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ADRIANA ARAGÓN, JULIÁN FERNÁNDEZ BONDER AND DIANA RUBIO

Abstract. In this article we implement a method for the computa-
tion of a nonlinear elliptic problem with nonstandard growth driven
by the p(x)−Laplacian operator. Our implementation is based in the
decomposition–coordination method that allows us, via an iterative pro-
cess, to solve in each step a linear differential equation and a nonlinear
algebraic equation. Our code is implemented in MatLab in 2 dimen-
sions and turns out to be extremely efficient from the computational
point of view.

1. Introduction

In this article we consider nonlinear elliptic problems with nonstandard
growth. More precisely, we will focus on the so-called p(x)−Laplace operator
that is defined as

∆p(x)u = ∇ ·
(
|∇u|p(x)−2∇u

)
.

This operator has been used by many authors in view of its applications to
several fields of sciences such as electrorheological fluids and image process-
ing. We may cite the works [4, 8] and references therein.

From the mathematical point of view, this operator presents interesting
difficulties since when the exponent p(x) is not a constant, the operator is
no longer homogeneous.

Recall that when p(x) = p constant the p(x)−Laplacian becomes the well-
known p−Laplacian operator that is well studied in the literature both from
the theoretical and the computational point of view. See [1], for instance.

In this work we present a numerical implementation of the decomposition-
coordination method to solve p(x)−Laplacian problems of the form

(1.1)

{
−∆p(x)u = f in Ω,

u = g on ∂Ω,

where Ω is a Lipschitz domain in R2 and f : Ω→ R, g : ∂Ω→ R are suitable
data.
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The implementation is done in MatLab but is an arbitrary choise and
our code can be easily adapted to any other programming language.

The problem of efficiently computing a solution to (1.1) presents sev-
eral difficulties due to the strong nonlinearity and more importantly due to
the degenerate/singular character of the operators in points x ∈ Ω where
∇u(x) = 0 depending on p(x) > 2 or p(x) < 2 respectively.

As far as we know, the first rigorous analysis for numerical approximations
for (1.1) was done in [5]. In that article the authors studied the approxi-
mation of (1.1) by means of the Finite Element Method and proved the
convergence of the method, See also [2, 7].

In a subsequent paper, [6], the authors introduce the so-called decomposition-
coordination method for problem (1.1) that is an iterative procedure that has
the advantage that in each step of the iteration one has to solve a linear PDE
and a nonlinear algebraic equation which in theory makes the problem much
more tractable and efficient from a computational point of view.

The purpose of this work is to implement simple and efficiently the method
developed in [6] that allow to solve (1.1) in dimension 2.

The code implemented in MatLab can be downloaded from

https://bit.ly/3Ec1T5s.

In case the interested reader run into troubles running the program, don’t
hesitate in contact any of the authors.

To end this introduction, let us mention the work [3] where the authors
numerically solve (1.1) with very different techniques that the ones presented
here.

2. Description of the method

In this section we give a description of the decomposition-coordination
method.

This method is an iterative procedure that has the following form: First
one define two vector fields η1, ν0 : Ω→ R2.

Then, recursively, if we have computed un−1, ηn and νn−1 we compute
un, ηn+1 and νn in the following form:

(1) Solve the linear PDE

(2.1) −∆un = ∇ · (ηn − νn−1) + f

(2) Update ν by solving the algebraic nonlinear equation

(2.2) |νn|p−2νn + νn = ηn +∇un.

(3) Finally, update η as

(2.3) ηn+1 = ηn +∇un − νn.

In [6] it is proved that this procedure is in fact convergent and that the
sequence {un}n∈N defined by (2.1) converges to the actual solution u of (1.1).

Have in mind that p = p(x) in (2.2).
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Observe that in this method, in each step of the iteration, one must solve
a linear PDE. This PDE is discretized using the finite element method. The
matrix of the method is the same in each step.

Also observe that the nonlinear algebraic equation (2.2) that is a vectorial
equation, can be easily solved in this form: denote tn = |νn|, and then tn ∈ R
is the solution to

tn(tp−2
n + 1) = rn,

where rn = |ηn + ∇un|. This can be easily solved using, for instance, the
bisection method or Newton-Raphson method. Once that tn is computed,
one solve

νn =
ηn +∇un
tp−1
n + 1

.

Step 3 in the iteration is a simple evaluation.

3. Description of the code

We assume that the mesh T and the stiffness matrix A for the Laplace
operator has been generated in advance. More precisely, the information
needed for the triangulation T is given by the following variables that are
previously loaded in the workspace:

• vertex coordinates is a Nn×2 array such that the kth−row of the
matrix gives the coordinates of the kth−vertex.
• elem vertices is a Nt×3 array such that the jth−row of the matrix

gives the numbers of the 3 vertices defining the jth−element.
• dirichlet is a Nd × 1 array such that enumerates the boundary

nodes.

The stiffness matrix A is an Nn ×Nn matrix such that

A(i, j) =

∫
Ω
∇φi∇φj dx

where {φi} is the usual picewise linear finite element basis.
Next, we create the functions that refer to our equation (1.1), for instance

• p = @(x, y)1.5
• f = @(x, y)1
• g = @(x, y)0

Here p is the variable exponent in (1.1) and f, g are the source and bound-
ary terms respectively. In this example we are computing the p−Laplace
equation with constant exponent p = 1.5, homogeneous Dirichlet boundary
data and source f = 1.

3.1. Start of the algorithm. The algorithm starts with two basic tasks:

(1) First define p as a Nt×1 array as the exponent in each element that
will be taken constant. For instance, what we implemented, is to
compute p(i) as the value of p at the barycenter of the ith−triangle.
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(2) Compute f a Nn × 1 array such that

f(k) =

∫
Ω
fφk dx.

This integral is easily computed by any usual quadrature method.
(3) Finally, the algorithm adjust the stiffness matrix A and the source

term f in order to impose the boundary data g.

3.2. The iteration. First, define arbitrarily η and ν as two Nt × 2 arrays.
We defined them as (small) random arrays to start the iteration.

(1) Compute the divergence of η − ν in the form

g(k) =

∫
Ω

(η − ν)∇φk dx.

This integral is computed by any quadrature method and recall that
g is a Nn × 1 array.

(2) Solve the equation Au = (g + f).
(3) Compute gradu as a Nt×2 array such that gradu(i, :) is the gradient

of u in the ith− triangle.
(4) Solve the nonlinear algebraic equation

|ν̄(i, :)|p(i)−2ν̄(i, :) + ν̄(i, :) = η(i, :) + gradu(i, :)

In order to solve this equation, for each triangle i, define the scalar
quantities r = |η(i, :) + gradu(i, :)| and s = p(i). Then solve the
scalar equation

xs−1 + x = r, x ≥ 0.

This problems has a unique solution, x ∈ [0, r]. We solve this prob-
lem by a bisection algorithm.

Then one takes that ν̄(i, :) = (η(i, :) + gradu(i, :))/(xs−2 + 1).
Next one updates ν = ν̄.

(5) To finish the iteration, define η̄ = η + gradu− ν and update η = η̄.

This process is then iterated until a stopping criteria is achieved.

3.3. Stopping criteria. There are several possibilities for a stopping cri-
teria and we have not found a perfect one. In our opinion depending on the
particular problem different choices of criteria worked better that others.
Nevertheless, the criteria that was more robust in facing particular prob-
lems (in particular, all of the experiments presented in the next section use
this criteria) is the following:

• Define an error tolerance ε > 0. Then run the iteration until the
relative error between two consecutive solutions is less that ε.

So, denoting |u| as the euclidean norm of the vector u, we defined the
relative error as

|u− ū|
|u|
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where u is the old solution computed in the former iteration and ū is the
new solution computed in the last iteration.

4. Numerical experiments

In this section we illustrate our implementation by comparing some exact
solutions to the ones computed by our method.

To begin with, let us consider p(x, y) = p constant and look for two
cases, one with p > 2 where the equation (1.1) is degenerate and other with
1 < p < 2 in which equation (1.1) is singular. Then we give an example
with variable exponent p(x, y).

Example 1. In this first example, we consider a constant exponent p > 2.
In this case, the function

u(x, y) = (x2 + y2)
p−2
2p−2

verifies −∆pu = 0.
We take Ω = (0, 1)× (0, 1), p = 20 and as a boundary data the same u.
We make a regular partition of Ω of 100× 100.
If we denote by uh the computed solution, the errors obtained are

‖u− uh‖∞ ∼ 2× 10−3, ‖u− uh‖p ∼ 10−3.

The exact and computed solutions for this example are shown in Figure 1

Figure 1. The exact solution at the left and the computed
solution at the right for Example 1

The time employed in the iteration was ∼ 75s.

Example 2. In this example, we consider the so-called torsion problem,

−∆pu = 1.

An exact solution to this problem is given by

u(x, y) = cp

(
1− (x2 + y2)

p
2p−2

)
,

where cp is a constant, cp = (p−1)
p 2−1/(p−1).
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Let us consider the domain Ω = (− 1√
2
, 1√

2
)× (− 1√

2
, 1√

2
) and constant p,

p = 1.1. As boundary data we consider the same u and again we make a
regular partition of the domain Ω of 100× 100.

As in the previous example, we call uh the computed solution and the
errors obtained are

‖u− uh‖∞ ∼ 2× 10−4, ‖u− uh‖p ∼ 3× 10−4.

The exact and computed solutions for this example are shown in Figure 2.

Figure 2. The exact solution at the left and the computed
solution at the right for Example 2

The time employed in the iteration was ∼ 80s.

Example 3. In this example we consider a variable exponent p

p(x, y) = 1 +

(
x+ y

2
+ 2

)−1

and u(x, y) =
√

2e2(e
1
2

(x+y) − 1).

This function u is a solution to −∆p(x,y)u = 0.
Consider now the domain Ω = (−1, 1) × (−1, 1) with a regular partition

of 100× 100 and take as boundary data the same u.
Again, calling uh to the computed solution, the errors obtained are

‖u− uh‖∞ ∼ 1.5× 10−5, ‖u− uh‖p ∼ 2.7× 10−4.

The exact and computed solutions for this example are shown in Figure 3
and the time employed in the iteration was ∼ 81s.

Example 4 - The torsion problem. In this example, we work with the
torsion problem, with homogeneous Dirichlet boundary data and constant
exponent p. This is {

−∆pu = 1 in Ω

u = 0 on ∂Ω.

An exact solution to this problem is not available. We consider Ω =
(−1, 1)×(−1, 1) and a regular partition of 100×100. We obtain the following
computed solutions for different values of the exponent p. Some of theses
solutions are shown in Figure 4
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Figure 3. The exact solution at the left and the computed
solution at the right for Example 3

Figure 4. To the left, the computed solution with p = 1.15,
in the center the computed solution with p = 4 and to the
right the computed solution with p = 50 for the p−torsion
problem in Example 4

Let us observe that for small values of p the solution is flat and as the value
of p increases, the solution is getting closer to the pyramid with maximum
at the center of the domain.

Example 5 - variable exponent. Finally, we analyze the torsion problem
for variable exponents {

−∆p(x,y)u = 1 in Ω,

u = 0 on ∂Ω,

We consider a discontiuous exponent,

p(x, y) =

{
1.2 x ≤ 0,

4 x > 0

and a rectangular domain Ω = [−2, 2]× [−1, 1].
Again, an exact solution is not available.
Our method can handle also this case and the computed solution is shown

in Figure 5
As expected, the solution is flat in the region {x ≤ 0} where the exponent

is small (p(x, y) = 1.2) and has a pyramid shape in the region {x > 0} where
the exponent is large (p(x, y) = 4).
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Figure 5. The torsion problem with variable and discontin-
uous exponent in Example 5

The time employed in the iteration was ∼ 52s.

5. Conclusions

We implemented a Finite Element based algorithm for the computation
of solutions of equations with nonstandard growth of p(x)−Laplacian type.
This algorithm uses the decomposition-coordination method that has the
advantage that it is an iterative scheme that in each step of the iteration
one has to solve a linear PDE and a nonlinear algebraic equation. Our
numerical examples show that this method is extremely efficient for these
cases.
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