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Computing Chow Forms and Some Applications1
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We prove the existence of an algorithm that, from a finite set of polynomials
defining an algebraic projective variety, computes the Chow form of its equidimen-
sional component of the greatest dimension. Applying this algorithm, a finite set of
polynomials defining the equidimensional component of the greatest dimension of
an algebraic (projective or affine) variety can be computed. The complexities of the
algorithms involved are lower than the complexities of the known algorithms solv-
ing the same tasks. This is due to a special way of coding output polynomials, called
straight-line programs.  2001 Academic Press
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1. INTRODUCTION

One of the basic problems in effective algebraic geometry is to give a
geometric description of the set of solutions of a polynomial equation sys-
tem. This set is an algebraic variety and a possible way to describe it is to
decompose it into equidimensional subvarieties (i.e., varieties with all their
irreducible components of the same dimension).

When all the equations involved are given by homogeneous polynomials,
the set of solutions form a projective variety in the projective space. An
equidimensional projective variety can be completely described by means
of a polynomial called its Chow form. This is the reason several algorithms
to compute the Chow form of a projective variety have been constructed
(see, for example, [2, 5, 12]). The algorithm described in [12] only deals with
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irreducible varieties and the one shown in [2] deals with equidimensional
varieties (that is, one has to know in advance whether the variety considered
is irreducible or equidimensional, respectively). In [5], the algorithm yields
an equidimensional decomposition of a projective variety and computes the
Chow form of every component. If the variety V is given by s homogeneous
polynomials in n + 1 variables of degrees bounded by d, the sequential
complexities of the algorithms in [5], [2], and [12] are of order �sd�nO�1�

s5dO��n−r�·n2� and sO�1�dO�n·r� respectively, where r is the dimension of V .
In this paper we show the existence of a well-parallelizable algorithm

which, given as input s homogeneous polynomials in n + 1 variables of
degrees bounded by d ≥ n which define a projective variety V , produces as
output the Chow form of the equidimensional component of V of the great-
est dimension. The sequential complexity of this algorithm is bounded by
sO�1�dO�n�. Note that this algorithm solves the same task as the algorithms
in [2] and [12] within lower complexity bounds and without further infor-
mation on V . The significant reduction in complexity is partly due to the
different way of coding polynomials with respect to [2] and [5]: the poly-
nomials involved are not only encoded as vectors of coefficients but also as
arithmetic circuits (straight-line programs) as well.

Using this algorithm, we obtain another one which, given a variety V
(either affine or projective) produces polynomials defining its equidimen-
sional component of the greatest dimension within the same complexity
bounds. Moreover, an algorithm which decides whether a variety V is
equidimensional or not can be obtained.

Besides the above-cited algorithm in [5], there are other algorithms
which describe equidimensional components of algebraic varieties as the
one shown in [3]. Both these algorithms have greater complexities than the
ones we show in this paper. As we have mentioned before, this is partly
due to the fact that they only use dense form encoding for polynomials.

2. PRELIMINARIES

2.1. Notations

Let k be a field of characteristic 0. We suppose k to be effective: this
means that the arithmetic operations (addition, subtraction, multiplication)
and basic equality checking (comparison) between elements of k are real-
izable by algorithms. Each operation or comparison is considered to have
unitary cost, and the sequential complexity of an algorithm is the number of
arithmetic operations and comparisons performed between elements of k.

If X0	 
 
 
 	Xn are indeterminates over k and f ∈ k�X0	 
 
 
 	Xn	 is a
polynomial, its total degree will be denoted by deg f .



54 jeronimo, puddu, and sabia

Let k̄ be an algebraic closure of k. We denote by �n�k̄� (or �n) and �n�k̄�
(or �n) the n-dimensional projective and affine spaces over k̄, respectively,
equipped with their Zariski topologies. If S ⊆ �n (or S ⊆ �n�	�S will denote
the closure of S with respect to these topologies.

The dimension of an algebraic variety V will be denoted by dim V .
If V ⊆ �n is an irreducible closed set of dimension r the degree of V is,

as usual,

degV =sup�#H1∩···∩Hr∩V � H1	


	Hr affine

hyperplanes in �n such that H1∩···∩Hr∩V

is a finite set�

For an arbitrary algebraic variety V ⊆ �n	 deg V is defined as the sum of
the degrees of all the irreducible components of V . This notion of degree
can be extended to the projective case. Let V ⊆ �n be an irreducible pro-
jective variety. The degree of V is the number of points in the intersection
of V with a linear variety of complementary dimension. The degree of
any projective variety is, again, the sum of the degrees of its irreducible
components.

2.2. Chow Form of an Equidimensional Projective Variety

Let X0	 
 
 
 	Xn be indeterminates over k. Let V ⊆ �n be an equidimen-
sional projective variety definable by polynomials in k�X0	 
 
 
 	Xn	, and let
r be its projective dimension. For every i	 0 ≤ i ≤ r, let

L�i� = Y
�i�
0 X0 + · · · + Y

�i�
n Xn	

where Y
�i�
j �0 ≤ i ≤ r	 0 ≤ j ≤ n� are new indeterminates over

k�X0	 
 
 
 	Xn	.
Let ��V � ⊆ ��n�r+1 × �n be the set

��V � = ��y�0�	 
 
 
 	 y�r�	 x� ∈ ��n�r+1 × �n  x ∈ V ∧ L�0��y�0�	 x� = 0

∧ · · · ∧ L�r��y�r�	 x� = 0�

Let π  ��n�r+1 × �n → ��n�r+1 be the cannonical projection map. Then
π���V �� is a closed set of codimension 1 in ��n�r+1 (see [13]).

Therefore there exists a square-free polynomial P ∈ k�Y �i�
j 	 0≤i≤r

0≤j≤n

(uniquely determined by V up to a constant factor) such that

π���V �� = �y ∈ ��n�r+1/P�y� = 0�

The polynomial P is called the Chow form of the projective variety V .

Note that, given H0	 
 
 
 	Hr ⊆ �n hyperplanes whose equations are
determined by y�0�	 
 
 
 	 y�r� ∈ �n, then

P�y�0�	 
 
 
 	 y�r�� = 0⇔ V ∩H0 ∩ · · · ∩Hr �= �
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2.3. Codification of Polynomials

The multivariate polynomials we deal with in our algorithms will be
encoded in one of the following ways:

• Dense form, that is, as arrays (vectors) of elements of k.

• Straight-line programs, which are arithmetic circuits (networks with-
out branches). They contain neither selectors nor (propositional) Boolean
operations. (For an exact definition and elementary properties of the notion
of a straight-line program we refer to [7] and [8].)

• Combining both dense form and straight-line programs.

2.4. Algorithmic Tools

The algorithms we construct in this paper are based on the effective well-
parallelizable algorithm for quantifier elimination over algebraically closed
fields developed in [12]. Whenever we need to compute the dimension of
an affine or projective variety from a finite set of polynomials defining it,
we will apply the well-parallelizable algorithm in [6]. Both these algorithms
use well-parallelizable algorithms for linear algebra like the ones described
in [1] and [11].

To determine whether a polynomial encoded by a straight-line program
is the zero polynomial, we will evaluate it in a suitable sequence of points
(called a correct test sequence) with coordinates in k (see [8, Theorem 4.4]).
Although the choice of such sequences could be done algorithmically, the
cost of doing so would exceed the main complexity class considered in this
paper. However, for fixed input parameters (number of indeterminates,
quantity and degrees of the polynomials involved), this choice is indepen-
dent of the problem. For this reason, we will suppose that the correct test
sequences are given by means of a preprocessing whose cost will not be con-
sidered in the complexity bounds obtained and, therefore, our algorithms
will be non-uniform as they depend on the choice of these sequences. Our
non-uniform algorithms can be turned into uniform probabilistic ones if the
elements of the correct test sequences are chosen randomly.

In order to compute the greatest common divisor of a finite set of poly-
nomials encoded by a straight-line program, we adapt the techniques given
in [9] using correct test sequences to obtain a deterministic non-uniform
algorithm. We will compute quotients of polynomials given by straight-line
programs using Strassen’s procedure of Vermeidung von Divisionen ([14],
see also [10]). Finally, we will need to compute the radical of a polynomial
given by a straight-line program. A standard (non-uniform) computation
involving greatest common divisor and Vermeidung von Divisionen shows
that if f ∈ k�X1	 
 
 
 	Xn	 is a polynomial of total degree D ≥ n given by
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a straight-line program of length L, there exists a straight-line program of
length �L
D�O�1� which computes rad�f �.

3. RESULTS

Let F1	 
 
 
 	 Fs be homogeneous polynomials in k�X0	 
 
 
 	Xn	 and let
V ⊆ �n�k̄� be the projective variety consisting of the common zeroes of
these polynomials; that is,

V = �x ∈ �n�k̄�/F1�x� = 0 ∧ · · · ∧ Fs�x� = 0�

Let r be the dimension of V and let Vr be the equidimensional component
of V of dimension r.

In a first step, we are going to obtain a straight-line program that com-
putes the Chow form of Vr . Then, we will use this Chow form to obtain
a finite set of polynomials defining this component. We will adapt conve-
niently our algorithm to find the equidimensional component of the great-
est dimension for the case of an affine variety. Finally, we will describe an
algorithm to decide whether an algebraic variety is equidimensional or not.

3.1. Computing the Chow Form of the Equidimensional Component of V
of Dimension dim V

In this step, we will describe an algorithm that, from polynomials defin-
ing a projective variety V of dimension r, computes the Chow form of its
equidimensional component of dimension r.

Theorem 1. Let F1	 
 
 
 	 Fs be homogeneous polynomials in
k�X0	 
 
 
 	Xn	 and let d ≥ n be an integer such that degFi ≤ d �1 ≤ i ≤ s�.
Let

V = �x ∈ �n�k̄�/F1�x� = 0 ∧ · · · ∧ Fs�x� = 0�

Let r be the projective dimension of V and let Vr be the equidimensional
component of V of dimension r.
Then, there exists a well-parallelizable algorithm with sequential complex-

ity bounded by sO�1�dO�n� whose input is the set of polynomials �F1	 
 
 
 	 Fs�
encoded in dense form and whose output is the Chow form Pr of Vr , given by
a straight-line program of length sO�1�dO�n�.

Proof. First we apply the well-parallelizable algorithm of Giusti and
Heintz (see [6]) to compute r = dim V . The sequential complexity of this
step is sO�1�dO�n�.

We introduce �n + 1��r + 1� new indeterminates �Y �i�
j � 0≤i≤r

0≤j≤n
over

k�X0	 
 
 
 	Xn	.
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For every i	 0 ≤ i ≤ r, let

L�i� = Y
�i�
0 X0 + · · · + Y

�i�
n Xn

and let ��V � ⊆ ��n�r+1 × �n be the set

��V � = ��y	 x� ∈ ��n�r+1 × �n/F1�x� = 0 ∧ · · · ∧ Fs�x� = 0

∧L�0��y	 x� = 0 ∧ · · · ∧ L�r��y	 x� = 0�


We are going to adapt the arguments used for defining the Chow form
in [13] in order to obtain a relation between the Chow form of Vr , the
equidimensional component of V of dimension r, and the set ��V �.

Let C be an irreducible component of V . We define ��C� ⊆ ��n�r+1 ×
�n as

��C� = ��y	 x� ∈ ��n�r+1 × �n/x ∈ C ∧ L�0��y	 x� = 0

∧ · · · ∧ L�r��y	 x� = 0�


Then, ��V � = ⋃
C ��C�, where the union ranges over all the irreducible

components of V .
Let π1: ��n�r+1 × �n → ��n�r+1 and π2: ��n�r+1 × �n → �n be the

cannonical projection maps.
If dimC = r, then π1���C�� is a closed set of codimension 1 in ��n�r+1

(see [13]). Consider now the case when dimC < r. As π2���C�� = C and
for every x ∈ C	π−1

2 �x� ∼= ��n−1�r+1 × �x� is an irreducible set of dimen-
sion �n− 1��r + 1�, then ��C� is irreducible and dim��C� = dimπ−1

2 �x� +
dimC < n�r + 1� − 1. Therefore, dimπ1���C�� < n�r + 1� − 1.

Consider

��Vr� = ��y	 x� ∈ ��n�r+1 × �n/x ∈ Vr ∧ L�0��y	 x� = 0

∧ · · · ∧ L�r��y	 x� = 0�


As Vr is the union of all the irreducible components of V of dimen-
sion r	 π1���Vr�� is the equidimensional component of π1���V �� of
codimension 1.

Recalling that the Chow form Pr of Vr is, by definition, the square-free
polynomial whose set of zeroes is π1���Vr��, to compute Pr we are going
to find a square-free polynomial which defines the equidimensional com-
ponent of codimension 1 of π1���V ��.

In order to apply the quantifier elimination algorithm in [12], we are
going to consider the homogeneous coordinates of the points in π1���V ��
as points in the affine space ��n+1��r+1�.
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Let ϕ be the formula

∃x0 · · · ∃xn  �x0 �= 0 ∨ · · · ∨ xn �= 0� ∧ F1�x0	 
 
 
 	 xn� = 0

∧ · · · ∧ Fs�x0	 
 
 
 	 xn� = 0 ∧ L�0��y�0�0 	 
 
 
 	 y
�0�
n 	 x0	 
 
 
 	 xn� = 0

∧ · · · ∧ L�r��y�r�0 	 
 
 
 	 y
�r�
n 	 x0	 
 
 
 	 xn� = 0

and let W ⊆ ��n+1��r+1� be the set

W = ��y�0�0 	 
 
 
 	 y
�r�
n � ∈ k̄�n+1��r+1�/ϕ�y�0�0 	 
 
 
 	 y

�r�
n ��


Note that the polynomials in k�Y �i�
j 	 0≤i≤r

0≤j≤n
which define π1���V �� in ��n�r+1,

define W in ��n+1��r+1� and, therefore, W is a closed set. Moreover, the
Chow form Pr we want to compute is the square-free polynomial defining
the equidimensional component of codimension 1 of W in ��n+1��r+1�.

As the polynomials F1	 
 
 
 	 Fs	 L
�0�	 
 
 
 	 L�r� are homogeneous, we

obtain the following formula equivalent to ϕ

n∨
k=0

ϕk	

where ϕk is the formula

∃x0 · · · ∃xk−1∃xk+1 · · · ∃xn  F1�x0	 
 
 
 	 xk−1	 1	 xk+1	 
 
 
 	 xn� = 0

∧ · · · ∧ Fs�x0	 
 
 
 	 xk−1	 1	 xk+1	 
 
 
 	 xn� = 0

∧L�0��y�0�0 	 
 
 
 	 y
�0�
n 	 x0	 
 
 
 	 xk−1	 1	 xk+1	 
 
 
 	 xn� = 0

∧ · · · ∧ L�r��y�r�0 	 
 
 
 	 y
�r�
n 	 x0	 
 
 
 	 xk−1	 1	 xk+1	 
 
 
 	 xn� = 0


Let Wk ⊆ ��n+1��r+1� be the set defined by ϕk.
As W is a closed set, we have

W =
n⋃

k=0

Wk =
n⋃

k=0

�Wk


Therefore the irreducible components of W having codimension 1 are pre-
cisely the irreducible components of codimension 1 of the sets Wk.

Then, to find the square-free polynomial which defines the equidimen-
sional component of W of codimension 1, we are going to deal with the
closed sets Wk.

Fix k	 0 ≤ k ≤ n. The formula ϕk is a conjunction involving only atomic
formulas of the type f = 0 with only one block of existential quantifiers.
Note that ϕk involves s + r + 1 polynomials in �n+ 1��r + 1� + n variables;
their degrees with respect to X0	 
 
 
 	Xk−1	Xk+1	 
 
 
 	Xn are bounded by
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d ≥ n and their degrees with respect to the remaining variables are bounded
by 1.

Applying the algorithm described in [12, Theorem 3.2.1.] we obtain a
quantifier-free formula ψk equivalent to ϕk. The sequential complexity of
this step is bounded by sO�1�dO�n�. Then

Wk = ��y�0�0 	 
 
 
 	 y
�r�
n � ∈ k̄�n+1��r+1�/ψk�y�0�0 	 
 
 
 	 y

�r�
n ��
 (1)

Let H1	 
 
 
 	Ht ∈ k�Y �i�
j 	 0≤i≤r

0≤j≤n
be the polynomials appearing in ψk. Then

t ≤ sO�1�dO�n�, degHi ≤ dO�n��1 ≤ i ≤ t�, and H1	 
 
 
 	Ht are given by a
straight-line program of length sO�1�dO�n�.

In order to give a characterization of the irreducible components of codi-
mension 1 of Wk we will use the normal disjunctive form of the formula ψk

which defines Wk.
Let I = �1	 2	 
 
 
 	 t�. For every M ⊆ I let

�M = �w ∈ k̄�n+1��r+1�/Hi�w� = 0 ∀ i ∈ M ∧Hj�w� �= 0 ∀ j ∈ I −M�

There exists a subset S of �M ⊆ I/�M �= �� such that

Wk =
⋃
M∈S

�M


Therefore

Wk =
⋃
M∈S

�M

and we conclude that the irreducible components of Wk of codimension 1
are the irreducible components of the sets �M which have codimension 1.

Now we will determine which sets �M	M ⊆ I, are of codimension 1
and, for each of them, we will find a polynomial GM ∈ k�Y �i�

j 	 �0 ≤ i ≤
r	 0 ≤ j ≤ n� such that �GM = 0� is the equidimensional component having
codimension 1 of �M .

First, let us obtain an upper bound for the number of sets M ⊆
�1	 2	 
 
 
 	 t� such that �M has codimension 1.

Let M be such a set and let C be an irreducible component of codi-
mension 1 of �M . Then, there exists i �1 ≤ i ≤ t� such that C is an irre-
ducible component of �Hi = 0�. Taking into account that the number of
irreducible components of a closed set is bounded by its degree, we deduce
that there are at most

∑t
i=1 degHi irreducible components of codimension

1. As the set of irreducible components of �M1
and �M2

are disjoint when-
ever M1 �= M2, the number of sets M ⊆ I such that �M has codimension 1
is also bounded by

∑t
i=1 degHi.

To determine the sets M we are looking for, we are going to adapt a
method that appears in [4].
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In order to simplify notation, given M	N ⊆ I, the set

�w ∈ k̄�n+1��r+1�/Hi�w� = 0 ∀ i ∈ M ∧Hj�w� �= 0 ∀ j ∈ N�
will be denoted by { ∧

i∈M
Hi = 0 ∧ ∧

j∈N
Hj �= 0

}



We may assume that the number t of polynomials appearing in ψk is 2h

for a positive integer h (considering Hi ≡ 0 for t + 1 ≤ i ≤ 21+�log�t−1�	 if
necessary).

In a first step we consider the sets

A
�0�
i = ��Hi = 0�	 �Hi �= 0�� �1 ≤ i ≤ t�


We will determine which sets �Hi = 0� and �Hi �= 0��1 ≤ i ≤ t� are non-
empty to obtain

B
�0�
i = �( ∈ A

�0�
i /( �= �� �1 ≤ i ≤ t�


In the next step, we consider the sets

A
�1�
i = �(1 ∩ (2/(1 ∈ B

�0�
2i−1 ∧ (2 ∈ B

�0�
2i �

(
1 ≤ i ≤ t

2

)



We will determine which elements of A
�1�
i have closures of codimension at

most 1 to obtain

B
�1�
i = �( ∈ A

�1�
i /codim�( ≤ 1�

(
1 ≤ i ≤ t

2

)



Supposing we have obtained B
�j�
i

(
1 ≤ j ≤ �log t� − 1	 1 ≤ i ≤ t

2j

)
, we con-

sider the sets

A
�j+1�
i = �(1 ∩ (2/(1 ∈ B

�j�
2i−1 ∧ (2 ∈ B

�j�
2i �

(
1 ≤ i ≤ t

2j+1

)

and determine which elements of A
�j+1�
i have closures of codimension at

most 1 to obtain

B
�j+1�
i = �( ∈ A

�j+1�
i /codim�( ≤ 1�

(
1 ≤ i ≤ t

2j+1

)



Note that in this way, in 1+ log t steps, we obtain a single set B�log t�
1 whose

elements are the sets �M such that �M has codimension at most 1.
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We are going to show how to determine if the closure of a set ( of the
form

( =
{ ∧

i∈M
Hi = 0 ∧ ∧

j∈N
Hj �= 0

}
	

where M	N are disjoint subsets of I, has codimension at most 1.
First, let us observe that �( = �n if and only if ( is a non-empty open

set, which is equivalent to

• M = � or Hi ≡ 0 ∀ i ∈ M and

• Hj �≡ 0 ∀ j ∈ N ,

which is easily checked because in the first step we can determine which of
the polynomials are the zero polynomial. (This can be done by means of a
correct test sequence.)

Let us suppose now that M �= � and there exists ) ∈ M such that H) �≡ 0.
Without loss of generality, we assume Hi �≡ 0 ∀ i ∈ M and Hj �≡ 0 ∀ j ∈ N ,
and we will show how to determine whether codim��(� = 1 or not.

Let H = ∏
j∈N Hj and, given i ∈ M , let Hi =

∏ni

l=1 H
αl

il be the irre-
ducible factorization of Hi in k̄�Y �i�

j 	 0≤i≤r
0≤j≤n

. Let M = �i1	 
 
 
 	 im� and let
� = �1	 
 
 
 	 ni1

� × · · · × �1	 
 
 
 	 nim
�. Then

�( = ⋂
�l1	


	lm�∈�

{ m∧
j=1

Hijlj
= 0 ∧H �= 0

}

and therefore the equidimensional component of codimension 1 of �( is the
union of the equidimensional components of codimension 1 of the sets{ m∧

j=1

Hijlj
= 0 ∧H �= 0

}



Note that as the polynomials Hijlj
are irreducible and

{ m∧
j=1

Hijlj
= 0 ∧H �= 0

}
⊆
{ m∧

j=1

Hijlj
= 0

}
(2)

then there exists a component of codimension 1 in �∧m
j=1 Hijlj

= 0 ∧H �= 0�
only if all the polynomials Hijlj

appearing in (2) are (up to a constant factor)
the same.

On the other hand, if there exists a polynomial G such that Hijlj
= λjG

for every 1 ≤ j ≤ m then, as G is irreducible,

�G = 0 ∧H �= 0� =
{� if G � H
�G = 0� otherwise.



62 jeronimo, puddu, and sabia

Therefore an irreducible component of �( of codimension 1 is defined by
a common factor of the polynomials Hi	 i ∈ M , which does not divide H.
Then, the equidimensional component of �( of codimension 1 is the set of
zeroes of the polynomial

H( =
rad�gcd�Hi	 i ∈ M��

gcd�rad�gcd�Hi	 i ∈ M��	H� 


To determine if �( has codimension 1 we only need to decide whether H(

is a nonzero constant or not. Following the methods in [9], but using correct
test sequences (see [8]) to determine if a polynomial is the zero polynomial,
we obtain a straight-line program which computes gcd�Hi	 i ∈ M�. We com-
pute rad�gcd�Hi	 i ∈ M�� and then we obtain a straight-line program which
computes gcd�rad�gcd�Hi	 i ∈ M��	H�. Finally, applying Strassen’s proce-
dure of Vermeidung von Divisionen (see [14]) we obtain a straight-line pro-
gram which computes a scalar multiple of H(. We decide if H( is a nonzero
constant by means of an appropriate correct test sequence.

Therefore, we can determine if�( has codimension at most 1 in sequential
time sO�1�dO�n�. We proceed in this way to determine, in each step 0 ≤ j ≤
log t and for each 1 ≤ i ≤ t

2j , which elements of the sets A
�j�
i have closures

of codimension at most 1.
As, for each 0 ≤ j ≤ log t and each 1 ≤ i ≤ t

2j , the number of elements of

B
�j�
i is bounded by the number of sets M ⊆ I such that �M has codimension

at most 1, then it is bounded by
∑t

i=1 degHi + 1 ≤ sO�1�dO�n�.
So, for each of the sets A

�j�
i we apply the algorithm to decide if the

closure of one of its elements ( has codimension 1 at most sO�1�dO�n� times.
Note that the number of sets A

�j�
i is bounded by 2t ≤ sO�1�dO�n�.

Therefore we obtain B
�log t�
1 = ��M/M ⊆ I	 codim�M ≤ 1� in sequential

time sO�1�dO�n� and for each of its elements we decide if it is a subset of
the set Wk using the quantifier-free formula ψk which define Wk with the
same complexity bounds.

Let

� = �M ⊆ I/�M ⊆ Wk ∧ codim�M = 1�


For each M ∈ � let

GM = rad�gcd�Hi	 i ∈ M��
gcd�rad�gcd�Hi	 i ∈ M��	∏j∈I−M Hj�

and let

Gk =
∏

M∈�
GM
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Then �Gk = 0� is the equidimensional component of codimension 1 of Wk

because this component is the union of the components of codimension 1
of all the sets �M	M ∈ � . Recalling that the Chow form Pr we want to
compute is the square-free polynomial defining the equidimensional com-
ponent of codimension 1 of W = ∪n

k=0Wk then

Pr = rad
( n∏

k=o

Gk

)



The polynomial Pr is given by a straight-line program of length sO�1�dO�n�

and the sequential complexity of this algorithm is bounded by sO�1�dO�n�.

3.2. Computing the Greatest Equidimensional Component of V

In this section we show how to obtain from the Chow form of an equidi-
mensional projective variety, a finite set of polynomials which defines
it. This procedure, together with the algorithm exhibited in the previ-
ous section, allows us to find polynomials defining the equidimensional
component of the greatest dimension of an arbitrary projective variety.

Lemma 2. Let V ⊆ �n be an equidimensional projective variety of dimen-
sion r and let P ∈ k�Y �i�

j 	 0≤i≤r
0≤j≤n

be its Chow form. Suppose P is given by a
straight-line program of length L.
Then, there exists N ≤ 6�L+ 2�r + 2�n�n+ 1��2 polynomials Q1	 
 
 
 	QN

whose degrees are bounded by �r + 1� deg V such that each of them can be
evaluated by a straight-line program of length of order L + 2(r+1)n�n + 1�
and

V = �x ∈ �n: Q1�x� = 0 ∧ · · · ∧QN�x� = 0�

Proof. By the definition of the Chow form of an equidimensional pro-

jective variety (see Section 2.2), the following equivalence holds in �n:

x �∈ V ⇐⇒ ∃ y�0�	 
 
 
 	 y�r� ∈ �n: L�0��y�0�	 x� = 0 ∧ · · · ∧
∧L�r��y �r�	 x� = 0 ∧ P�y�0�	 
 
 
 	 y�r�� �= 0


Using this equivalence, we are going to obtain a quantifier-free formula
describing the set �n − V .

Let us fix x ∈ �n and let �x0  · · ·  xn� be a fixed system of homoge-
neous coordinates of x. We consider the linear space of k̄n+1 determined
by the equation x0Y0 + · · · + xnYn = 0. We denote by ej ∈ k̄n+1 the �n+ 1�-
tuple whose coordinates are 0 except for the jth which is 1. For each pair
�j	 l�	 0 ≤ j < l ≤ n, let

xjl = xlej − xjel
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Note that �xjl	 0 ≤ j < l ≤ n� is a generator system of the linear space
considered. Then, for each 0 ≤ i ≤ r, the condition L�i��y�i�	 x� = 0 is
equivalent to

∃α�i�jl 	 0 ≤ j < l ≤ n/y�i� =∑
j	 l

α
�i�
jl xjl

and therefore

x �∈ V ⇐⇒ ∃α�i�jl 	 0 ≤ i ≤ r	 0 ≤ j < l ≤ n

P

(∑
j	 l

α
�0�
jl xjl	 
 
 
 	

∑
j	 l

α
�r�
jl xjl

)
�= 0


Let Q ∈ k�α�i�jl 	 0 ≤ i ≤ r	 0 ≤ j < l ≤ n	X0	 
 
 
 	Xn	 be the polynomial

Q = P

(∑
j	 l

α
�0�
jl �Xlej −Xjel�	 
 
 
 	

∑
j	 l

α
�r�
jl �Xlej −Xjel�

)

which is given by a straight-line program of length bounded by L+
2�r + 1�n�n + 1�. Let 1 = �ω1	 
 
 
 	 ωN� be a correct test sequence for
polynomials in the variables α

�i�
jl 	 0 ≤ i ≤ r	 0 ≤ j < l ≤ n, of degree

bounded by �r + 1� deg V , which can be evaluated by a straight-line
program of length bounded by L + 2�r + 1�n�n + 1�. Then N ≤
6�L+ 2�r + 2�n�n+ 1��2 and

x /∈ V ⇐⇒
N∨
i=1

Q�ωi	 x� �= 0


For each 1 ≤ i ≤ N , let Qi = Q�ωi	 x�. It is immediate that the polynomials
Q1	 
 
 
 	QN verify the conditions stated.

Now we are able to state our second result which follows immediately
from Theorem 1 and Lemma 2.

Proposition 3. Let F1	 
 
 
 	 Fs be homogeneous polynomials in
k�X0	 
 
 
 	Xn	 and let d ≥ n be an integer such that degFi ≤ d �1 ≤ i ≤ s�.
Let

V = {
x ∈ �n: F1�x� = 0 ∧ · · · ∧ Fs�x� = 0

}



Let r = dim V and let Vr be the equidimensional component of V of
dimension r.
Then, there exists a well-parallelizable algorithm with sequential complex-

ity bounded by sO�1�dO�n� whose input is the set of polynomials �F1	 
 
 
 	 Fs�
encoded in dense form and whose output is a set of N ≤ sO�1�dO�n� polyno-
mials Q1	 
 
 
 	QN whose degrees are bounded by �r + 1� · deg Vr , given by a
straight-line program of length sO�n�dO�n�, such that

Vr = �x ∈ �n  Q1�x� = 0 ∧ · · · ∧QN�x� = 0�
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Remark 4. Let k be a field and let k̄ be an algebraic closure of k. We
can consider �n�k̄� with the Zariski topology induced by polynomials with
coefficients in k (i.e., the closed sets are the sets of zeroes of homoge-
neous polynomials in k�X0	 
 
 
 	Xn	). There is a well-known notion of irre-
ducible variety associated to this topology and, therefore, a notion of unique
irreducible decomposition of varieties over k.

Provided we are given an efficient algorithm to factorize multivari-
ate polynomials over k given by straight-line programs, our algorithm
can be adapted to obtain from homogeneous polynomials F1	 
 
 
 	 Fs ∈
k�X0	 
 
 
 	Xn	 defining a variety V , the k-irreducible decomposition of its
equidimensional component of the greatest dimension: once we obtain its
Chow form, we factorize it and apply Lemma 2 to each factor.

3.3. The Affine Case

Now we are going to adapt the algorithm given in Theorem 1 in order to
obtain polynomials defining the equidimensional component of the greatest
dimension of an affine variety.

We consider the embedding ι  �n → �n such that ι�x1	 
 
 
 	 xn� =
�1  x1  
 
 
  xn�. If W ⊆ �n is an affine variety, the closure of ι�W � in
�n will be called the projective closure of W and will be denoted by �W .
Note that degW = deg �W holds.

Let f1	 
 
 
 	 fs be polynomials k�X1	 
 
 
 	Xn	 whose degrees are bounded
by an integer d ≥ n and let

V = �x ∈ �n  f1�x� = 0 ∧ · · · ∧ fs�x� = 0�

Let r = dim V and let Vr be the equidimensional component of V of dimen-
sion r. We will recover the equidimensional component Vr of V from the
equidimensional component of the greatest dimension of the projective
closure of V .

Lemma 4. Let f1	 
 
 
 	 fs be polynomials in k�X1	 
 
 
 	Xn	 and let d ≥ n
be an integer such that deg fi ≤ d �1 ≤ i ≤ s�. Let V = �x ∈ �n: f1�x� =
0 ∧ · · · ∧ fs�x� = 0� and let r = dim�V �.
Then, there exists a well-parallelizable algorithm with sequential complex-

ity bounded by sO�1�dO�n� whose input is the set of polynomials �f1	 
 
 
 	 fs�
encoded in dense form, and whose output is the Chow form P of the equidi-
mensional component �Vr of �V of dimension r, given by a straight-line program
of length sO�1�dO�n�.

Proof. For a given set A ⊆ �n we denote by ��A� the set

��A� = {�y	 x� ∈ ��n�r+1 × �n/x ∈ A ∧ L�0��y	 x� = 0 ∧ · · · ∧
L�r��y	 x� = 0

}
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Let U be the set

U = �x ∈ �n�k̄�/f �h�1 �x� = 0 ∧ · · · ∧ f
�h�
s �x� = 0 ∧ x0 �= 0�	

where f
�h�
i are the homogenizations of the polynomials fi with respect to

the variable X0. Note that the set �U is the projective closure of V and,
therefore, dim �U = dim V = r. Let π: ��n�r+1 × �n −→ ��n�r+1 be the
projection map.

Under these notations, the arguments given in the proof of Theorem 1
imply that the Chow form of the equidimensional component �Vr of �V of
the greatest dimension is a square-free polynomial whose set of zeroes is
the equidimensional component of codimension 1 of π����U��.

We assert that ���U� = ��U�. Let V �h� = �x ∈ �n�k̄�/f �h�1 �x� = 0 ∧
· · · ∧ f

�h�
s �x� = 0�, and let V �h� = ⋃

C∈� C be the decomposition of V �h�

into irreducible components. Let �′ = �C ∈ �  C ⊆ �X0 = 0��. Then
U = ⋃

C /∈�′ �C ∩ �X0 �= 0�� and �U = ⋃
C/∈�′ C. Taking into account that, for

each irreducible closed set C, the set ��C� is irreducible, it follows that

��U� = ⋃
C/∈�′

��C ∩ �X0 �= 0�� = ⋃
C/∈�′

��C� = ���U�


As the projection is a closed map, it suffices to compute a polynomial
whose set of zeroes is the equidimensional component of codimension 1 of
π���U��. In order to do so, we will follow the ideas in Theorem 1.

Note that π���U�� is the set defined in ��n�r+1 by the formula

∃x0 · · · ∃xn: f
�h�
1 �x0	 
 
 
 	 xn� = 0 ∧ · · · ∧ f

�h�
s �x0	 
 
 
 	 xn� = 0 ∧ x0 �= 0

∧L�0��y�0�0 	 
 
 
 	 y
�0�
n 	 x0	 
 
 
 	 xn� = 0 ∧ · · ·

∧L�r��y�r�0 	 
 
 
 	 y
�r�
n 	 x0	 
 
 
 	 xn� = 0	

which is equivalent to

∃x1 · · · ∃xn  f1�x1	 
 
 
 	 xn� = 0 ∧ · · · ∧ fs�x1	 
 
 
 	 xn� = 0

∧L�0��y�0�0 	 
 
 
 	 y
�0�
n 	 1	 x1	 
 
 
 	 xn� = 0 ∧ · · ·

∧L�r��y�r�0 	 
 
 
 	 y
�r�
n 	 1	 x1	 
 
 
 	 xn� = 0


We apply to this formula the algorithm in [12] to obtain a quantifier-free
formula equivalent to it, and we proceed as in Theorem 1 to compute a
polynomial P whose set of zeroes is the equidimensional component of
codimension 1 of π���U��. This polynomial P is the Chow form of �Vr and
it is given by a straight-line program of length sO�1�dO�n�. The sequential
complexity of this algorithm is bounded by sO�1�dO�n�.
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Note that, using the same notations, from Lemmas 5 and 2 we obtain
polynomials Q1	 
 
 
 	QN such that

�Vr = ��x0  · · ·  xn� ∈ �n  Q1�x0	 
 
 
 	 xn� = 0

∧ · · · ∧QN�x0	 
 
 
 	 xn� = 0�
and, therefore

Vr = �Vr ∩ �n = �x ∈ �n: Q1�1	 x1	 
 
 
 	 xn� = 0

∧ · · · ∧QN�1	 x1	 
 
 
 	 xn� = 0�

Then, we have proved the following

Proposition 5. Let f1	 
 
 
 	 fs be polynomials in k�X1	 
 
 
 	Xn	 and let
d ≥ n be an integer such that deg fi ≤ d�1 ≤ i ≤ s�. Let

V = �x ∈ �n  f1�x� = 0 ∧ · · · ∧ fs�x� = 0�

Let r = dim V and let Vr be the equidimension component of V of
dimension r.
Then, there exists a well-parallelizable algorithm with sequential complex-

ity bounded by sO�1�dO�n� whose input is the set of polynomials �f1	 
 
 
 	 fs�
encoded in dense form and whose output is a finite set of N ≤ sO�1�dO�n�

polynomials q1	 
 
 
 	 qN with degrees bounded by �r + 1� · deg�Vr� given by a
straight-line program of length sO�1�dO�n�, such that

Vr = �x ∈ �n: q1�x� = 0 ∧ · · · ∧ qN�x� = 0�

Again, provided we are given an efficient algorithm to factorize multivariate
polynomials over k given by straight-line programs, our algorithm can be
adapted in the sense of Remark 4 to obtain the k-irreducible decomposition
of the equidimensional component of the greatest dimension of an affine
variety.

Remark 7. From the previous results and the quantifier elimination
algorithm in [12] we can deduce that there exists a well-parallelizable algo-
rithm that, given polynomials f1	 
 
 
 	 fs ∈ k�X1	 
 
 
 	Xn	 whose degrees
are bounded by d ≥ n defining an algebraic variety V , decides whether V
is equidimensional or not. The sequential complexity of the algorithm is of
order sO�1�dO�n�:

Applying the algorithm described in Proposition 6, we get N ≤ sO�1�dO�n�

polynomials q1	 
 
 
 	 qN defining Vr , the equidimensional component of the
greatest dimension of V . Note that V is equidimensional if and only if
V − Vr = �. As

V − Vr = �x ∈ �n: f1�x� = 0 ∧ · · · ∧ fs�x� = 0

∧�q1�x� �= 0 ∨ · · · ∨ qN�x� �= 0��
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applying the algorithm in [12] to

∃x1 · · · ∃xn

(
N∨
i=1

f1�x� = 0 ∧ · · · ∧ fs�x� = 0 ∧ qi�x� �= 0

)

we can decide whether V − Vr is empty or not.
As deg qi ≤ �r + 1� · dn, the sequential complexity of this algorithm is

bounded by sO�1�dO�n�. This procedure can be applied in the projective case
within the same complexity bounds.
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