet problem ufΩ with
respect to perturbations on the domain. We will analyze a rather general problem considering a
sequence of uniformly bounded domains Ωn converging to a limiting domain Ω in the Haussdorf

complementary topology. Then we study whether ufΩn
converges to ufΩ or not.

We begin this section by defining a notion of convergence of domains that will be essential
for our next results.

Definition 4.1 (Hausdorff complementary topology.). LetD ⊂ RN be compact. GivenK1,K2 ⊂
D compact sets, we define de Hausdorff distance dH as

dH(K1,K2) := max

{
sup
x∈K1

inf
y∈K2

‖x− y‖, sup
x∈K2

inf
y∈K1

‖x− y‖
}
.

Now, let Ω1,Ω2 ⊂ D be open sets, we define the Hausdorff complementary distance dH as

dH(Ω1,Ω2) := dH(D \ Ω1, D \ Ω2).

Finally, we say that {Ωn}n∈N converges to Ω in the sense of the Hausdorff complementary

topology, denoted by Ωn
H→ Ω, if dH(Ωn,Ω)→ 0.

For an study and properties of this topology of open sets, we refer to the book [12].

We now present the one property that will be essential for our purposes.

Proposition 4.2. Let K ⊂ Ω be a compact set. If Ωn
H→ Ω, then K ⊂ Ωn for every n large

enough.

Proof. The proof is immediate from the definition. See [12]. �

Now we state a couple of corollaries of Proposition 3.3 that will be most useful.

Corollary 4.3. Let D ⊂ RN be an open bounded set and let Ωn ⊂ D be a sequence of open

domains. Let p ∈ P log(Ω) such that p− > 1. Then, {ufΩn
}n∈N is bounded in W

1,p(x)
0 (D).

Corollary 4.4. Under the same assumptions as in Corollary 4.3, we have that the sequence

{|∇ufΩn
|p(x)−2∇ufΩn

}n∈N is bounded in Lp
′(x)(D).

We now extend to variable exponent spaces Proposition 3.7 in [4].

Theorem 4.5. Let us denote un = ufΩn
. Assume that un ⇀ u∗ weakly in W

1,p(x)
0 (D). Let

Ω ⊂ D be such that for every compact subset K ⊂ Ω, there is an integer n0 such that K ⊂ Ωn

for every n ≥ n0. Then, there holds that

−∆p(x)u
∗ = f in Ω.

Remark 4.6. Observe that in order to conclude that u∗ = ufΩ it remains to see that u∗ ∈
W

1,p(x)
0 (Ω).
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Proof. As p ∈ P log(D), we need to verify that, given ϕ ∈ C∞c (Ω), the following equality is valid:∫
Ω
|∇u∗|p(x)−2∇u∗∇ϕdx = 〈f, ϕ〉.

Let ϕ ∈ C∞c (Ω). Since supp(ϕ) ⊂ Ω is compact, there is an integer n0 such that supp(ϕ) ⊂ Ωn

for every n ≥ n0. Therefore, ϕ ∈ C∞c (Ωn) for every n ≥ n0.

Set K = supp(ϕ) and Kε = {x ∈ RN : d(x,K) < ε} with ε sufficiently small to make sure
that Kε ⊂⊂ Ωn ∩ Ω for every n ≥ n1.

We will, from now on, work with n ≥ max{n0, n1}.
Let η ∈ C∞c (Ω) such that η = 1 in K

ε
2 , η = 0 in (Kε)c and 0 ≤ η ≤ 1.

Consider φn = η(un − u∗) and since φn ∈W 1,p(x)
0 (Ωn) we have∫

D
|∇un|p(x)−2∇un∇φn dx =

∫
Ωn

|∇un|p(x)−2∇un∇φn dx = 〈f, φn〉.

Standard computations now give us∫
D
|∇un|p(x)−2∇unη∇(un − u∗) dx ≤ 〈f, φn〉 −

∫
D
|∇un|p(x)−2∇un∇η(un − u∗) dx.

Since un ⇀ u∗ en W
1,p(x)
0 (D), φn ⇀ 0 in W

1,p(x)
0 (Ω) and so 〈f, φn〉 → 0.

On the one hand, by the compactness of the embedding W
1,p(x)
0 (D) ⊂ Lp(x)(D), we have that

un → u∗ in Lp(x)(D), and so, by Hölder’s inequality,∫
D
|∇un|p(x)−2∇un∇η(un − u∗) dx ≤ 2‖∇η‖∞‖|∇un|p(x)−2∇un‖p′(x)‖un − u‖p(x) → 0,

by Corollary 4.4. Then we can conclude that

lim sup

∫
D
|∇un|p(x)−2∇unη∇(un − u∗) dx ≤ 0.

Since η = 0 en (Kε)c,

(4.1) lim sup

∫
Kε

|∇un|p(x)−2∇unη∇(un − u∗) dx ≤ 0

On the other hand, since ∇un ⇀ ∇u∗ en Lp
′(x)(Kε),

(4.2)

∫
Kε

|∇u∗|p(x)−2∇u∗η∇(un − u∗) dx→ 0

By (4.1) and (4.2) we have that

lim sup

∫
Kε

(|∇un|p(x)−2∇un − |∇u∗|p(x)−2∇u∗)η∇(un − u∗) dx ≤ 0.

Since K
ε
2 ⊂ Kε, by Lemma 3.4, we can conclude that

lim

∫
K

ε
2

(|∇un|p(x)−2∇un − |∇u∗|p(x)−2∇u∗)∇(un − u∗) dx = 0.

Again, by Lemma 3.4, it follows that (|∇un|p(x)−2∇un − |∇u∗|p(x)−2∇u∗)∇(un − u∗) → 0 in

L1(K
ε
2 ) and therefore a.e. in K

ε
2 .
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From these facts, it easily follows that

(4.3) ∇un → ∇u∗ a.e. in K
ε
2 .

Finally, by Corollary 4.4, there exists ξ ∈ Lp(x)(K
ε
2 )N such that |∇un|p(x)−2∇un ⇀ ξ in

Lp
′(x)(K

ε
2 ).

From (4.3), we can conclude that ξ = |∇u∗|p(x)−2∇u∗ in K
ε
2 and that∫

K
ε
2

|∇un|p(x)−2∇un∇ϕdx→
∫
K

ε
2

|∇u∗|p(x)−2∇u∗∇ϕdx.

Since supp(∇ϕ) ⊂ K ⊂ K
ε
2 ⊂ Kε ⊂ Ωn ∩ Ω,∫

Ωn

|∇un|p(x)−2∇un∇ϕdx→
∫

Ω
|∇u∗|p(x)−2∇u∗∇ϕdx.

This finishes the proof. �

As we mentioned in Remark 4.6, in order to obtain the continuity of solutions with respect

to the domain, we need to provide with conditions than ensure u∗ ∈ W 1,p(x)
0 (Ω). This is the

content of the next theorem.

Theorem 4.7. Let D ⊂ RN be an open bounded set and let Ωn,Ω ⊂ D be open for every n. Let

p ∈ P log(D). If Ωn
H→ Ω and capp(x)(Ωn \ Ω, D)→ 0, then ufΩn

⇀ ufΩ weakly in W
1,p(x)
0 (D).

Proof. As before, we denote un = ufΩn
. By Corollary 4.3, {un}n∈N is bounded in W

1,p(x)
0 (D),

therefore, we can assume that un ⇀ u∗ weakly in W
1,p(x)
0 (D).

By Theorem 4.5 and Remark 4.6 the proof will be finished if we can prove that u∗ ∈W 1,p(x)
0 (Ω).

By Theorem 2.24, it is enough to prove that ũ∗ = 0 p(x)−q.e. in Ωc.

Consider Ω̃j = ∪n≥jΩn and E = ∩j≥1Ω̃j .

Since un ⇀ u∗ in W
1,p(x)
0 (D), by Mazur’s Lemma (see for instance [8]), there is a sequence

vj =
∑kj

n=j anjun such that anj ≥ 0,
∑kj

n=j anj = 1 and vj → u∗ in W
1,p(x)
0 (D).

Since un ∈ W
1,p(x)
0 (Ωn), by Theorem 2.24, ũn = 0 p(x)−q.e. in Ωc

n. Therefore, ṽj =∑kj
n=j anj ũn = 0 p(x)−q.e. in ∩kjn=jΩ

c
n ⊃ Ω̃c

j for every j ≥ 1. Then, ṽj = 0 p(x)−q.e. in

Ω̃c
j for every j ≥ 1. As a consequence, ṽj = 0 p(x)−q.e. ∪j≥1Ω̃c

j = Ec.

On the other hand, since vj → u∗ in W
1,p(x)
0 (D), by Proposition 2.23 ṽjk → ũ∗ p(x)−q.e.

Then we conclude that ũ∗ = 0 p(x)−q.e. in Ec.

Since capp(x)(Ωn \ Ω, D) goes to zero, passing to a subsequence, if necessary, we can assume

that capp(x)(Ωn \ Ω, D) ≤ 1
2n . Therefore,

capp(x)(Ω̃j \ Ω, D) = capp(x)(∪n≥jΩn \ Ω, D)

≤
∑
n≥j

capp(x)(Ωn \ Ω, D)

≤
∑
n≥j

1

2n
=

1

2j−1
.
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Since E ⊂ Ω̃j , we have that E \ Ω ⊂ Ω̃j \ Ω for every j ≥ 1 and so,

capp(x)(E \ Ω, D) ≤ capp(x)(Ω̃j \ Ω, D) ≤ 1

2j−1
for every j ≥ 1.

Taking the limit j → ∞, we have that capp(x)(E \ Ω, D) = capp(x)(Ω
c \ Ec, D) = 0. So we can

conclude that ũ∗ = 0 p(x)−q.e. in Ωc, which completes the proof. �

The next result shows that the continuity of the solutions of the Dirichlet problem for the
p(x)−laplacian with respect to the domain is independent of the second member f .

For constant exponents, this result was obtained in [4, Lemma 4.1]. The proof that we present
here, in the non-constant exponent case, follows closely the one in [12, Theorem 3.2.5] where
the linear case p(x) ≡ 2 is studied.

Theorem 4.8 (Independence with respect to the second member). Let Ωn,Ω ⊂ D be open sets

such that u1
Ωn
→ u1

Ω in Lp(x)(D). Then ufΩn
⇀ ufΩ in W

1,p(x)
0 (D) for every f ∈W−1,p′(x)(D).

Proof. Let us assume first that f ∈ L∞(D). Therefore, there is a constant M > 0 such that
−M ≤ f ≤M a.e. We can also assume that M > 1.

We will name ufn = ufΩn
and uf = ufΩ.

Given k > 1, since u1
n is the solution of the equation with f ≡ 1,∫

Ω
|∇(ku1

n)|p(x)−2∇(ku1
n)∇ϕdx =

∫
Ω
kp(x)−1|∇u1

n|p(x)−2∇u1
n∇ϕdx

≥ kp−−1

∫
Ω
|∇u1

n|p(x)−2∇u1
n∇ϕdx

= kp−−1

∫
Ω
ϕdx.

Considering k = M
1

p−−1 , we have that f ≤ M = kp−−1 ≤ −∆p(x)(ku
1
n), therefore, u is a

supersolution. Since we also have that 0 = ufn|∂D ≤ ku1
n|∂D = 0, by Proposition 3.9, we can

conclude that ufn ≤ ku1
n.

On the other hand, since −∆p(x)(−ku1
n) = ∆p(x)(ku

1
n) ≤ −kp−−1 = −M ≤ f , we obtain that

−ku1
n ≤ u

f
n.

Therefore

(4.4) −ku1
n ≤ ufn ≤ ku1

n.

By Corollary 4.3, {ufn}n∈N is bounded in W
1,p(x)
0 (D). Then, by Alaoglu’s Theorem, there is a

subsequence, which will remaine denoted {ufn}n∈N such that ufn ⇀ u∗ en W
1,p(x)
0 (D).

Since, by Rellich-Kondrachov’s Theorem, we know that W
1,p(x)
0 (D) is compactedly embbeded

in Lp(x)(D), we have that ufn → u∗ in Lp(x)(D).

Then, taking into account the convergence in Lp(x)(D) in (4.4), we have that

−ku1 ≤ u∗ ≤ ku1.

Therefore, |u∗| ≤ ku1 and, since u1 ∈W 1,p(x)
0 (Ω) we can conclude that u∗ ∈W 1,p(x)

0 (Ω).
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Let us assume now that f ∈W−1,p′(x)(D). By density, there is a sequence {fj}j∈N ⊂ L∞(D)

such that fj → f in W−1,p′(x)(D).

Given ϕ ∈W−1,p′(x)(D),

〈ϕ, ufn − uf 〉 = 〈ϕ, ufn − u
fj
n 〉+ 〈ϕ, ufjn − ufj 〉+ 〈ϕ, ufj − uf 〉.

Now, by Theorem 3.10, given ε > 0, there exists j0 ∈ N such that

‖∇ufn −∇u
fj
n ‖p(x) ≤ ε and ‖∇uf −∇ufj‖p(x) ≤ ε,

uniformly in n ∈ N for every j ≥ j0. By the first part of the proof,

〈ϕ, ufjn − ufj0 〉 → 0 as n→∞.
This completes the proof. �

5. Extension of a result of Šverák.

In this section, we apply our results to prove the extension of the theorems of Šverák discussed
in the introduction. Our main result being Theorem 5.9.

We begin by establishing some capacity estimate from below for compact connected sets. This
was obtained for p(x) ≡ 2 by Šverák in [23]. See the book [12] for a proof. For general constant
exponents, this estimate was obtained in [4]. Our extension to variable exponents will rely on
Bucur and Trebeschi’s result [4]. In fact, we use the following proposition.

Proposition 5.1 ([4], Lemma 5.2). Let p > N − 1 be constant and let K ⊂ RN be compact and
connected. Assume that there exists a constant a > 0 such that 2a < diamK. Then, for every
x ∈ K and a ≤ r < diamK

2 , we have the following inequality:

capp(K ∩B(x, r), B(x, 2r)) ≥ c,
for some constant c > 0 depending only on p and a.

The next proposition relates the relative capacity of a set for constant exponents with the
one with variable exponents.

Proposition 5.2. Let p ∈ P log(D). Then,

capp−(E,D) ≤ Ccapp(x)(E,D)β,

whereC > 0 depends on |D|, p+ and p− and β > 0 depends on p+ and p−.

Proof. Given ϕ ∈W 1,p(x)
0 (D), by Hölder’s inequality and Proposition 2.1, we obtain∫

D
|∇ϕ|p− dx ≤ C

(∫
D
|∇ϕ|p(x) dx

)β
.

So we conclude

inf
ϕ∈Sp(x)(E,D)

∫
D
|∇ϕ|p− dx ≤ C

(
inf

ϕ∈Sp(x)(E,D)

∫
D
|∇ϕ|p(x) dx

)β
.

On the other hand, since W
1,p(x)
0 (D) ⊂W 1,p−

0 (D),

inf
ϕ∈Sp− (E,D)

∫
D
|∇ϕ|p− dx ≤ C

(
inf

ϕ∈Sp(x)(E,D)

∫
D
|∇ϕ|p(x) dx

)β
.
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We can conclude that capp−(E,D) ≤ Ccapp(x)(E,D))β. �

From Proposition 5.1 and Proposition 5.2 we obtain the following corollary.

Corollary 5.3. Given K ⊂ D ⊂ RN compact and connected and p ∈ P log(B(x, 2r)) such that
p− ≥ N − 1. Then, for every x ∈ K and a ≤ r < diamK

2 for some positive constant a,

capp(x)(K ∩B(x, r), B(x, 2r)) ≥ κ,
for some constant κ > 0 depending on |D|, diamD, p+ and p−.

Proof. Just apply Proposition 5.2 to the sets K ∩ B(x, r) and B(x.2r), and observe that 2r <
diamK ≤ diamD. Then apply Proposition 5.1. �

Now we look for an extension of Theorem 4.7 in the sense that instead of requiring some
capacity condition on the differences of the approximating domains with the limiting domain,
we require a uniform boundary regularity in terms of capacity.

Definition 5.4. We say that Ω verifies the condition (p(x), α, r) if

capp(x)(Ω
c ∩B(x, r), B(x, 2r)) ≥ α, x ∈ ∂Ω.

Set Oα,r0(D) = {Ω ⊂ D open: Ω verifies the condition (p(x), α, r) for every 0 < r < r0}.

From now on we will need a result on uniform continuity with respect to Ω ∈ Oα,r0(D) for

the solutions of the Dirichlet problem, ufΩ with f sufficiently integrable.

This result for p(x) ≡ 2 is classic and can be found, for instance, in [12, Lemma 3.4.11 and
Theorem 3.4.12, p.p. 109]. The key for its proof is to obtain the Wiener conditions, see [11].

The extension for 1 < p < N constant can be found in the articles [10, 16, 19]. Consult the
book [18], Theorem 4.22. The result for p(x) variable was recently obtained in [17].

Lemma 5.5 ([17], Theorem 4.4). Given Ω ∈ Oα,r0(D), f ∈ Lr(D), r > N . Then, there are

constants M > 0 and 0 < δ < 1 such that |ufΩ(x)− ufΩ(y)| ≤M |x− y|δ.

With this result we are able to prove the analogous of Theorem 4.7 for domains in Oα,r.

Theorem 5.6. Given {Ωn}n∈N ⊂ Oα,r0(D) such that Ωn
H→ Ω. Then, ufΩn

⇀ ufΩ in W
1,p(x)
0 (D).

Proof. By Theorem 4.8, we can assume that f = 1 and u1
Ωn

⇀ u∗ in W
1,p(x)
0 (D).

In order to see that u∗ = u1
Ω, by Theorem 4.5, it is enough to verify that u∗ ∈W 1,p(x)

0 (Ω). By

Theorem 2.24, it is enough to prove that ũ∗ = 0 p(x)−q.e. in Ωc.

As a direct consecuence of Lemma 3.7, u1
D ≥ 0 and u1

Ωn
≥ 0.

By Lemma 5.5, given y ∈ ∂D, for every x /∈ Ω we have

u1
D(x) = |u1

D(x)− u1
D(y)| ≤M |x− y|δ ≤M(diamD)δ.

By Lemma 3.7, 0 ≤ u1
Ωn
≤ u1

D ≤M(diamD)δ. Therefore, {un}n∈N is uniformly bounded.

By Lemma 5.5, {un}n∈N is uniformly equicontinuous. Therefore, {un}n∈N converges uni-
formily to u∗.

Given x ∈ Ωc, since Ωn
H→ Ω, there is a sequence xn ∈ Ωc

n such that xn converges to x. By
uniform convergence, we have that un(xn) converges to u∗(x). Since suppun ⊂ Ω̄n, we obtain
that un(xn) = 0 for every n and, therefore, u∗(x) = 0, which completes the proof. �
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Remark 5.7. If p− > N , the same proof can be applied. It is enough to observe that, by Morrey’s

estimates, W
1,p(x)
0 (D) ⊂W 1,p−

0 (D) ⊂ Cα(D) with α = 1−N/p−.

Having presented the previous results, the proof of the extension is similar to the one given
by Šverák for p = 2. We include it for the reader’s convenience.

Definition 5.8. Given l ∈ N y Ω ⊂ D, set #Ω the number of connected components of D \ Ω.

Set Ol(D) = {Ω ⊂ D open: #Ω ≤ l}.

Theorem 5.9. Given p ∈ P log(D) such that N − 1 < p− and {Ωn}n∈N ⊂ Ol(D) such that

Ωn
H→ Ω. Then ufΩn

⇀ ufΩ in W
1,p(x)
0 (D).

Proof. By Remark 5.7, we only have to consider the case N − 1 < p− ≤ N .

By Theorem 4.8, we can assume that f = 1 and un = u1
Ωn

⇀ u∗ en W
1,p(x)
0 (D).

In order to see that u∗ = u1
Ω, by Theorem 4.5, it is sufficient to verify that u∗ ∈W 1,p(x)

0 (Ω).

Set D̄ \Ωn = Fn = F 1
n ∪F 2

n ∪ ...∪F ln where each F in is compact and connected. Assume that

F jn
H→ F j for every 1 ≤ j ≤ l.

Let us analyze each of the three possibilities. We will find that it is posible to disregard the
first two.

(1) If F j = ∅, then F jn = ∅ for every n ≥ n0. Set J0 = {j ∈ {1, . . . , l} : F jn = ∅ for j large}.
(2) If F j = {xj}, set J1 = {j ∈ {1, . . . , l} : F j = {xj} and p(xj) ≤ N}. Now consider the set

Ω∗ = Ω \ ∪i∈J1{xi}. Since capp(x)({xi}, D) = 0, we have that capp(x)(Ω
∗, D) = capp(x)(Ω, D).

Then, by Theorem 2.24, W
1,p(x)
0 (Ω∗) = W

1,p(x)
0 (Ω). It is enough therefore to verify that u∗ ∈

W
1,p(x)
0 (Ω∗).

Set I = {1, . . . , l} \ (J0 ∪ J1) and consider Ω∗n = D \ ∪j∈IF jn
H→ Ω∗.

(3) If, for j ∈ I, F j contains al least two points. Let aj be the distance between them. These

points are limits of points from F jn which we may assume to have a distance at least of
aj
2

between them for n large enough.

Given x ∈ ∂Ω∗n and j = j(x) ∈ I such that x ∈ F jn, by Corollary 5.3, if a ≤ r <
aj
4 for some

positive constant a, then there is a universal constant κ that verifies the following inequality:

capp(x)((Ω
∗
n)c ∩B(x, r), B(x, 2r)) ≥ capp(x)(F

j
n ∩B(x, r), B(x, 2r)) ≥ κ > 0.

This shows that the open sets Ω∗n belong to Oα,r0 with α = κ and r0 = 1
4 min{aj : j ∈ I}.

Since Ω∗n
H→ Ω, by Theorem 5.6, we have that u1

Ω∗n
⇀ u1

Ω in W
1,p(x)
0 (D).

On the other hand, since Ωn ⊂ Ω∗n, by a direct consequence of Lemma 3.7 and Proposition
3.9, we have that 0 ≤ u1

Ωn
≤ u1

Ω∗n
. Passing to the limit n→∞, 0 ≤ u∗ ≤ u1

Ω. We conclude then,

by Lemma 2.25, that u∗ ∈W 1,p(x)
0 (Ω)

If F j contains exactly one point x0, then p(x0) > N and so {x0} has positive p(x)−capacity,
the bound from below will be its capacity, which completes the proof. �
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