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Abstract. In this note we show the existence of at least three nontrivial
solutions to the following quasilinear elliptic equation −∆pu = |u|p∗−2u +

λf(x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet
boundary conditions on ∂Ω, where p∗ = Np/(N − p) is the critical Sobolev
exponent and ∆pu = div(|∇u|p−2∇u) is the p−laplacian. The proof is based
on variational arguments and the classical concentrated compactness method.

1. Introduction.

Let us consider the following nonlinear elliptic problem:

(P)

{
−∆pu = |u|p∗−2u + λf(x, u) in Ω
u = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , ∆pu = div(|∇u|p−2∇u) is the
p−laplacian, 1 < p < N , p∗ = Np/(N − p) is the critical exponent in the Sobolev
embedding and λ is a positive parameter.

Problems like (P) appears naturally in several branches of pure and applied math-
ematics, such as the theory of quasiregular and quasiconformal mappings in Rie-
mannian manifolds (see [8, 19]), non-Newtonian fluids, reaction diffusion problems,
flow through porous media, nonlinear elasticity, glaciology, etc. (see [1, 2, 3, 7]).

The purpose of this note, is to prove the existence of at least three nontrivial
solutions for (P) under adequate assumptions on the source term f and the param-
eter λ. This result extends an old paper by Struwe [18]. A related result for the
nonlinear boundary condition case can be found in [9].

Here, no oddness condition is imposed in f and a positive, a negative and a sign-
changing solution are found. The proof relies on the variational principle of Ekeland
(see [17]) complemented with the, by now, well known concentrated compactness
method of P.L. Lions (see [15]).

One of the advantages in using Ekeland’s variational principle is that it allows to
split the geometry of the problem from the compactness aspect of it. This approach
simplifies the one applied by M. Struwe in [18] for the subcritical case.

The use of the concentrated compactness method to deal with the p−laplacian
has been used by several authors before. Probably the first result in this direction
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was obtained by J. Garćıa Azorero and I. Peral in [14]. Here, we borrow some ideas
from that work.

For related results with subcritical growth, see the already mentioned [18] and
more recently [4, 20].

Throughout this work, by (weak) solutions of (P) we understand critical points
of the associated energy functional acting on the Sobolev space W 1,p

0 (Ω):

(1) Φ(v) =
1
p

∫

Ω

|∇v|p dx− 1
p∗

∫

Ω

|u|p∗ dx− λ

∫

Ω

F (x, v) dx,

where F (x, u) =
∫ u

0
f(x, z) dz.

We will denote

(2) Fλ(v) =
∫

Ω

1
p∗
|v|p∗ + λF (x, v) dx,

so the functional Φ can be rewritten as

Φ(v) =
1
p
‖v‖p

W 1,p(Ω) −Fλ(v).

2. Assumptions and statement of the results.

The precise assumptions on the source terms f are as follows:
(F1) f : Ω×R→ R, is a measurable function with respect to the first argument

and continuously differentiable with respect to the second argument for
almost every x ∈ Ω. Moreover, f(x, 0) = 0 for every x ∈ Ω.

(F2) There exist constants p < q < p∗ = Np/(N − p), s > p∗/(p∗ − q), t =
sq/(2 + (q − 2)s) > p∗/(p∗ − 2) and functions a ∈ Ls(Ω), b ∈ Lt(Ω), such
that for x ∈ Ω, u, v ∈ R,

|fu(x, u)| ≤ a(x)|u|q−2 + b(x),

|(fu(x, u)− fu(x, v))u| ≤ (a(x)(|u|q−2 + |v|q−2) + b(x))|u− v|.
(F3) There exist constants c1 ∈ (0, 1/(p∗ − 1)), k2 ∈ (p, p∗), 0 < c3 < c4, such

that for any u ∈ Lq(Ω) and p < q < p∗.

c3‖u‖q
Lq(Ω) ≤ k2

∫

Ω

F (x, u) dx ≤
∫

Ω

f(x, u)u dx

≤ c1

∫

Ω

fu(x, u)u2 dx ≤ c4‖u‖q
Lq(Ω)

So the main result of the paper reads:

Theorem 1. Under assumptions (F1)–(F3), there exist λ∗ > 0 depending only on
n, p, q and the constant c3 in (F3), such that for every λ > λ∗, there exists three
different, nontrivial, (weak) solutions of problem (P). Moreover these solutions are,
one positive, one negative and the other one has non-constant sign.

3. Proof of Theorem 1.

The proof uses the same approach as in [18]. That is, we will construct three
disjoint sets Ki 6= ∅ not containing 0 such that Φ has a critical point in Ki. These
sets will be subsets of C1,1−manifolds Mi ⊂ W 1,p(Ω) that will be constructed by
imposing a sign restriction and a normalizing condition.
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In fact, let

M1 =
{

u ∈ W 1,p
0 (Ω):

∫

Ω

u+ > 0 y
∫

Ω

|∇u+|p − |u+|p
∗
dx =

∫

Ω

λf(x, u)u+dx

}
,

M2 =
{

u ∈ W 1,p
0 (Ω):

∫

Ω

u− > 0 y
∫

Ω

|∇u−|p − |u−|p
∗
dx =

∫

Ω

λf(x, u)u−dx

}
,

M3 = M1 ∩M2.

where u+ = max{u, 0}, u− = max{−u, 0} are the positive and negative parts of u,
and 〈·, ·〉 is the duality pairing of W 1,p(Ω).

Finally we define

K1 = {u ∈ M1 | u ≥ 0},
K2 = {u ∈ M2 | u ≤ 0},
K3 = M3.

First, we need a Lemma to show that these sets are nonempty and, moreover,
give some properties that will be useful in the proof of the result.

Lemma 1. For every w0 ∈ W 1,p
0 (Ω), w0 > 0 (w0 < 0), there exists tλ > 0 such

that tλw0 ∈ M1(∈ M2). Moreover, limλ→∞ tλ = 0.
As a consequence, given w0, w1 ∈ W 1,p

0 (Ω), w0 > 0, w1 < 0, with disjoint
supports, there exists t̄λ, tλ > 0 such that t̄λw0 + tλw1 ∈ M3. Moreover t̄λ, tλ → 0
as λ →∞.

Proof. We prove the lemma for M1, the other cases being similar.
For w ∈ W 1,p

0 (Ω), w ≥ 0, we consider the functional

ϕ1(w) =
∫

Ω

|∇w|p − |w|p∗ − λf(x,w)w dx.

Given w0 > 0, in order to prove the lemma, we must show that ϕ1(tλw0) = 0 for
some tλ > 0. Using hypothesis (H3), we have that:

ϕ1(tw0) ≥ Atp −Btp
∗ − λc4Ctq

and
ϕ1(tw0) ≤ Atp −Btp

∗ − λc3Ctq,

where the coefficients A, B and C are given by:

A =
∫

Ω

|∇w0|p dx, B =
∫

Ω

|w0|p
∗
dx, C =

∫

Ω

|w0|q dx.

Since p < q < p∗ it follows that ϕ1(tw0) is positive for t small enough, and negative
for t big enough. Hence, by Bolzano’s theorem, there exists some t = tλ such that
ϕ1(tλu) = 0. (This tλ needs not to be unique, but this does not matter for our
purposes).

In order to give an upper bound for tλ, it is enough to find some t1, such that
ϕ1(t1w0) < 0. We observe that:

ϕ1(tw0) ≤ Atp − λc3Ctq.

so it is enough to choose t1 such that Atp1 − λc3Ctq1 = 0, i.e.,

t1 =
(

A

c3λC

)1/(q−p)

.
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Hence, again by Bolzano’s theorem, we can choose tλ ∈ [0, t1], which implies that
tλ → 0 as λ → +∞. ¤

For the proof of the Theorem, we need also the following Lemmas.

Lemma 2. There exist cj > 0 such that, for every u ∈ Ki, i = 1, 2, 3,
∫

Ω

|∇u|p dx ≤ c1

(
λ

∫

Ω

f(x, u)u dx +
∫

Ω

|u|p∗ dx

)
≤ c2Φ(u) ≤ c3

(∫

Ω

|∇u|p dx

)
.

Proof. As u ∈ Ki, we have that
∫

Ω

|∇u|pdx =
∫

Ω

λf(x, u)u + |u|p∗dx.

This proves the first inequality.
Now, by (F3) ∫

Ω

F (x, u)dx ≤ 1
c2

∫

Ω

f(x, u)udx.

Furthermore,
∣∣∣∣λ

∫

Ω

F (x, u)dx

∣∣∣∣ = λ

∫

Ω

F (x, u)dx ≤ 1
c2

∫

Ω

λf(x, u)udx =
1
c2

(∫

Ω

|∇u|p − |u|p∗dx

)
,

so,

(3) −λ

∫

Ω

F (x, u)dx ≤ 1
c2

(∫

Ω

|∇u|p − |u|p∗dx

)
.

By (3), we have:

Φ(u) =
∫

Ω

1
p
|∇u|p − 1

p∗
|u|p∗ − λF (x, u) dx

≤
∫

Ω

1
p
|∇u|p − 1

p∗
|u|p∗ dx +

1
c2

(∫

Ω

|∇u|p − |u|p∗ dx

)

≤
(

1
c2

+
1
p

) ∫

Ω

|∇u|p dx.

This proves the third inequality.
To prove the middle inequality we proceed as follows:

Φ(u) =
∫

Ω

1
p
|∇u|p − 1

p∗
|u|p∗ − λF (x, u)dx ≥

∫

Ω

1
p
(|∇u|p − |u|p∗)− λF (x, u)dx

≥1
p

∫

Ω

λf(x, u)udx− λ

∫

Ω

F (x, u)dx ≥ (
1
p
− 1

c2
)λ

∫

Ω

f(x, u)dx.

This finishes the proof. ¤

Lemma 3. There exists c > 0 such that

‖∇u+‖L
p
(Ω) ≥ c ∀u ∈ K1,

‖∇u−‖L
p
(Ω) ≥ c ∀u ∈ K2,

‖∇u+‖L
p
(Ω) , ‖∇u−‖L

p
(Ω) ≥ c ∀u ∈ K3.
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Proof. By the definition of Ki,by (F3) and the Poincaré inequality we have that

‖∇u±‖p
L

p
(Ω)

=
∫

Ω

λf(x, u)u± + |u±|p
∗
dx ≤ C‖u±‖q

L
q
(Ω)

+ ‖u±‖p∗

Lp∗ (Ω)

≤c1‖∇u±‖q
L

p
(Ω)

+ c2‖∇u±‖p∗

L
p
(Ω)

.

As p < q < p∗, this finishes the proof. ¤
Lemma 4. There exists c > 0 such that Φ(u) ≥ c‖∇u‖p

Lp(Ω) for every u ∈ W 1,p(Ω)
if ‖u‖W 1,p

0 (Ω) is small enough.

Proof. By (F3) and the Poincaré inequality we have

Φ(u) =
∫

Ω

1
p
|∇u|p − 1

p∗
|u|p∗ − λF (x, u)dx

≥ 1
p
‖∇u‖p

Lp(Ω) −
1
p∗
‖u‖p∗

Lp∗ (Ω)
− C‖u‖q

L
q
(Ω)

≥ 1
p
‖∇u‖p

Lp(Ω) − C1(‖∇u‖p∗

L
p
(Ω)

+ ‖∇u‖q
L

p
(Ω)

)

≥ C‖∇u‖Lp(Ω),

if ‖∇u‖Lp(Ω) is small enough, as p < q < p∗. ¤
The following lemma describes the properties of the manifolds Mi.

Lemma 5. Mi is a C1,1 sub-manifold of W 1,p
0 (Ω) of co-dimension 1 (i = 1, 2), 2

(i = 3) respectively. The sets Ki are complete. Moreover, for every u ∈ Mi we have
the direct decomposition

TuW 1,p
0 (Ω) = TuMi ⊕ span{u+, u−},

where TuM is the tangent space at u of the Banach manifold M . Finally, the
projection onto the first component in this decomposition is uniformly continuous
on bounded sets of Mi.

Proof. Let us denote

M̄1 =
{

u ∈ W 1,p
0 (Ω):

∫

Ω

u+ dx > 0
}

,

M̄2 =
{

u ∈ W 1,p
0 (Ω):

∫

Ω

u− dx > 0
}

,

M̄3 = M̄1 ∩ M̄2.

Observe that Mi ⊂ M̄i.
The set M̄i is open in W 1,p(Ω), therefore it is enough to prove that Mi is a

smooth sub-manifold of M̄i. In order to do this, we will construct a C1,1 function
ϕi : M̄i → Rd with d = 1 (i = 1, 2), d = 2 (i = 3) respectively and Mi will be the
inverse image of a regular value of ϕi.

In fact, we define: For u ∈ M̄1,

ϕ1(u) =
∫

Ω

|∇u+|p − |u+|p
∗ − λf(x, u)u+ dx.

For u ∈ M̄2,

ϕ2(u) =
∫

Ω

|∇u−|p − |u−|p
∗ − λf(x, u)u− dx.
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For u ∈ M̄3,
ϕ3(u) = (ϕ1(u), ϕ2(u)).

Obviously, we have Mi = ϕ−1
i (0). We need to show that 0 is a regular value for ϕi.

To this end we compute, for u ∈ M1,

〈∇ϕ1(u), u+〉 = p‖∇u+‖p − p∗‖u+‖p∗ − λ

∫

Ω

f(x, u)u+ − fu(x, u)u2
+ dx

≤ p∗
(
‖∇u+‖p − ‖u+‖p∗

)
− λ

∫

Ω

f(x, u)u+ − fu(x, u)u2
+ dx

≤ (p∗λ− λ)
∫

Ω

f(x, u)u+ dx−
∫

Ω

fu(x, u)u2
+ dx.

By (F3) the last term is bounded by

(p∗λ− λ− λ

c1
)
∫

Ω

f(x, u)u+ dx =
(

p∗ − 1− 1
c1

) (
‖∇u+‖p

Lp(Ω) − ‖u+‖p∗

Lp∗ (Ω)

)

≤
(

p∗ − 1− 1
c1

)
‖∇u+‖p

Lp(Ω).

Recall that c1 < 1/(p∗ − 1). Now, the last term is strictly negative by Lemma 3.
Therefore, M1 is a C1,1 sub-manifold of W 1,p(Ω). The exact same argument applies
to M2. Since trivially

〈∇ϕ1(u), u−〉 = 〈∇ϕ2(u), u+〉 = 0

for u ∈ M3, the same conclusion holds for M3.
To see that Ki is complete, let uk be a Cauchy sequence in Ki, then uk → u in

W 1,p(Ω). Moreover, (uk)± → u± in W 1,p(Ω). Now it is easy to see, by Lemma 3
and by continuity that u ∈ Ki.

Finally, by the first part of the proof we have the decomposition

TuW 1,p(Ω) = TuMi ⊕ span{u+}
Where M1 = {u : ϕ1(u) = 0} and TuM1 = {v : 〈∇ϕ1(u), v〉 = 0}. Now let
v ∈ TuW 1,p

0 (Ω) be a unit tangential vector, then v = v1 + v2 where v2 = αu+ and
v1 = v − v2. Let us take α as

α =
〈∇ϕ1(u), v〉
〈∇ϕ1(u), u+〉 .

With this choice, we have that v1 ∈ TuM1. Now

〈ϕ1(u), v1〉 = 0.

The very same argument to show that TuW 1,p(Ω) = TuM2 ⊕ 〈u−〉 y TuW 1,p(Ω) =
TuM3 ⊕ 〈u+, u−〉.

From these formulas and from the estimates given in the first part of the proof,
the uniform continuity of the projections onto TuMi follows. ¤

Now, we need to check the Palais-Smale condition for the functional Φ restricted
to the manifold Mi. To this end, we need the following lemma from [14] which proves
the Palais-Smale condition for the unrestricted functional below certain energy level.

Lemma 6 (J. Garćıa-Azorero, I. Peral, [14]). Let Sp be the best Sobolev constant

Sp := inf
φ∈C∞c (RN )

∫
RN |∇φ|p dx

(∫
RN |φ|p∗ dx

)p/p∗ .
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Then, the unrestricted functional Φ verifies the Palais-Smale condition for energy
level c for every c < 1

N S
N/2
p .

The proof of Lema 6 is based on the concentration compactness method.
Now, we can prove the Palais-Smale condition for the restricted functional.

Lemma 7. The functional Φ|Ki
satisfies the Palais-Smale condition for energy

level c for every c < 1
N S

N/2
p .

Proof. Let {uk} ⊂ Ki be a Palais-Smale sequence, that is Φ(uk) is uniformly
bounded and ∇Φ|Ki(uk) → 0 strongly. We need to show that there exists a subse-
quence ukj

that converges strongly in Ki.
Let vj ∈ Tuj W

1,p
0 (Ω) be a unit tangential vector such that

〈∇Φ(uj), vj〉 = ‖∇Φ(uj)‖W−1,p′ (Ω).

Now, by Lemma 5, vj = wj + zj with wj ∈ Tuj Mi and zj ∈ span{(uj)+, (uj)−}.
Since Φ(uj) is uniformly bounded, by Lemma 2, uj is uniformly bounded in

W 1,p
0 (Ω) and hence wj is uniformly bounded in W 1,p

0 (Ω). Therefore

‖∇Φ(uj)‖W−1,p′ (Ω) = 〈∇Φ(uj), vj〉 = 〈∇Φ|Ki(uj), vj〉 → 0.

As wj is uniformly bounded and ∇Φ|Ki(uk) → 0 strongly, the inequality con-
verges strongly to 0. Now the result follows by Lema 6. ¤

We now immediately obtain

Lemma 8. Let u ∈ Ki be a critical point of the restricted functional Φ|Ki . Then
u is also a critical point of the unrestricted functional Φ and hence a weak solution
to (P).

With all this preparatives, the proof of the Theorem follows easily.

Proof of Theorem 1. To prove the Theorem, we need to check that the func-
tional Φ |Ki verifies the hypotheses of the Ekeland’s Variational Principle [5].

The fact that Φ is bounded below over Ki is a direct consequence of the con-
struction of the manifold Ki.

Then, by Ekeland’s Variational Principle, there existe vk ∈ Ki such that

Φ(vk) → ci := inf
Ki

Φ and (Φ |Ki)
′(vk) → 0.

We have to check that if we choose λ large, we have that ci < 1
N S

N/2
p . This follows

easily from Lemma 1. For instance, for c1, we have that choosing w0 ≥ 0,

c1 ≤ Φ(tλw0) ≤ 1
p
tpλ

∫

Ω

|∇w0|p dx

Hence c1 → 0 as λ → 0. Moreover, it follows from the estimate of tλ in Lemma 1,
that ci < 1

N S
N/2
p for λ > λ∗(p, q, n, c3). The other cases are similar.

From Lemma 6, it follows that vk has a convergent subsequence, that we still
call vk. Therefore Φ has a critical point in Ki, i = 1, 2, 3 and, by construction, one
of them is positive, other is negative and the last one changes sign. ¤
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