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Abstract

We present a new algorithm for the computation of resultants associated with multi-
homogeneous (and, in particular, homogeneous) polynomial equation systems using
straight-line programs. Its complexity is polynomial in the number of coefficients of
the input system and the degree of the resultant computed.
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1 Introduction

The resultant associated with a polynomial equation system with indetermi-
nate coefficients is an irreducible multivariate polynomial in these indetermi-
nates which vanishes when specialized in the coefficients of a particular system
whenever it has a solution.

Resultants have been used extensively for the resolution of polynomial equa-
tion systems, particularly because of their role as eliminating polynomials.
In the last years, the interest in the computation of resultants has been re-
newed not only because of their computational usefulness, but also because
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they turned to be an effective tool for the study of complexity aspects of
polynomial equation solving.

The study of classical homogeneous resultants goes back to Bézout, Cayley
and Sylvester (see [1], [5] and [27]). In [20], Macaulay obtained explicit for-
mulas for the classical resultant as a quotient of two determinants. More re-
cently, Gelfand, Kapranov and Zelevinski generalized the classical notion to
the sparse case (see [11]) and several effective procedures were proposed to
compute classical and sparse resultants (see for instance [3], [4], [7], [8], [10],
[25], [26]).

A particular case of sparse polynomial systems are the multihomogeneous sys-
tems; this means systems in which the set of variables can be partitioned into
subsets so that every polynomial of the system is homogeneous in the vari-
ables of each subset. Multihomogeneous polynomial equation systems appear
in several areas such as geometric modeling, game theory and computational
economics. The problem of computing resultants for this subclass of poly-
nomial systems was already considered by McCoy, who presented in [21] a
formula involving determinants for the resultant of a multihomogeneous sys-
tem. More recently, several results in this line of work have been obtained (see
for instance [29], [9]).

Due to the well-known estimates for the degree of the resultant, any algorithm
for the computation of resultants which encodes the output as an array of
coefficients (dense form) cannot have a polynomial complexity in the size
of the input (that is, the number of coefficients of the generic polynomial
system whose resultant is computed). Then, in order to obtain these order of
complexity, a different way of representing polynomials should be used. An
alternative data structure which was introduced in the polynomial equation
solving framework yielding a significant reduction in the previously known
complexities is the straight-line program representation of polynomials (see for
instance [13], [14]). Roughly speaking, a straight-line program which encodes
a polynomial is a program which enables us to evaluate it at any given point.

The first algorithm for the computation of (homogeneous and) sparse resul-
tants using straight-line programs was presented in [18]. Its complexity is
polynomial in the dimension of the ambient space and the volume associated
to the input set of exponents, but it deals only with a subclass of unmixed
resultants.

In this paper we construct an algorithm for the computation of arbitrary
multihomogeneous (and, in particular, homogeneous) resultants by means of
straight-line programs. Its complexity is polynomial in the degree and the
number of variables of the computed resultant. (See Theorem 5 for the precise
statement of this result).
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Our algorithm can be applied, in particular, to compute any classical homo-
geneous resultant. In this case, it can be seen as an extension of the one in
[18, Corollary 4.1], which works only for polynomials of the same degree.

In the multihomogeneous case, the algorithm in [18, Corollary 4.2] can be ap-
plied to compute multihomogeneous resultants only when the multi-degrees
of the polynomials coincide, and it is probabilistic. On the contrary, our algo-
rithm can compute any multihomogeneous resultant and it is always determin-
istic. Furthermore, when computing unmixed multihomogeneous resultants,
the complexity of our algorithm matches the expected complexity of the one
in [18].

The paper is organized as follows:

In Section 2 we recall some basic definitions, fix the notation and describe the
algorithmic model and data structures we will consider. We also introduce the
main algorithmic tools that will be used. In Section 3 we first recall some ele-
mentary properties of multihomogeneous polynomial equation systems and we
prove a Poisson-type formula for the multihomogeneous resultant. Applying
this formula recursively, we obtain a product formula for the multihomoge-
neous resultant that enables us to derive an algorithm for its computation,
which is the main result in Section 4.

2 Preliminaries

2.1 Definitions and Notation

Throughout this paper Q denotes the field of rational numbers, N denotes the
set of positive integers and N0 := N ∪ {0}.

If K is a field, we denote an algebraic closure of K by K. The ring of
polynomials in the variables x1, . . . , xn with coefficients in K is denoted by
K[x1, . . . , xn]. For a polynomial f ∈ K[x1, . . . , xn] we write deg f to refer to
the total degree of f .

Let r ∈ N be a positive integer. Fix positive integers n1, . . . , nr and consider r
groups of variables Xj := (xj0, . . . , xj nj

), j = 1, . . . , r. We say that the poly-
nomial F ∈ K[X1, . . . , Xr] is multihomogeneous of multi-degree (v1, . . . , vr),
where (v1, . . . , vr) is a sequence of non-negative integers, if F is homogeneous
of degree vj in the group of variables Xj for every 1 ≤ j ≤ r.

For n ∈ N and an algebraically closed field k, we denote by An(k) and Pn(k)
(or simply by An or Pn if the base field is clear from the context) the n-
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dimensional affine space and projective space over k respectively, equipped
with their Zariski topologies. If S ⊂ An, S denotes the closure of S with
respect to the Zariski topology of An.

We adopt the usual notions of dimension and degree of an algebraic variety
V , which will be denoted by dim V and deg V respectively. See, for instance,
[23] and [15] for the definitions of these notions.

2.2 Data Structures and Algorithmic Model

The algorithms we consider in this paper are described by arithmetic networks
over the base field Q (see [28]). An arithmetic network is represented by means
of a directed acyclic graph. The external nodes of the graph correspond to the
input and output of the algorithm. Each of the internal nodes of the graph is
associated with either an arithmetic operation in Q or a comparison (= or 6=)
between two elements in Q followed by a selection of another node. These are
the only operations allowed in our algorithms.

We assume that the cost of each operation in the algorithm is 1 and so, we
define the complexity of the algorithm as the number of internal nodes of its
associated graph.

The objects our algorithm deals with are polynomials with coefficients in Q.
We represent each of them by means of one of the following data structures:

• Dense form, that is, as the array of all its coefficients (including zeroes) in
a prefixed order of monomials. The size of this representation equals the
number of coefficients of the polynomial.

• Sparse encoding, that is, as an array of the coefficients corresponding to
monomials in a fixed set, provided that we know in advance that the coef-
ficient of any other monomial of the polynomial must be zero. The size in
this case is the cardinal of the fixed set of monomials.

• Straight-line programs, which are arithmetic circuits (i.e. networks without
branches). Roughly speaking, a straight-line program over Q encoding a
polynomial f ∈ Q[x1, . . . , xn] is a program which enables us to evaluate
the polynomial f at any given point in Qn. Each of the instructions in
this program is an addition, subtraction or multiplication between two pre-
calculated elements in Q[x1, . . . , xn], or an addition or multiplication by a
scalar. The number of instructions in the program is called the length of the
straight-line program. For a precise definition of straight-line program we
refer to [2, Definition 4.2] (see also [17]).

Let us remark that from the dense form of a polynomial it is straightforward
to obtain a straight-line program encoding it. The length of this straight-
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line program is essentially the number of coefficients (including zeroes) of the
polynomial.

We will deal with a particular class of sparse polynomials, which appear when
dehomogenizing multihomogeneous polynomials. As in the previous case, we
can provide estimates for the length of a straight-line program encoding the
polynomial in terms of the number of its coefficients and of the number of
groups of variables.

More precisely, using the notation of Section 2.1, let F ∈ K[X1, . . . , Xr] be
a multihomogeneous polynomial of multi-degree (v1, . . . , vr) ∈ Nr

0 given by
the vector of all the coefficients of monomials of multi-degree (v1, . . . , vr), and
let f ∈ K[X ′

1, . . . , X
′
r] be the polynomial obtained by specializing xj nj

= 1
for j = 1, . . . , r, where X ′

j := (xj0, . . . , xj nj−1). We can obtain a straight-line
program encoding f as follows:
First, for j = 1, . . . , r, we compute a straight-line program of length

(
nj+vj

vj

)
whose result sequence is the set of all monomials of degree vj in nj variables.
Then, for every α = (α1, . . . , αr) such that αj ∈ Nnj

0 and |αj| ≤ vj for j =
1, . . . , r, compute the monomial aα X ′

1
α1 . . . X ′

r
αr , where aα is the coefficient

of this monomial in f . Each of these monomials is obtained with r products
from the coefficients of f and the monomials computed in the previous step
and so, the length of the straight-line program increases in r

∏
1≤j≤r

(
nj+vj

vj

)
.

Finally, add all the monomials obtained in the second step in order to obtain
the straight-line program encoding f . The length of this straight-line program
is
∑

1≤j≤r

(
nj+vj

vj

)
+(r+1)

∏
1≤j≤r

(
nj+vj

vj

)
, that is, of order O(rN), where N :=∏

1≤j≤r

(
nj+vj

vj

)
denotes the number of coefficients of f .

2.3 Algorithmic Tools

The algorithms we construct in this paper rely on different subroutines deal-
ing with polynomials encoded by straight-line programs. We describe in this
section several procedures that will be used in the intermediate steps of our
computations.

Our main algorithmic tool is a symbolic version of the Newton-Hensel algo-
rithm for the approximation of zeroes of polynomial equation systems. We will
describe the algorithm briefly in order to state the hypotheses needed for its
application and to estimate its complexity. For a complete description of this
procedure and a proof of its correctness we refer to [12] and [16]. See also [18]
for a detailed statement in a context similar to ours.
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Let f1, . . . , fn ∈ Q[T1, . . . , TN ][x1, . . . , xn] be polynomials such that

W := {f1(τ, x) = 0, . . . , fn(τ, x) = 0} ⊂ AN × An

is an equidimensional variety of dimension N and the projection map π : W →
AN is dominant. Let

DF :=

(
∂fi

∂xj

)
1≤i,j≤n

∈ Q[T1, . . . , TN ][x1, . . . , xn]n×n

be the Jacobian matrix of F := (f1, . . . , fn) with respect to the variables
x1, . . . , xn, and let JF := det(DF) ∈ Q[T1, . . . , TN ][x1, . . . , xn] be the Jacobian
determinant of the system.

Assume that for a point t := (t1, . . . , tN) ∈ AN , we have π−1(t) = {t} × Z,
where Z is a 0-dimensional variety of cardinality

δ := max{#π−1(τ) : τ ∈ AN and π−1(τ) is finite}

such that JF(t, ξ) 6= 0 for every ξ ∈ Z.

Set K := Q(T1, . . . , TN) and consider the variety

W e := {f1(x) = 0, . . . , fn(x) = 0} ⊂ An(K),

which is a 0-dimensional variety of degree δ, since δ is the cardinality of the
generic fiber of π.

Under the above conditions, the points in W e can also be considered as power
series vectors: the implicit function theorem implies that for every ξ ∈ Z, there
exists a unique γξ ∈ C[[T1 − t1, . . . , TN − tN ]]n such that

γξ(t) = ξ and fi(T1, . . . , TN , γξ) = 0 ∀ 1 ≤ i ≤ n.

These power series vectors can be approximated by means of the Newton
operator

N T
F := xT −DF(x)−1F(x)T ∈ K(x)n×1

from the points in Z (see [16, Section 2]): if we set N (m)
F for the m-times

iteration of NF , for every ξ ∈ Z,

N (m)
F (ξ) ≡ γξ mod (T1 − t1, . . . , TN − tN)2m

.

Observe that NF is a vector of n rational functions in K(x), and the same

holds for N (m)
F for every m ∈ N.

From the algorithmic point of view, we are interested in the computation
of numerators and denominators for these rational functions. We denote by
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NumDenNewton a procedure which computes polynomials g
(m)
1 , . . . , g(m)

n , h(m)

in Q[T1, . . . , TN ][x1, . . . , xn] such that

N (m)
F = (g

(m)
1 /h(m), . . . , g(m)

n /h(m)) (1)

and h(m)(t, ξ) 6= 0 for every ξ ∈ Z (see [12, Lemma 30] and [18, Subroutine
5]).

If f1, . . . , fn ∈ Q[T1, . . . , TN ][x1, . . . , xn] are polynomials of respective degrees
d1, . . . , dn in the variables x1, . . . , xn, given by straight-line programs of length
L1, . . . , Ln, following the proof of [12, Lemma 30], one can show that straight-

line programs for the numerators and the denominator of N (m)
F can be com-

puted within complexity O(mρ2n2(n3 +L)), where ρ :=
∑

1≤i≤n di−n+1 and
L :=

∑
1≤i≤n Li: Observe that the i-th coordinate of the Newton operator is

the rational function
JF xi −

∑
1≤j≤n aijfj

JF
,

where (aij) is the adjoint matrix of DF . It is easy to see that ρ is an upper
bound for the degrees of the numerator and the denominator of these rational
functions, which enables us to derive the complexity bound stated above.

A basic intermediate step in our algorithms consists in the approximation of
determinants of certain linear maps, which is done by means of a subroutine
based on the symbolic Newton procedure described above.

Let f1, . . . , fn be as before. Then, the ring A := K[x1, . . . , xn]/(f1, . . . , fn) is
a finite dimensional K-algebra. Given a polynomial f ∈ K[x1, . . . , xn] we will
need to compute the determinant of the linear map mf : A → A defined by
P 7→ f · P , which is also called the norm of the polynomial f . In fact, we
will not compute the exact value of this determinant, but we will approximate
it as a power series as, under the previous assumptions, it turns out to be
an element of Q[[T1 − t1, . . . , TN − tN ]]. To do this we will use the identity
det(mf ) =

∏
ξ∈Z f(γξ) (see [6, Chapter 4, Proposition 2.7]), which enables us

to approximate the norm by means of Newton’s algorithm:

det(mf ) ≡
∏
ξ∈Z

f(N (m)
F (ξ)) mod (T1 − t1, . . . , TN − tN)2m

.

Algorithmically, we compute this approximation from f1, . . . , fn, f , the coor-
dinates of the points ξ ∈ Z, and the precision needed as follows: In a first step
we apply procedure NumDenNewton to obtain a straight-line program of length
Lm := O(mρ2n2(n3 +L)) encoding a family of polynomials g

(m)
1 , . . . , g(m)

n , h(m)

satisfying (1). In order to avoid divisions, we consider the homogeneization F
of the polynomial f , which we assume to be encoded by a straight-line pro-
gram of length L′. Then, we obtain a straight-line program of length Lm +L′
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encoding the polynomial F̃ := F (h(m), g
(m)
1 , . . . , g(m)

n ). Now we compute the
products

g :=
∏
ξ∈Z

F̃ (ξ) and h :=
∏
ξ∈Z

(
h(m)(ξ)

)deg f
,

and the rational function g/h approximates det(mf ) in the power series ring
Q[[T1 − t1, . . . , TN − tN ]] with precision 2m. (Observe that g/h can be seen as
a power series in Q[[T1 − t1, . . . , TN − tN ]] since h(t) 6= 0.) The complexity of
the algorithm and the length of the straight-line programs encoding g and h
are of order O(δ(Lm + L′)). In the sequel, this procedure will be denoted by
ApproxNorm.

Finally, we will apply an effective division procedure to approximate rational
functions in appropriate power series rings. This procedure is based on the
well-known Strassen’s algorithm for Vermeidung von Divisionen (see [24]) for
the computation of quotients of polynomials. More precisely, given polynomi-
als g and h in Q[T1, . . . , TN ] and a point t := (t1, . . . , tN) such that h(t) 6= 0, the
rational function g/h can be regarded as an element of Q[[T1−t1, . . . , TN−tN ]].
There is an algorithm, which we will denote by GradedParts , that computes
all the graded parts (centered at t) of g/h of degrees bounded by D within
complexity O(D2(D + L)) for a fixed D ∈ N from straight-line programs of
length bounded by L encoding g and h. For a description of this algorithm
and a proof of the estimates for its complexity we refer to [18, Section 1.4].

3 The Multihomogeneous Setting

This section deals with systems of multihomogeneous polynomials, that is,
polynomials in several groups of variables which are homogeneous in the vari-
ables of each group.

First, certain properties of multihomogenous polynomial equation systems are
discussed. Then, we give the precise definition of multihomogeneous resultant.
Finally, we prove an analogue of the classical Poisson formula (see for instance
[20], [19, Proposition 2.7]) in the multihomogeneous setting.

3.1 Notation

Here we are going to fix some notation related to multihomogeneous polyno-
mial systems that will be used in the sequel.

Let K be a field of characteristic 0. Let n1, . . . , nr ∈ N and let X1, . . . , Xr be
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r groups of indeterminates over the field K such that Xj := (xj0, . . . , xj nj
) for

every 1 ≤ j ≤ r. Set n := n1 + · · ·+ nr.

Given a vector v = (v1, . . . , vr) ∈ Nr
0 we denote by

M(v) := {(α1, . . . , αr) ∈ Nn1+1
0 × · · · × Nnr+1

0 : |αj| = vj}

the set of exponents of all the monomials of multi-degree v in the groups of
variables X1, . . . , Xr.

Fix vectors d0, . . . , dn ∈ Nr
0 with di := (di1, . . . , dir) for every 0 ≤ i ≤ n. We

introduce n + 1 groups of new indeterminates U0, . . . , Un over K[X1, . . . , Xr],
where, for every 0 ≤ i ≤ n, Ui := (Ui,α)α∈M(di) is a vector of Ni := #M(di)
coordinates. We denote by F0, . . . , Fn the following family of n + 1 generic
multihomogeneous polynomials of multi-degrees d0, . . . , dn respectively:

Fi :=
∑

α∈M(di)

Ui,α Xα i = 0, . . . , n. (2)

3.2 Multihomogeneous Polynomial Systems

The classical Multihomogeneous Bézout Theorem, which follows from the in-
tersection theory for divisors (see for instance [23, Chapter 4]), states that the
set of common zeroes of n generic multihomogeneous polynomials F1, . . . , Fn

as in (2) in the projective variety Pn1 × · · · × Pnr over an algebraic closure of
the field K(U1, . . . , Un) is a zero-dimensional variety with

Bezn1,...,nr(d1, . . . , dn) :=
∑ ∏

1≤j≤r

d
i
(j)
1 j

· · · d
i
(j)
nj

j
(3)

points, where the sum is taken over all those families of indices such that

• 1 ≤ i
(j)
1 < · · · < i(j)nj

≤ n for every 1 ≤ j ≤ r,

• #
( ⋃

1≤j≤r
{i(j)1 , . . . , i(j)nj

}
)

= n.

From the algorithmic point of view it will be useful to consider the coordinates
of these points as power series in an appropriate ring:

Proposition 1 Under the previous assumptions, there exists (u1, . . . , un) ∈
KN1+···+Nn such that every common zero of F1, . . . , Fn over an algebraic closure
of K(U1, . . . , Un) is a vector of power series in K[[U1 − u1, . . . , Un − un]].

PROOF. The idea is to apply the implicit function theorem in the same way
as we did in Section 2.3.
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For every 1 ≤ j ≤ r, take a family of elements a
(j)
ik ∈ K − {0}, for 1 ≤ i ≤ n

and 1 ≤ k ≤ dij, such that a
(j)
i1k1

6= a
(j)
i2k2

if i1 6= i2 or k1 6= k2. For each a
(j)
ik

consider the associated linear form in the variables Xj:

L
(j)
ik := xj0 + a

(j)
ik xj1 + (a

(j)
ik )2xj2 + · · ·+ (a

(j)
ik )njxjnj

.

For each index i, 1 ≤ i ≤ n, we consider the multihomogeneous polynomial of
multi-degree di = (di1, . . . , dir) ∏

1≤j≤r

∏
1≤k≤dij

L
(j)
ik (4)

and we denote by ui ∈ KNi the vector of coefficients of its monomials of
multi-degree di in a certain prefixed order.

We have the identity:

Fi(ui, X1, . . . , Xr) =
∏

1≤j≤r

∏
1≤k≤dij

L
(j)
ik . (5)

The hypothesis on the choice of the elements a
(j)
ik implies that for a fixed j,

1 ≤ j ≤ r, every subset of nj many linear forms L
(j)
ik is a linearly independent

set and so, it has a unique solution in Pnj . Moreover, any subset with more
than nj of these linear forms does not have a common solution in Pnj . We
conclude that the system

F1(u1, X1, . . . , Xr) = 0, . . . , Fn(un, X1, . . . , Xn) = 0 (6)

has exactly Bezn1,...,nr(d1, . . . , dn) solutions in Pn1 × · · · × Pnr , which are pre-
cisely the solutions to the linear systems

L
(1)

i
(1)
1 k

(1)
1

= 0, . . . , L
(1)

i
(1)
n1

k
(1)
n1

= 0, . . . , L
(r)

i
(r)
1 k

(r)
1

= 0, . . . , L
(r)

i
(r)
nr k

(r)
nr

= 0,

where

• 1 ≤ i
(j)
1 < · · · < i(j)nj

≤ n for every 1 ≤ j ≤ r,

• #
( ⋃

1≤j≤r
{i(j)1 , . . . , i(j)nj

}
)

= n,

• 1 ≤ k
(j)
l ≤ d

i
(j)
l

j
.

Since every solution to this system satisfies xj nj
6= 0 for every 1 ≤ j ≤ r,

we will deal with the dehomogenized polynomials (setting xjnj
= 1 for every

1 ≤ j ≤ r) and their common zero locus in the affine space An.

For every 1 ≤ j ≤ r, let X ′
j := (xj0, . . . , xj nj−1), and let X ′ := (X ′

1, . . . , X
′
r).

We denote by F := (f1, . . . , fn) the system of generic dehomogenized polyno-
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mials

fi := Fi((x10, . . . , x1 n1−1, 1), . . . , (xr0, . . . , xr nr−1, 1)) i = 1, . . . , n.

Consider the incidence variety

W := {(ν1, . . . , νn, x) : f1(ν1, x) = 0, . . . , fn(νn, x) = 0} ⊂ AN1+···Nn × An

and the projection π : (ν1, . . . , νn, x) 7→ (ν1, . . . , νn), which is a dominant map
of degree Bezn1,...,nr(d1, . . . , dn) due to the multihomogeneous Bézout theorem.
Let JF ∈ K[U1, . . . , Un][X ′] be the Jacobian determinant of the system F with
respect to the variables in X ′.

As a consequence of the construction of the polynomials considered in (5),
the specialized system f1(u1, X

′) = 0, . . . , fn(un, X
′) = 0 of dehomogenized

polynomials has maximal number of solutions, and it is not difficult to see
that for every solution ξ ∈ An to this system we have

JF(u1, . . . , un, ξ) 6= 0.

Therefore, π−1(u1, . . . , un) satisfies the hypotheses stated in Section 2.3.

Then, for every solution ξ to the particular system there exists a solution γξ

to the generic system F which is a vector whose coordinates are well defined
power series in K[[U1 − u1, . . . , Un − un]] and satisfies γξ(u1, . . . , un) = ξ.
Finally, let us observe that the points γξ are all the solutions to the system
(2). 2

From the previous proof and the arguments in Section 2.3 we deduce:

Remark 2 The coordinates of the solutions to the system (2) can be approxi-
mated in K[[U1− u1, . . . , Un− un]] from the solutions of the particular system
(6) by means of the Newton operator.

3.3 The Multihomogeneous Resultant

The multihomogeneous resultant extends the classical notion of resultant (as-
sociated with a system of homogeneous polynomials) to the multihomogeneous
setting. It can also be regarded as a particular case of the well-known sparse
resultant (see for instance [11]).

Let F0, . . . , Fn ∈ Q(U0, . . . , Un)[X1, . . . , Xr] be generic multihomogeneous poly-
nomials of multi-degree d0, . . . , dn respectively, as defined in (2) of Section 3.1.
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The multihomogeneous resultant Res(n1,...,nr),(d0,...,dn) of the n+1 polynomials
F0, . . . , Fn is an irreducible polynomial with coefficients in Z in the variables
Ui,α (0 ≤ i ≤ n, α ∈ M(di)) which vanishes at a point (u0, . . . , un) ∈ Pn1(k)×
· · · × Pnr(k) —where k is an algebraically closed field— if and only if the
polynomials F0(u0, X), . . . , Fn(un, X) have a common root in Pn1(k) × · · · ×
Pnr(k).

More precisely, for every 0 ≤ i ≤ n, let Ni be the number of coefficients of
Fi and set N ′

i := Ni − 1. Let W ⊂ PN ′
0 × · · · × PN ′

n × Pn1 × · · · × Pnr be the
incidence variety

W := {(u0, . . . , un, ξ1, . . . , ξr) : Fi(ui, ξ1, . . . , ξr) = 0 ∀ 0 ≤ i ≤ n}.

The image of W under the canonical projection π : W → PN ′
0 × · · · × PN ′

n is
an irreducible hypersurface in PN ′

0 × . . .×PN ′
n and so, it is the zero locus of an

irreducible polynomial. The multihomogeneous resultant Res(n1,...,nr),(d0,...,dn)

is defined as an irreducible equation for π(W ). This polynomial may be chosen
with integer coefficients and it is uniquely defined —up to sign— by the addi-
tional requirement that it has relatively prime coefficients. Furthermore, it is
homogeneous in the coefficients Ui of each polynomial Fi, for 0 ≤ i ≤ n, and
its degree in the group of variables Ui is the corresponding multihomogeneous
Bézout number

degUi
Res(n1,...,nr),(d0,...,dn) = Bezn1,...,nr(d0, . . . , di−1, di+1, . . . , dn) (7)

which controls the number of solutions of a multihomogeneous polynomial
equation system (see Section 3.2).

When the number of variables and degrees are clear from the context, we will
denote the resultant Res(n1,...,nr),(d0,...,dn) associated with the generic polynomi-
als F0, . . . , Fn simply by Res(F0, . . . , Fn).

3.4 A Poisson-Type Formula

Here, we present a Poisson-type product formula for the multihomogeneous
resultant which generalizes the well-known Poisson formula for the homoge-
neous case, providing us with a recursive description of the resultant in the
multihomogeneous setting. This formula can be regarded as an instance of the
product formula stated by Pedersen-Sturmfels in [22]. However, the proof we
give in this paper is elementary and so, we include it for the sake of complete-
ness.

We keep the notation defined in Section 3.1.
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Before stating the product formula, we introduce some extra notation that
will be used throughout this section.

We denote by

fi := Fi((x10, . . . , x1 n1−1, 1), . . . , (xr0, . . . , xr nr−1, 1)) (8)

and, for every 1 ≤ j ≤ r,

F ij := Fi(X1, . . . , Xj−1, (xj0, . . . , xj nj−1, 0), Xj+1, . . . , Xn). (9)

Let mfn be the linear map defined in the 0-dimensional Q(U0, . . . , Un)-algebra
Q(U0, . . . , Un)[X ′

1, . . . , X
′
r]/(f0, . . . , fn−1) by multiplication by fn, where X ′

j

denotes the group of variables X ′
j := (xj0, . . . , xj nj−1) for every 1 ≤ j ≤ r.

Proposition 3 Let notation and assumptions be as before. Then, the follow-
ing identity holds in Q(U0, . . . , Un):

Res(F0, . . . , Fn) = det(mfn) ·
∏

1≤j≤r

(
Res(F 0j, . . . , F n−1 j)

)dnj

.

In order to prove this proposition, we first show an auxiliary multiplicative
formula for the multihomogeneous resultant (see [19, Section 5.7] for an anal-
ogous formula in the homogeneous case):

Lemma 4 Let F0, . . . , Fn−1 be generic multihomogeneous polynomials with
multi-degrees d0, . . . , dn−1 respectively. Let dn := (dn1, . . . , dnr) be a vector
of non-negative integers and, for j = 1, . . . , r, let Hj(Xj) be a generic ho-
mogeneous polynomial of degree dnj in the variables Xj. Then, the following
identity holds:

Res
(
F0, . . . , Fn−1,

∏
1≤j≤r

Hj

)
=

∏
1≤j≤r

Res
(
F0, . . . , Fn−1, Hj

)
.

PROOF. By the definition of the resultant, Res(F0, . . . , Fn−1,
∏

1≤j≤r Hj)(u)
vanishes if and only if the system

F0(u) = 0, . . . , Fn−1(u) = 0,
∏

1≤j≤r

Hj(u) = 0

has a root in X := Pn1 × . . .× Pnr or, equivalently, for some j with 1 ≤ j ≤ r,
the system F0(u) = 0, . . . , Fn−1(u) = 0, Hj(u) = 0 has a common root in X.

But the condition that F0(u), . . . , Fn−1(u), Hj(u) have a common root in X is
given by the vanishing of the resultant Res(F0, . . . , Fn−1, Hj) in u. Since these
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resultants are irreducible polynomials for 1 ≤ j ≤ r, we conclude that the
irreducible factors of Res(F0, . . . , Fn−1,

∏
1≤j≤r Hj) are exactly the r multiho-

mogeneous resultants Res(F0, . . . , Fn−1, Hj) for 1 ≤ j ≤ r, and so, there exist
a1, . . . , ar ∈ N such that

Res
(
F0, . . . , Fn−1,

∏
1≤j≤r

Hj

)
=

∏
1≤j≤r

Res(F0, . . . , Fn−1, Hj)
aj . (10)

It remains to be shown that aj = 1 for 1 ≤ j ≤ r. This follows easily by
comparing the degrees in the variable coefficients of H1, . . . , Hr of the poly-
nomials involved in both sides of identity (10): the degree of the resultant
Res(F0, . . . , Fn−1, Fn) in the coefficients of the generic polynomial Fn of multi-
degree dn is the Bézout number Bezn1,...,nr(d0, . . . , dn−1). Then, the polynomial
Res(F0, . . . , Fn−1,

∏
1≤j≤r Hj) has degree r Bezn1,...,nr(d0, . . . , dn−1) in the coef-

ficients of the polynomials H1, . . . , Hr, for each coefficient of
∏

1≤j≤r Hj is a
product of r variables. But this degree coincides with the sum of the degrees
of all the irreducible factors Res(F0, . . . , Fn−1, Hj), 1 ≤ j ≤ r, which implies
that the exponent aj equals 1 for every 1 ≤ j ≤ r. 2

Now we are ready to prove Proposition 3:

PROOF. (Proof of Proposition 3). Let f0, . . . , fn be the generic polynomials
defined in (8) and set N for the number of their coefficients. Consider the
incidence variety associated with these polynomials

Waf := {(u0, . . . , un, ξ) ∈ AN × An : fi(ui, ξ) = 0 ∀ 0 ≤ i ≤ n}

and the canonical projection π : AN × An → AN into the first coordinates.
Then, the multihomogeneous resultant Res(F0, . . . , Fn) can be alternatively
defined as the unique —up to scalar factors— polynomial defining the Zariski
closure π(Waf), which is an irreducible hypersurface in AN . Therefore, by
elementary elimination theory, the following identity of ideals holds:

(Res(F0, . . . , Fn)) = (f0, . . . , fn) ∩Q[U0, . . . , Un].

Therefore,

(Res(F0, . . . , Fn)) .K[Un] =
(
(f0, . . . , fn).K[Un][X ′

1, . . . , X
′
r]
)
∩K[Un], (11)

where K := Q(U0, . . . , Un−1).

The ideal appearing on the right hand side of identity (11) can also be regarded
as an eliminating ideal: Let Nn be the number of coefficients of fn and let

W e
af := {(un, ξ) ∈ ANn(K)×An(K) : fi(ξ) = 0 ∀ 0 ≤ i ≤ n−1, fn(un, ξ) = 0}.
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Let πe be the canonical projection into the first Nn coordinates. As before, the
defining ideal of πe(W e

af) is ((f0, . . . , fn).K[Un][X ′
1, . . . , X

′
r]) ∩K[Un], which is

the one appearing in the right hand side of (11).

On the other hand, we have that V (f0, . . . , fn−1) := {ξ ∈ An : fi(ξ) = 0 ∀ 0 ≤
i ≤ n − 1} is a zero-dimensional variety and, therefore, the ideal of πe(W e

af)
is generated by the polynomial

∏
ξ∈V (f0,...,fn−1) fn(Un, ξ) ∈ K[Un], which under

our generic conditions equals the determinant det(mfn) of the multiplication
by fn in K(Un)[X ′

1, . . . , X
′
r]/(f0, . . . , fn−1).

Then, it follows that there exists an element λ ∈ Q(U0, . . . , Un−1)− {0} such
that

Res(F0, . . . , Fn) = det(mfn) · λ. (12)

In particular, specializing the variables Un into the coefficients of the poly-
nomial xdn1

1n1
· · ·xdnr

rnr
we obtain the identity λ = Res(F0, . . . , Fn−1, x

dn1
1n1

· · ·xdnr
rnr

)
and we deduce that λ ∈ Q[U0, . . . , Un−1] is a polynomial.

Applying Lemma 4, we conclude that λ factors as the following product of
specialized resultants:

λ =
∏

1≤j≤r

Res(F0, . . . , Fn−1, x
dnj

jnj
).

Adapting the proof of Lemma 4, we can easily obtain that, for every 1 ≤ j ≤ r,

Res(F0, . . . , Fn−1, x
dnj

jnj
) = Res(F 0j, . . . , F n−1 j)

dnj

and so,

λ =
∏

1≤j≤r

Res(F 0j, . . . , F n−1 j)
dnj . (13)

The Poisson formula stated in the Proposition follows from (12) and (13). 2

4 Computing Multihomogeneous Resultants

This section is devoted to the description and complexity analysis of our algo-
rithm for the computation of multihomogeneous resultants. In order to con-
struct this algorithm, we are going to use the formula stated in Proposition 3
recursively.

Our main result is the following:
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Theorem 5 Let n1, . . . , nr ∈ N and set n := n1 + · · · + nr. Fix vectors
d0, . . . , dn ∈ Nr

0. Let

D :=
∑

0≤i≤n
Bezn1,...,nr(d0, . . . , d̂i, . . . , dn),

δ := Bezn1,...,nr(d0, . . . , dn−1),

ρ :=
∑

0≤i≤n−1
|di| − n + 1,

N :=
∑

0≤i≤n

∏
1≤j≤r

(
nj+dij

dij

)
.

Then, there exists a straight-line program of length

O(D2(D + n1 . . . nrδ log(D)ρ2n2(n3 + rN)))

which encodes (a scalar multiple of) Res(n1,...,nr),(d0,...,dn), the multihomogeneous
resultant of n + 1 multihomogeneous polynomials of respective multi-degrees
d0, . . . , dn in r groups of n1 + 1, . . . , nr + 1 variables respectively. Moreover,
this straight-line program can be obtained algorithmically within complexity
O(D2(D + n1 . . . nrδ log(D)ρ2n2(n3 + rN))).

In particular, this theorem provides an algorithm for the computation of clas-
sical resultants of homogeneous polynomial systems:

Remark 6 A straight-line program for the resultant Resd0,...,dn of n + 1 ho-
mogeneous polynomials in n + 1 variables of respective degrees d0, . . . , dn can
be computed within complexity

O(D2(D + δ log(D)ρ2n3(n3 + N))),

where D =:
∑

0≤i≤n d0 . . . d̂i . . . dn, δ := d0 . . . dn, ρ :=
∑

0≤i≤n di − n + 1

and N :=
∑

0≤i≤n

(
di+n

n

)
. The length of this straight-line program is of order

O(D2(D + δ log(D)ρ2n3(n3 + N))).

Now we prove the theorem.

PROOF. (Proof of Theorem 5.) Before stating the formula that will allow
us to compute the desired resultant, we are going to fix some notation.

Let F0, . . . , Fn ∈ Q(U0, . . . , Un)[X1, . . . , Xr] be generic multihomogeneous poly-
nomials as in (2).

For an integer vector (k1, . . . , kr) ∈ Nr
0 such that 0 ≤ kj ≤ nj for every 1 ≤

j ≤ r, given any multihomogeneous polynomial H in the groups of variables
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X1, . . . , Xr, we define the associated polynomial h(k1,...,kr) as the one we obtain
by specializing in H the variables xj` = 0 for 1 ≤ j ≤ r and nj−kj+1 ≤ ` ≤ nj,
and the variables xj nj−kj

= 1 for 1 ≤ j ≤ r (note that this specialization is
denoted both by the vector superindex and by the change from capital to
lower case letter).

We also introduce the following notation for sets of variables, where κ :=
n− |(k1, . . . , kr)|:

U (k1,...,kr) :=
⋃

0≤i≤κ−1

{Ui,α : |αj| = dij, αj` = 0 for ` = nj − kj + 1, . . . , nj; 1 ≤ j ≤ r},

Û (k1,...,kr) :=
⋃

0≤i≤κ

{Ui,α : |αj| = dij, αj` = 0 for ` = nj − kj + 1, . . . , nj; 1 ≤ j ≤ r},

X(k1,...,kr) :=
⋃

1≤j≤r

{xj` : 0 ≤ ` ≤ nj − kj − 1}.

Finally, we consider the polynomials f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 obtained after the

polynomials F0, . . . , Fκ−1 according to our notation. Let

A(k1,...,kr) := Q(Û (k1,...,kr))[X(k1,...,kr)]/(f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 )

and let

m
f
(k1,...,kr)
κ

: A(k1,...,kr) → A(k1,...,kr) (14)

be the linear map given by multiplication by f (k1,...,kr)
κ .

Applying Proposition 3 recursively, we obtain a formula for the multihomo-
geneous resultant involving the determinants of the linear maps defined in
(14):

Res(n1,...,nr),(d0,...,dn) = U
e(n1,...,nr)
0,α(0)

∏
1≤κ≤n

|(k1,...,kr)|=n−κ, 0≤kj≤nj

(
det(mfκ

(k1,...,kr))
)e(k1,...,kr)

.

Here, α(0) := ((d01, 0, . . . , 0), . . . , (d0r, 0, . . . , 0)), and for every (k1, . . . , kr)
with 0 ≤ kj ≤ nj (1 ≤ j ≤ r), if |(k1, . . . , kr)| = n− κ,

e(k1, . . . , kr) :=
∑ ∏

1≤l≤n−κ

dn−l+1 jl
, (15)

where the sum runs over the vectors (j1, . . . , jn−κ) satisfying #{t/jt = j} = kj

for every 1 ≤ j ≤ r.

So, to compute the desired resultant it would suffice to compute the exponents
and the determinants involved in the previous formula.
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The first step of the algorithm consists in the computation of straight-line
programs for approximations to these determinants in a suitable power series
ring.

For every 1 ≤ i ≤ n let

Gi−1 :=
∏

1≤j≤r

∏
1≤k≤dij

L
(j)
ik ∈ Q[X1, . . . , Xr] (16)

as defined in (4).

Let (k1, . . . , kr) ∈ Nr
0 be such that 0 ≤ kj ≤ nj (1 ≤ j ≤ r). Consider

the polynomials f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 in Q[U (k1,...,kr)][X(k1,...,kr)] where κ =

n− |(k1, . . . , kr)| and the variety

W (k1,...,kr) := {f (k1,...,kr)
0 = 0, . . . , f

(k1,...,kr)
κ−1 = 0} ⊂ AN(k1,...,kr) × Aκ

where N (k1,...,kr) is the number of variables in U (k1,...,kr).

We consider the polynomials g
(k1,...,kr)
0 , . . . , g

(k1,...,kr)
κ−1 defined after G0, . . . , Gκ−1,

and the zero-dimensional variety

Z(k1,...,kr) := {g(k1,...,kr)
0 = 0, . . . , g

(k1,...,kr)
κ−1 = 0} ⊂ Aκ.

Let u(k1,...,kr) ∈ AN(k1,...,kr)
be the vector of coefficients of the polynomial system

defining Z(k1,...,kr).

We are exactly under the hypotheses stated in Section 3.2. Therefore, the
determinant det(m

f
(k1,...,kr)
κ

) is an element of Q[[U (k1,...,kr)−u(k1,...,kr)]][Uκ,α] and

Newton’s algorithm applied to the system f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 allows us to

approximate det(m
f
(k1,...,kr)
κ

) (see Proposition 1 and Remark 2). Then, we can

obtain polynomials g(k1,...,kr) ∈ Q[U (k1,...,kr)][Uκ,α] and h(k1,...,kr) ∈ Q[U (k1,...,kr)]
with h(k1,...,kr)(u

(k1,...,kr)) 6= 0 such that the rational function g(k1,...,kr)/h(k1,...,kr)

approximates the desired determinant up to degree D, which is the total degree
of Res(n1,...,nr),(d0,...,dn) (see (7)).

Note that all the determinants considered are in Q[[U (0,...,0) − u(0,...,0)]][Un,α].

Now we obtain straight-line programs for the polynomials

g :=
∏

(k1,...,kr), 0≤kj≤nj

(
g(k1,...,kr))

)e(k1,...,kr)
and (17)

h :=
∏

(k1,...,kr), 0≤kj≤nj

(
h(k1,...,kr))

)e(k1,...,kr)
, (18)

where g(n1,...,nr) := U0,α(0) and h(n1,...,nr) := 1.
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Finally, as h(u(0,...,0)) 6= 0, we can apply procedure GradedParts (see Section
2.3) in order to compute the homogeneous components of the quotient g/h
centered at (u(0,...,0), 0) up to degree D. The sum of these components is (a
scalar multiple of) Res(n1,...,nr),(d0,...,dn).

Now we estimate the complexity of the algorithm.

Fix (k1, . . . , kr) ∈ Nr
0 such that 0 ≤ kj ≤ nj for j = 1, . . . , r. Set κ :=

n− |(k1, . . . , kr)|. We will denote by

N
(k1,...,kr)
i :=

∏
1≤j≤r

(
nj − kj + dij

dij

)
i = 0, . . . , κ

δ(k1,...,kr) := Bezn1−k1,...,nr−kr(d0, . . . , dκ−1)

the number of coefficients in f
(k1,...,kr)
i (0 ≤ i ≤ κ) and the number of so-

lutions of the generic system f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 respectively. Recall that

N (k1,...,kr) =
∑

0≤i≤κ−1 N
(k1,...,kr)
i is the total number of coefficients of the poly-

nomials f
(k1,...,kr)
i (0 ≤ i ≤ κ− 1).

First, we compute straight-line programs encoding f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1

within complexity O(rN (k1,...,kr)) (see Section 2.2). For i = 0, . . . , κ − 1, the

length of the straight-line program encoding f
(k1,...,kr)
i is O(rN

(k1,...,kr)
i ). There-

fore, the complexity of applying procedure NumDenNewton using these straight-
line programs is of order O(log(D)ρ2

κκ
2(κ3 + rN (k1,...,kr))) (see Section 2.3),

where ρκ :=
∑

0≤i≤κ−1 |di| − κ + 1.

In order to compute the approximation of det(m
f
(k1,...,kr)
κ

) from the output of

NumDenNewton, we obtain the points in Z(k1,...,kr), that is, the solutions to the
system g

(k1,...,kr)
0 = 0, . . . , g

(k1,...,kr)
κ−1 = 0. Note that, due to the structure of the

polynomials g
(k1,...,kr)
i (0 ≤ i ≤ κ−1), this can be achieved by solving δ(k1,...,kr)

linear systems. Each of these linear systems can be split into r linear systems
in the different groups of variables (see Section 3.2): for every 1 ≤ j ≤ r, we
have to solve a system of nj − kj linear equations

xj0 + alxj1 + · · ·+ a
nj−kj−1
l xj nj−kj−1 + a

nj−kj

l = 0 l = 1, . . . , nj − kj (19)

for certain constants a1, . . . , anj−kj
. For a fixed j (1 ≤ j ≤ r), the solution to

(19) is the vector of coefficients of the monic univariate polynomial of degree
nj−kj whose roots are a1, . . . , anj−kj

. These coefficients can be computed from
a1, . . . , anj−kj

within complexity (nj−kj)
2. Therefore, we obtain all the points

in Z(k1,...,kr) within complexity δ(k1,...,kr)
∑

1≤j≤r(nj − kj)
2 = O(δ(k1,...,kr)κ

2).

We also need a straight-line program encoding the homogenized polynomial
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in Q(Uκ)[T, X(k1,...,kr)] of f (k1,...,kr)
κ with a new single variable T . This is ob-

tained within complexity O(rκN (k1,...,kr)
κ ) by computing first all the mono-

mials in X(k1,...,kr) and the powers of T , then the homogeneous monomials
in T, X(k1,...,kr) multiplied by the corresponding coefficients, and finally their
sum. The length of this straight-line program is of order O(rN (k1,...,kr)

κ ).

This implies that the polynomials g(k1,...,kr) and h(k1,...,kr), whose quotient gives

the desired approximation, can be computed from f
(k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 , the

homogenized polynomial of f (k1,...,kr)
κ and the points in Z(k1,...,kr) within com-

plexity O
(
δ(k1,...,kr)(log(D)ρ2

κκ
2(κ3+rN (k1,...,kr))+rN (k1,...,kr)

κ )
)

and are encoded
by straight-line programs whose length are of the same order as this complex-
ity.

The total complexity for the computation of g(k1,...,kr) and h(k1,...,kr) is of order

O
(
δ(k1,...,kr)κ(log(D)ρκκ(κ3 + rN (k1,...,kr)) + rN (k1,...,kr)

κ )
)
.

The next step of the algorithm consists in the computation of the polynomials
g and h defined in (17) and (18) respectively.

In order to do this, it is necessary to compute the exponents e(k1, . . . , kr)
for all vectors (k1, . . . , kr) with 0 ≤ kj ≤ nj. We compute them recursively
according to the next formula which follows easily from the definition (15):

e(k1, . . . , kr) =
∑

1≤j≤r; kj>0

dκ+1 j e(k1, . . . , kj − 1, . . . , kr) (20)

where κ := n−|(k1, . . . , kr)|, starting from e(0, . . . , 0) = 1. As the computation
of an exponent according to (20) requires at most r products and r−1 additions
of previously computed numbers, we conclude that the computation of all the
exponents e(k1, . . . , kr) (0 ≤ kj ≤ nj, 1 ≤ j ≤ r) can be performed within
complexity O(r n1 . . . nr).

Now we compute, for every (k1, . . . , kr), the powers
(
g(k1,...,kr)

)e(k1,...,kr)
and(

h(k1,...,kr)

)e(k1,...,kr)
within complexity O(log(e(k1, . . . , kr)). Taking into account

that

e(k1, . . . , kr)≤Bezn1,...,nr(d1, . . . , dn) ≤ D,

δ(k1,...,kr)≤ δ := Bezn1,...,nr(d0, . . . , dn−1),

ρκ≤ ρ :=
∑

0≤i≤n−1

|di| − n + 1,

after computing the products in (17) and (18), we obtain straight-line pro-
grams of length L := O(n1 . . . nrδ log(D)ρ2n2(n3 + rN)) encoding g and h.
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Finally, we apply procedure GradedParts to g and h in order to compute a
straight-line program of length

O(D2(D + L)) = O
(
D2(D + n1 . . . nrδ log(D)ρ2n2(n3 + rN))

)
encoding the first D + 1 homogeneous components of their quotient centered
at (u(0,...,0), 0).

The complexity of computing u(0,...,0), that is, the vector whose entries are the
coefficients of the polynomials G0, . . . , Gn−1 defined in (16), is bounded by
O(δnrN).

This implies that the total complexity of the computation of the above men-
tioned homogeneous components is of order

O(D2(D + n1 . . . nrδ log(D)ρ2n2(n3 + rN))).

Adding all the homogeneous components computed to obtain the straight-line
program for (a scalar factor) of Res(n1,...,nr),(d1,...,dr) does not modify the order
of the complexity or the length of the straight-line program. 2

All the parameters involved in the complexity of the algorithm underlying
Theorem 5 can easily be bounded in terms of D and N , which leads to the
following complexity result:

Remark 7 The complexity of the computation of the multihomogeneous re-
sultant is polynomial in its degree D and the number of its variables N .

We summarize the algorithm in Procedure MultiResultant. Herein, we use
the following notation for subroutines:

• Vects(n, λ1, . . . , λn) constructs a family of n vectors of λ1, . . . , λn coordi-
nates each, with all their coordinates being different rational numbers.

• Vars(n, d0, . . . , dn) produces a family of n + 1 sets of variables indexed by
the monomials of multi-degrees d0, . . . , dn.

• Homog(f, d) computes the homogenization of the polynomial f up to degree
d ≥ deg f .

• For H(X1, . . . , Xr) multihomogeneous and (k1, . . . , kr) ∈ Nr
0, h(k1,...,kr) de-

notes the output of a subroutine which computes a straight-line program
for the polynomial derived from H by specializing the last kj variables of
the group Xj to 0 and setting xj nj−kj

= 1 for every 1 ≤ j ≤ r.
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procedure MultiResultant(n, r, n1, . . . , nr, d0, . . . , dn)

# n, r ∈ N
# n1, . . . , nr ∈ N such that n1 + · · ·+ nr = n
# d0, . . . , dn ∈ Nr

0

# The procedure returns the resultant of n + 1 multihomogeneous polynomials in
# r groups of n1, . . . , nr variables and multi-degrees d0, . . . , dn.

1. D :=
∑

0≤i≤n Bezn1,...,nr(d0, . . . , d̂i, . . . , dn);

2. (a(1), . . . , a(r)) := (Vects(n, d01, . . . , dn−1 1), . . . , Vects(n, d0r, . . . , dn−1 r));

3. (U0, . . . , Un) := Vars(n + 1, d0, . . . , dn);

4. for i = 0, . . . , n do

5. Fi :=
∑

α Ui,α Xα;

6. od;

7. for i = 0, . . . , n− 1 do

8. Gi :=
∏

1≤j≤r

∏
1≤k≤dij

xj0 + a
(j)
ik xj1 + (a(j)

ik )2xj2 + · · ·+ (a(j)
ik )njxjnj ;

9. od;

10. for κ = n, . . . , 0 do

11. Sκ := {(k1, . . . , kr) ∈ Nr
0 : 0 ≤ kj ≤ nj , 1 ≤ j ≤ r, k1 + · · ·+ kr = n− κ};

12. for (k1, . . . , kr) ∈ Sκ do

13. F := Homog(f (k1,...,kr)
κ , dκ1 + · · ·+ dκr);

14. Z := Solve(g(k1,...,kr)
0 , . . . , g

(k1,...,kr)
κ−1 );

15. (g(k1,...,kr), h(k1,...,kr)) := ApproxNorm(f (k1,...,kr)
0 , . . . , f

(k1,...,kr)
κ−1 , F, Z, D);

16. e(k1, . . . , kr) :=
∑

1≤j≤r; kj>0 dκ+1 j e(k1, . . . , kj − 1, . . . , kr);

17. od;

18. od;

19. g :=
∏

(k1,...,kr)∈
⋃

0≤κ≤n
Sκ

g
e(k1,...,kr)
(k1,...,kr) ;

20. h :=
∏

(k1,...,kr)∈
⋃

0≤κ≤n
Sκ

h
e(k1,...,kr)
(k1,...,kr) ;

21. u(0,...,0) := Coeffs(G0, . . . , Gn−1);

22. (R0, . . . , RD) := GradedParts(g, h, (u(0,...,0), 0), D);

23. Res :=
∑

0≤t≤D Rt;

24. return(Res)

end

22



References
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