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Abstract

We prove upper bounds on the order and degree of the polynomials involved in a
resolvent representation of the prime differential ideal associated with a polynomial
differential system for a particular class of ordinary first order algebraic-differential
equations arising in control theory. We also exhibit a probabilistic algorithm which
computes this resolvent representation within time polynomial in the natural syntactic
parameters and the degree of a certain algebraic variety related to the input system.
In addition, we give a probabilistic polynomial-time algorithm for the computation of
the differential Hilbert function of the ideal.

Keywords: Differential Algebra, Resolvent representation, Elimination theory, Probabilis-
tic algorithms, Straight-line programs, Differential Hilbert function.

1 Introduction

The notion of a resolvent representation of a prime differential ideal in a ring of differential
polynomials was introduced by Ritt (see [28, 27]) as a tool towards an algebraic elimination
theory in the realm of differential equations, although it can be traced back to the work of
Kronecker (see [24]). Roughly speaking, a resolvent representation of a prime differential
ideal provides a parametrization of the generic zeros of the ideal by the general zeros of a
single irreducible differential polynomial. This construction can be interpreted in several
contexts, including the primitive element for field extensions, the cyclic vector for linear
first order differential systems, and the shape lemma in algebraic and analytic geometry.

In order to illustrate the notion of resolvent representation, let us consider the following
simple differential algebraic system (Σ) consisting of four equations in the four unknowns

∗Partially supported by the following Argentinian research grants: UBACyT X112 (2004-2007), and
CONICET PIP 02461/01.

†Corresponding author.
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X1, X2, X3, U (see [30, Section 4.4.2] or [6]):

(Σ) :=


Ẋ1 = αX1

Ẋ2 = αX2

Ẋ3 = βX3 + UX1

Y = X2 + X3

,

where α, β ∈ Q, the variable Y is regarded as a parameter and the system is considered
over the ground differential field Q(t) equipped with the usual derivation t′ = 1. Set
γ := X1 + tX2. Then, all the variables appearing in (Σ) can be written, using the
equations of the system and their derivatives, as rational functions in Q(t, Y, Ẏ )(γ, γ̇):

X1 = (1 + tα)γ − tγ̇

X2 = γ̇ − αγ

X3 = Y − γ̇ + αγ

U =
(β − α)γ̇ + (α2 − αβ)γ + Ẏ − βY

−tγ̇ + (1 + tα)γ
.

In addition, γ verifies the differential equation

γ(2) − 2αγ̇ + α2γ = 0,

which is called the the minimal equation for γ. The set consisting of the irreducible
polynomial giving this minimal equation and those providing the rational identities above
is called a resolvent representation of the system (Σ) and γ its associated primitive element
(for more examples of resolvent representations see [5]).

The present paper deals with the computation of resolvent representations of prime
differential ideals associated with certain differential systems coming from control theory
(see for instance [6], [7]): 

Ẋ1 = f1(X, U)
...

Ẋn = fn(X, U)
Y1 = g1(X, U, U̇)

...
Yr = gr(X, U, U̇)

where f1, . . . , fn ∈ k[X, U ] and g1, . . . gr ∈ k[X, U, U̇ ] are polynomials in the variables X :=
{X1, . . . , Xn} and U := {U1, . . . , Um} with coefficients in a zero-characteristic differential
field k and total degrees bounded by an integer d, and Y := {Y1, . . . , Yr} is another set of
variables. The variables X, U are the unknowns of the system, while the variables Y are
regarded as parameters. Given a differential equation system as above, we consider the
prime differential ideal ∆ generated by the polynomials fi − Ẋi, i = 1, . . . , n, and gj − Yj ,
j = 1, . . . , r, in the differential polynomial ring k{Y, X,U}.

We prove the existence of a resolvent representation for the ideal ∆ consisting of
polynomials which involve derivatives of order at most 2n + 2r and whose degrees are
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bounded by the degree of the algebraic variety V defined by the input polynomials and
their derivatives up to order 2n + 2r − 1 (see Theorem 36 below). The Bezout inequality
implies that deg(V) can always be bounded by d2(n+r)2 .

In addition, if k = Q(t), we construct a bounded error probability algorithm which
computes a resolvent representation of ∆. If the input polynomials are given by a straight-
line program of length L over Q (see Subsection 2.2 for the definition of this data structure),
the complexity of this algorithm is linear in L and polynomial in n, m, r, d and deg(V) (see
Theorem 48 below). We remark that the upper bound for deg(V) due to the Bezout
inequality leads to a single exponential worst-case complexity bound for our algorithm.
The error probability of the algorithm is controlled by means of the Zippel-Schwartz zero
test and degree upper bounds for the polynomials giving the genericity conditions under
which our algorithm works.

As a byproduct, we present a probabilistic algorithm for the computation of the differ-
ential Hilbert function of the ideal ∆ within complexity polynomial in n, m, r, d and linear
in L (see Theorem 26), extending the results in [26] to positive-dimensional situations.

Our overall strategy consists in translating a differential (non-noetherian) problem into
an algebraic (noetherian) one. In this sense, some finiteness results on characteristic sets
of differential ideals appearing in [29] and [30] play a fundamental role. In a first step,
we compute a differential transcendence basis of the differential field extension induced by
our system in order to turn to a zero-dimensional differential situation, which is achieved
by applying some techniques described in [26]. Then, we give an effective and algorithmic
version of Seidenberg’s proof of the existence of a primitive element (see [34]) in our
situation, reducing the problem to the computation of an eliminating polynomial in an
algebraic-geometric context. Finally, we apply an elimination procedure based on [17] and
[31] to make our main computations.

The approach to differential polynomial equation systems through resolvent represen-
tations has been known to be effective since its origins in [28]. Ritt’s treatment of the
subject as well as its subsequent generalizations (see, [5], [4]) are based on rewriting tech-
niques, namely Gröbner bases and characteristic sets. Even though a single exponential
complexity upper bound was proved in [9] for the computation of a resolvent representa-
tion using these methods in the algebraic (non-differential) context, no complexity analysis
is presented in any of the works concerning its differential counterpart. However, the com-
plexity results on the computation of characteristic sets in the differential setting given
in [29] seem to yield single exponential complexity bounds for a probabilistic algorithm
computing a resolvent representation (see [4]) for the specific systems we consider. A
different approach to effective elimination over ordinary differential fields can be found in
[15], where a general quantifier elimination procedure with doubly exponential complexity
bounds is exhibited.

We point out that our algorithms do not require the computation of Gröbner bases
or characteristic sets. Based on the computation of algebraic eliminating polynomials,
our approach enables us to obtain complexity estimates in terms of a geometric invariant,
which are more precise than those depending only on syntactic parameters (see Example
38). Complexity bounds depending on this kind of parameters appeared before in sev-
eral algebraic elimination procedures (see for instance [13], [17], [14], [12]). We observe
also that, in terms of the parameters n, m, r, d, the complexity of our algorithm is of order
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(nmr)O(1)dO((n+r)2), improving the complexity estimate (n+r)O((n+m)(n+r))dO((n+m)3(n+r)3)

of the rewriting procedure presented in [29, Theorem 28] when applied to our particular
equation systems.

We hope that our techniques and results would contribute to the symbolic treatment of
systems where the parameters Y ’s are replaced with given functions. We also expect that
these results could be extended to more general cases such as partial derivative equation
systems or positive characteristic differential fields (see [35]).

The paper is organized as follows: in Section 2, we recall some basic notions and results
from Differential Algebra and we present the algorithmic model we will adopt. In Section
3, we introduce the differential equation systems we will consider and we show some ele-
mentary facts about them. Section 4 deals with the computation of the differential Hilbert
function of the ideal associated with the system and of a differential transcendence basis
of the induced differential field extension. In Section 5 we recall the notion of a resolvent
representation of a prime differential ideal and we prove upper bounds for the orders and
degrees of the involved polynomials. Section 6 is devoted to the algorithmic computation
of resolvent representations. Finally, in Section 7 we present a slight generalization of the
algorithmic results stated in the previous sections.

2 Preliminaries

This section gathers some basic notions from Differential Algebra that will be needed
throughout the paper and presents the algorithmic model and the data structure we will
use.

2.1 Differential Algebra

We recall in this subsection some definitions and basic facts about differential rings and
fields. For a more detailed account of the subject, we refer the reader to [28] and [21] (see
also [20]).

2.1.1 Differential Rings and Fields

A derivation δ of a ring A is an additive map δ : A → A satisfying the Leibniz rule
δ(a · b) = δ(a) · b + a · δ(b) for all a, b ∈ A. A ring (respectively a field) equipped with (at
least) a derivation δ is called a differential ring (respectively a differential field). We will
work over rings and fields equipped with a single derivation, that is, ordinary differential
rings and fields, and in the characteristic zero case. If η is an element of the differential
ring (A, δ), δ(η) will be denoted by η̇, and for i ≥ 2, δi(η) will be denoted by η(i).

Let A be a differential ring. An ideal I of A is a differential ideal if δ(a) ∈ I for every
a ∈ I. If Σ is a subset of A, the differential ideal generated by Σ (that is, the minimal
differential ideal of A containing Σ) will be denoted by [Σ].

Given a differential field (K, δ), we can construct the ring of differential polynomials in
the indeterminates X1, . . . , Xn over K, which we denote K{X1, . . . , Xn}, by considering
the commutative polynomial ring over K in the infinite set of indeterminates {X(i)

j , i ∈ N0,

1 ≤ j ≤ n} and extending the derivation of K by letting δ(X(i)
j ) = X

(i+1)
j . We will write
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X := {X1, . . . , Xn} and, for every i ∈ N, X(i) := {X(i)
1 , . . . , X

(i)
n }. For a polynomial

p ∈ K{X}, we define the order of p with respect to Xj as ord(p, Xj) := max{i ∈ N0 :
X

(i)
j appears in p}, and the order of p as ord(p) := max{ord(p, Xj) : 1 ≤ j ≤ n}.

A differential field extension F ↪→ G consists of two differential fields (F , δF ) and
(G, δG) such that δF is the restriction to F of δG .

Let F ↪→ G be a differential field extension. An element ζ ∈ G is said to be differentially
algebraic over F if the family of its derivatives {ζ(l)}l∈N0 is algebraically dependent over F ;
otherwise, it is said to be differentially transcendental over F . The differential extension
F ↪→ G is said to be differentially algebraic if every element of G is differentially algebraic
over F . Given a subset Σ of G, F〈Σ〉 will denote the minimal differential subfield of G
containing F and Σ. A subset Σ of G is differentially algebraically independent over F if the
set {ζ(l) : ζ ∈ Σ, l ∈ N0} is algebraically independent over F , and it is called a differential
transcendence basis of F ↪→ G if it is a minimal subset of G such that the differential
extension F〈Σ〉 ↪→ G is differentially algebraic. All the differential transcendence bases
of a differential extension F ↪→ G have the same cardinality ([21, Ch. II, Sec. 9, Th. 4]),
which is called the differential transcendence degree of F ↪→ G and will be denoted by
difftrdegF (G).

Let K be a differential field, let X be a set of differential indeterminates (that is, a
differentially algebraically independent set) over K and let I ⊂ K{X} be a prime differen-
tial ideal. A subset W ⊂ X is a maximal independent set modulo I if I ∩K{W} = 0 and
I ∩K{W,Xj} 6= 0 for all Xj /∈ W . Let us observe that a maximal independent set modulo
I is a differential transcendence basis of the differential extension K ↪→ Frac(K{X}/I).
Thus, we define the differential dimension of the ideal I, denoted by diffdim(I), as the
transcendence degree of this extension or, equivalently, as the cardinality of a maximal
independent set modulo I.

2.1.2 Rankings and Characteristic Sets

Let K be a differential field and let X be a set of differential indeterminates over K. A
ranking on K{X} is a total order � on the set ΘX := {X(l) : l ∈ N0} satisfying u̇ � u
for every u ∈ ΘX and u̇ � v̇ if u � v for u, v ∈ ΘX. A ranking on K{X} is an orderly
ranking or derivation ranking if X

(r)
i � X

(s)
j for r > s, and it is an elimination ranking if

X
(r)
i � X

(s)
j for i > j. If Y and Z are two sets of differential indeterminates and �Y and

�Z are rankings on K{Y } and K{Z} respectively, the induced elimination block ranking
with Z � Y is the ranking on K{Y ∪Z} defined by the conditions that any element of ΘZ
is greater than any element of ΘY and two elements of ΘY (respectively ΘZ) are ordered
according to �Y (respectively �Z).

Assume that a ranking on K{X} is fixed. Let p ∈ K{X}\K. The leader of p, denoted
by `(p), is the greatest element of ΘX appearing in p. The leading coefficient of p in the
variable `(p), denoted by Ip, is called the initial of p, and Sp := ∂p/∂`(p) is the separant
of p. If `(p) is a derivative (possibly of order 0) of the variable Xj , then Xj is called the
leading variable of p, and it is denoted by vp(p). A polynomial q ∈ K{X} is reduced with
respect to p if deg`(p)(q) < deg`(p)(p) and no proper derivative of `(p) appears in q.

A subset A ⊂ K{X} \K is an autoreduced set if every element p ∈ A is reduced with
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respect to all the elements of A\{p}. If A = {A1, . . . , Ar} ⊂ K{X}\K is an autoreduced
set, for every differential polynomial f ∈ K{X}, it is possible to obtain, by means of
differentiations and pseudo-divisions, a differential polynomial g ∈ K{X} reduced with
respect to A (that is, reduced with respect to every element of A), and non-negative
integers α1, . . . , αr, β1, . . . , βr, such that Iα1

A1
Sβ1

A1
. . . Iαr

Ar
Sβr

Ar
f − g ∈ [A1, . . . , Ar] (see [21,

Ch. I, Sec. 9, Proposition 1]).
A characteristic set of an ideal I ⊂ K{X} is an autoreduced subset C of I with the

property that no element of I is reduced with respect to all the elements of C.
It follows from the definition that the leading variables of the elements of a character-

istic set are pairwise different. If C = {C1, . . . , Cr} is a characteristic set of a differential
ideal I, the separants SCj and the initials ICj do not lie in I. Moreover, if I is a prime
ideal, the variables that are not leading variables of any element of C form a maximal
differentially independent set modulo I. Furthermore, if H :=

∏r
j=1 ICjSCj , the reduction

process mentioned above implies that I coincides with the saturation [C] : H∞ := {f ∈
K{X} : Hnf ∈ [C] for some n ∈ N0}. More precisely, it can be shown that if f ∈ I is
a differential polynomial with ord(f, vp(Cj)) ≤ l for every 1 ≤ j ≤ r, then f lies in the
polynomial ideal (C(k)

j ; 1 ≤ j ≤ r, 0 ≤ k ≤ l) : H∞ of K{X} (see [28, Ch. I, §6]).

2.1.3 Differential Hilbert Function

Definition 1 Let K be a differential field and let I be a prime differential ideal of K{X}.
The differential Hilbert function HI,K : N0 → N0 of I with respect to K is defined as

HI,K(i) = trdegK

(
Frac(K[X, . . . , X(i)]/I ∩K[X, . . . , X(i)])

)
.

The behavior of this function resembles that of the standard Hilbert function from
algebraic geometry: if {C1, . . . , Cr} is a characteristic set of a prime differential ideal I
for an orderly ranking, for every i ≥ max{ord(Cj), 1 ≤ j ≤ r}, we have

HI,K(i) = diffdim(I) (i + 1) + ordK(I),

where ordK(I) :=
∑r

j=1 ord(Cj) (see [21, Ch. II, Sec. 12, Th. 6]). Let us observe that the
equality holds, in particular, for every i ≥ ordK(I).

The integer ordK(I), which is called the order of the ideal I, is an invariant of I: it
does not depend on either the characteristic set or the orderly ranking. Combining [30,
Proposition 4.1.2] and [5, Theorem 4.11] we have the following well-known estimate:

Proposition 2 Let I = [f1, . . . , fs] be a prime differential ideal of K{X} generated by
polynomials f1, . . . , fs ∈ K[X, . . . , X(l)] (that is, ord(fj) ≤ l for every 1 ≤ j ≤ s). Then,
ordK(I) ≤ l (#{X} − diffdim(I)).

2.2 Data Structures and Algorithmic Model

The algorithms we consider in this paper are described by arithmetic networks over the
field Q. An arithmetic network is represented by means of a directed acyclic graph. The
external nodes of the graph correspond to the input and output of the algorithm. Each of
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the internal nodes of the graph is associated with either an arithmetic operation in Q or a
comparison (= or 6=) between two elements in Q followed by a selection of another node.

We assume that the cost of each operation and comparison is 1 and so, we define the
complexity of the algorithm as the number of internal nodes of its associated graph. We
will make use of some well-known subroutines to deal with polynomials and matrices.
As our interest is mostly theoretical, it will be sufficient for us to apply the more naive
procedures. For more advanced complexity results see [2] or [3].

Our algorithms work (that is, they compute the desired output) under certain generic-
ity conditions depending on parameters whose values are chosen randomly. In this sense,
we say that they are probabilistic. More precisely, each genericity condition is induced by
a non-zero multivariate polynomial F (not necessarily explicitly given) such that every
a with F (a) 6= 0 leads to a correct computation. Probability is introduced by choos-
ing the coordinates of the parameter a at random with equidistributed probability in
a set {0, . . . , N − 1} for a positive integer N , which is achieved by means of a proce-
dure that chooses the binary digits of an integer at random. The complexity of this
procedure is O(log N), where here and in the sequel, log denotes logarithm in base 2.
Thus, the error probability of the algorithm can be estimated by means of the Zippel-
Schwartz zero-test (see [36] and [32]), which states that, under the previous hypotheses,
Prob(F (a) = 0) ≤ deg(F )/N . This estimation enables us to reduce the error probability
of the algorithm as much as desired by choosing N big enough.

The objects our algorithms deal with are multivariate polynomials with coefficients
in the base field Q. The data structure we adopt to represent them is the (division-
free) straight-line program encoding. Roughly speaking, a straight-line program over Q
encoding a polynomial f ∈ Q[X1, . . . , Xn] is a program which enables one to evaluate f at
any given point in Qn. Each of the instructions in this program is an addition, subtraction
or multiplication between two pre-calculated elements in Q[X1, . . . , Xn], or an addition or
multiplication by a scalar. The number of instructions in the program is called the length
of the straight-line program. For the precise definitions and basic properties we refer the
reader to [3] (see also [19]).

3 Generic Algebraic-Differential Systems

Here, we introduce the objects we will deal with: we present the differential polynomial
systems we will consider and their associated differential ideals.

We will use the following notation throughout the paper:

Notation 3 Let K be a differential field and let Z := {Z1, . . . , Zα} be a differentially
algebraically independent set over K. For every i ≥ 0, Z(i) will denote the set Z

(i)
1 , . . . , Z

(i)
α .

For simplicity, we will write Z = Z(0) and Ż = Z(1). Finally, for every i ≥ 0, Z [i] will
denote the set Z, Ż, . . . , Z(i). We will adopt a similar notation for differential polynomials:
if H := {H1, . . . ,Hβ} ⊂ K{Z}, for every i ≥ 0, we will write H(i) := H

(i)
1 , . . . ,H

(i)
β and

H [i] := H, Ḣ, . . . , H(i), where H = H(0) and Ḣ = H(1).
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3.1 Definitions and Basic Properties

Let k be a differential field of characteristic 0 and let X := {X1, . . . , Xn} and U :=
{U1, . . . , Um} be two families of differential indeterminates over k.

Let f1, . . . , fn be polynomials in k[X, U ], let r be a positive integer, r ≤ m, and
let g1, . . . gr ∈ k[X, U, U̇ ]. We consider a new family of differential indeterminates Y :=
{Y1, . . . , Yr} over the differential fraction field k〈X, U〉 and the “generic” differential system

Ẋ1 = f1(X, U)
...

Ẋn = fn(X, U)
Y1 = g1(X, U, U̇)

...
Yr = gr(X, U, U̇)

(1)

We will work for the time being under the following assumption on the system, which
will be removed later in Section 7:

Assumption 4 The polynomials g1, . . . , gr are differentially algebraically independent in
Frac(k{Y, X,U}/[f1 − Ẋ1, . . . , fn − Ẋn]) over k.

We will deal with a differential ideal and some algebraic ideals associated with the
system:

Notation 5 Let Fi := fi−Ẋi ∈ k[X, Ẋ, U ] (1 ≤ i ≤ n) and Gj := gj−Yj ∈ k[Y, X,U, U̇ ]
(1 ≤ j ≤ r), and let ∆ := [F,G] ⊂ k{Y, X,U} be the differential ideal generated by
the polynomials F := F1, . . . , Fn and G := G1, . . . , Gr. For every l ∈ N, let Al be the
polynomial ring Al := k[Y [l−1], X [l], U [l]] and let ∆l ⊂ Al be the ideal of this ring generated
by F [l−1], G[l−1]. Finally, set A0 := k[X, U ].

The following notation will be useful in the sequel:

Notation 6 For i = 1, . . . , n, let f̃
(0)
i (X, U) := fi(X, U). Recursively, for k > 0 and i =

1, . . . , n, let f̃
(k)
i (X, U [k]) be the polynomial obtained from f

(k)
i (X [k], U [k]) by substituting

X
(l)
h = f̃

(l−1)
h (1 ≤ h ≤ n, 1 ≤ l ≤ k). Finally, we define polynomials g̃

(k)
j (X, U [k+1]) by

replacing X
(l)
h = f̃

(l−1)
h (1 ≤ h ≤ n, 1 ≤ l ≤ k) in the polynomials g

(k)
j .

Due to the particular structure of the polynomials F,G and their derivatives, it is easy
to characterize the quotients Al/∆l, for l ∈ N, and k{Y, X,U}/∆:

Remark 7 Let l, i, s, t be positive integers with i ≤ l, 1 ≤ s ≤ n and 1 ≤ t ≤ r, and let
pi,s and qi,t be the ideals of Al defined as

pi,s := (F,G, F (1), G(1), . . . , F (i−2), G(i−2), F
(i−1)
1 , . . . , F (i−1)

s )

qi,t := (F,G, F (1), G(1), . . . , F (i−2), G(i−2), F (i−1), G
(i−1)
1 , . . . , G

(i−1)
t ).
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In the quotient ring Al/pi,s, we have that X
(j)
h = f̃

(j−1)
h (1 ≤ j ≤ i − 1, 1 ≤ h ≤ n and

j = i, 1 ≤ h ≤ s) and Y
(j)
d = g̃

(j)
d (0 ≤ j ≤ i − 2, 1 ≤ d ≤ r), and similar identities hold

in Al/qi,t. Therefore,

Al/pi,s ' k[Y (i−1), . . . , Y (l−1), X,X
(i)
s+1, . . . , X

(i)
n , X(i+1), . . . , X(l), U [l]],

Al/qi,t ' k[Y (i−1)
t+1 , . . . , Y (i−1)

r , Y (i), . . . , Y (l−1), X,X(i+1), . . . , X(l), U [l]],

and so, pi,s and qi,t are prime ideals of Al. In particular, ∆l is prime, Al/∆l ' k[X, U [l]]
and hence, its Krull dimension is n + (l + 1)m.

With similar arguments, we deduce that the differential ideal ∆ = [F, G] ⊂ k{Y, X,U}
is prime and the differential ring k{Y, X,U}/∆ is isomorphic to the differential ring
k[X]{U} with the derivation induced by Ẋj := fj(X, U).

Roughly speaking, Assumption 4 states that the set of variables Y is differentially
algebraically independent modulo ∆ (see also Proposition 8 below), and so, it seems quite
reasonable to regard them as elements of an extended ground field. Then, we will be inter-
ested in the differential ideal generated by the polynomials F,G in the ring k〈Y 〉{X, U}.

We begin by considering some related polynomial ideals.

Proposition 8 Under the same notation and assumptions as in Remark 7, we have that
k[Y [l−1]] ∩ pi,s = 0, k[Y [l−1]] ∩ qi,t = 0, and the ideals k〈Y 〉 ⊗ pi,s and k〈Y 〉 ⊗ qi,t are
prime ideals of the ring k〈Y 〉 ⊗ Al (here, the tensor product denotes scalar extension).
In particular, k〈Y 〉 ⊗ ∆l is a prime ideal of k〈Y 〉 ⊗ Al and there is a ring inclusion
k[X, U [l]] ' Al/∆l ↪→ k〈Y 〉 ⊗Al/k〈Y 〉 ⊗∆l.

Proof. Let us prove that k[Y [l−1]] ∩ pi,s = 0 (the result for qi,t follows similarly): if
p ∈ k[Y [l−1]] ∩ pi,s, there exist polynomials aq,h, bj,k ∈ Al satisfying

p(Y [l−1]) =
i−2∑
h=0

n∑
q=1

aq,h F (h)
q +

s∑
q=1

aq,i−1 F (i−1)
q +

i−2∑
k=0

r∑
j=1

bj,k G
(k)
j .

Substituting Y
(k)
j for g

(k)
j (1 ≤ j ≤ r, 0 ≤ k ≤ l − 1) in this identity, we deduce that

p(g1, . . . , gr, ġ1, . . . , ġr, . . . , g
(l−1)
1 , . . . , g

(l−1)
r ) ∈ (F [i−1]) ⊂ Al and so, the differential inde-

pendence of g1, . . . , gr in the differential extension k ↪→ Frac(k{Y, X,U}/[F ]) implies that
p = 0.

Therefore, the extensions of the prime ideals pi,s and qi,t to k(Y [l−1]) ⊗ Al are also
prime ideals; and the same happens to their extensions to the ring k〈Y 〉 ⊗ Al, since the
Y (j), with j ≥ l, are transcendental over k(Y [l−1])⊗Al.

From now on, we will use the same notation as in the previous proposition: the symbol
⊗ will denote scalar extensions that will be clear from the context.

Corollary 9 For every positive integer l, we have that F,G, F (1), G(1), . . . , F (l−1), G(l−1)

is a regular sequence in k〈Y 〉 ⊗Al.
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Proof. Remark 7 enables the straightforward computation of the dimensions of Al/pi,s

and Al/qi,t for every i ≤ l, 1 ≤ s ≤ n and 1 ≤ t ≤ r, which turn to drop successively
by one when adding each polynomial of the sequence to the ideal generator set. Due to
Proposition 8, the same happens for the corresponding prime ideals in k〈Y 〉 ⊗ Al, which
implies the statement.

The differential analogue of Proposition 8 is the following:

Proposition 10 Let ∆ = [F,G] ⊂ k{Y, X,U} be the differential ideal introduced in No-
tation 5. Then ∆ ∩ k{Y } = 0 and k〈Y 〉 ⊗∆ is a prime ideal of k〈Y 〉{X, U}.

According to Remark 7 and Proposition 10, the differential ideals ∆ and k〈Y 〉⊗∆ are
prime ideals. Now, we will compute their differential dimensions.

Notation 11 Let F denote the common fraction field of the integral domains k{Y, X,U}/∆
and k〈Y 〉{X, U}/k〈Y 〉 ⊗∆.

Proposition 12 The differential transcendence degree of the differential field extension
k〈Y 〉 ↪→ F is m− r.

Proof. Due to Remark 7, there is an isomorphism between F and the differential field
k(X)〈U〉 with the derivation induced by Ẋj := fj for j = 1, . . . , n, and so, difftrdegk(F) =
difftrdegk(k(X)〈U〉) = #U = m. On the other hand, we have that difftrdegk(k〈Y 〉) = r.
Now, applying [21, Ch. II, Sec. 9, Cor. 2] to the tower of differential fields k ↪→ k〈Y 〉 ↪→ F ,
we conclude that difftrdegk〈Y 〉(F) = m− r.

The above proposition and the fact that the ideal k〈Y 〉⊗∆ is generated by polynomials
of order less than or equal to 1 enable us to derive the following estimate by means of
Proposition 2:

Remark 13 The order of the ideal k〈Y 〉 ⊗∆ satisfies: ordk〈Y 〉(k〈Y 〉 ⊗∆) ≤ n + r.

3.2 Algebraic Ideals vs. Differential Ideals

In this subsection we will establish a relation between contractions of the differential ideal
k〈Y 〉⊗∆ and contractions of the algebraic polynomial ideals k〈Y 〉⊗∆l to the polynomial
rings Ai. This relation is crucial to go from non-finitely generated algebraic ideals to
finitely generated ones.

Lemma 14 For every i ≥ 0, we have (k〈Y 〉 ⊗ ∆) ∩ (k〈Y 〉 ⊗ Ai) = (k〈Y 〉 ⊗ ∆i+n+r) ∩
(k〈Y 〉 ⊗Ai).

Proof. We will show that (k〈Y 〉 ⊗ ∆) ∩ (k〈Y 〉 ⊗ Ai) ⊂ (k〈Y 〉 ⊗ ∆i+n+r) ∩ (k〈Y 〉 ⊗ Ai)
holds (the converse is immediate from the fact that ∆i+n+r ⊂ ∆).

First, let us observe that {F1, . . . , Fn, G1, . . . , Gr} is a characteristic set of the ideal ∆
for an elimination block ranking on k{Y, X,U} with Y � X � U , and that SFh

= IFh
=

SGj = IGj = −1, ord(Fh) = 1 and ord(Gj) ≤ 1 for every 1 ≤ h ≤ n, 1 ≤ j ≤ r.

10



Fix now an elimination block ranking � with X � U � Y . From [29, Theorem 27],
the previous conditions imply that there exists a characteristic set C := {C1, . . . , C`} of ∆
with respect to � such that Cl ∈ (F [n+r−1], G[n+r−1]) for l = 1, . . . , `. Set H :=

∏
l ICl

SCl
.

Let f ∈ (k〈Y 〉⊗∆)∩ (k〈Y 〉⊗Ai) and let q ∈ k{Y }, q 6= 0, with qf ∈ ∆ ⊂ k{Y, X,U}.
Since ∆ ∩ k{Y } = 0, for l = 1, . . . , `, we have that vp(Cl) ∈ {X1, . . . , Xn, U1, . . . , Um}
and so, ord(qf, vp(Cl)) ≤ i. Thus, qf ∈ (C [i]) : H∞, where the ideal is taken in the
ring k{Y, X,U} (see Subsection 2.1.2). Now, (C [i]) : H∞ ⊂ (F [i+n+r−1], G[i+n+r−1]) :
H∞ = (F [i+n+r−1], G[i+n+r−1]), since this last ideal is prime and it does not contain H.
Therefore, qf ∈ (F [i+n+r−1], G[i+n+r−1]) and so, f ∈ (F [i+n+r−1], G[i+n+r−1])k〈Y 〉{X, U}.

Finally, notice that if f =
∑i+n+r−1

k=0 (
∑n

h=1 ah,kF
(k)
h +

∑r
j=1 bj,kG

(k)
j ) with ah,k, bj,k ∈

k〈Y 〉{X, U}, evaluating X(l) = 0 and U (l) = 0 for l > i + n + r (these variables appearing
only in ah,k, bj,k), we deduce that f ∈ (F [i+n+r−1], G[i+n+r−1])(k〈Y 〉 ⊗ Ai+n+r) = k〈Y 〉 ⊗
∆i+n+r, which completes the proof.

4 Hilbert Function and Differential Transcendence Bases

This section is devoted to the computation of the differential Hilbert function of the ideal
k〈Y 〉⊗∆ and a differential transcendence basis of the extension k〈Y 〉 ↪→ F (see Notations
5 and 11).

The differential Hilbert function is obtained by means of the computation of Jaco-
bian matrix ranks (see also [33, 26]), relying on the well-known Jacobian criterion from
commutative algebra [25, Ch. VI, §1, Theorem 1.15]. Regarding the computation of a
differential transcendence basis, our results are based on a finiteness criterion proved in
[29] concerning the order of characteristic set elements for an ideal, along with the above
mentioned Jacobian criterion.

4.1 Hilbert Function of k〈Y 〉 ⊗∆ over k〈Y 〉

As stated in Definition 1, the differential Hilbert function of the ideal k〈Y 〉 ⊗ ∆ ⊂
k〈Y 〉{X, U} is the function Hk〈Y 〉⊗∆, k〈Y 〉 : N0 → N0 defined by

Hk〈Y 〉⊗∆, k〈Y 〉(i) := trdegk〈Y 〉

(
Frac(k〈Y 〉 ⊗Ai/(k〈Y 〉 ⊗∆) ∩ (k〈Y 〉 ⊗Ai))

)
.

Due to Proposition 12 and Remark 13, we have that

Hk〈Y 〉⊗∆, k〈Y 〉(i) = (m− r)(i + 1) + ordk〈Y 〉(k〈Y 〉 ⊗∆) for every i ≥ n + r (2)

(see Subsection 2.1.3); so, the function Hk〈Y 〉⊗∆, k〈Y 〉 is completely determined by the
values it takes at i = 0, . . . , n + r.

In order to compute this function we will deal with Jacobian matrices. We introduce
here a notation that will be used in the sequel:

Notation 15 If Z = {Z1, . . . , Zα} is a set of differential indeterminates over a field K and
H = {H1, . . . ,Hβ} is a set of differential polynomials over K depending on the variables
Z, for every l, k ≥ 0 we will denote by ∂H(l)

∂Z(k) the Jacobian matrix of the polynomials
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H
(l)
1 , . . . ,H

(l)
β with respect to the variables Z

(k)
1 , . . . , Z

(k)
α , that is,

(
∂H(l)

∂Z(k)

)
ij

:= ∂H
(l)
i

∂Z
(k)
j

for

1 ≤ i ≤ β, 1 ≤ j ≤ α. Similarly, for every 0 ≤ l1 ≤ l2, 0 ≤ k1 ≤ k2, ∂H[l1, l2]

∂Z[k1,k2] will denote
the Jacobian block matrix(

∂H [l1, l2]

∂Z [k1,k2]

)
ij

:=
∂H(i)

∂Z(j)
(l1 ≤ i ≤ l2, k1 ≤ j ≤ k2).

For the sake of simplicity, we will write ∂H[l]

∂Z[k] = ∂H[0, l]

∂Z[0,k] .

Now, the differential Hilbert function of k〈Y 〉 ⊗∆ can be written in terms of ranks of
suitable Jacobian matrices:

Proposition 16 For i = 0, . . . , n+r, let Ji be the Jacobian matrix Ji :=
∂{F,G}[i, 2n+2r−1]

∂{X, U}[i+1, 2n+2r]
.

Then, the differential Hilbert function of the ideal k〈Y 〉 ⊗ ∆ over k〈Y 〉 is the function
Hk〈Y 〉⊗∆, k〈Y 〉 : N0 → N0 defined by

Hk〈Y 〉⊗∆, k〈Y 〉(i) =

{
(n + m)(i + 1)− (2n + 2r)(n + r) + rank(Ji) if i ≤ n + r

(m− r)(i + 1) + rank(Jn+r)− (n + r)(n + r − 1) if i ≥ n + r
,

where the ranks of the matrices Ji are taken over the ring k〈Y 〉 ⊗ (A2n+2r/∆2n+2r).

Proof. Lemma 14 applied to i = n + r states that (k〈Y 〉 ⊗ ∆) ∩ (k〈Y 〉 ⊗ An+r) =
(k〈Y 〉 ⊗ ∆2n+2r) ∩ (k〈Y 〉 ⊗ An+r). Then, for every i ≤ n + r, since Ai ⊂ An+r, we
deduce that (k〈Y 〉 ⊗ ∆) ∩ (k〈Y 〉 ⊗ Ai) = (k〈Y 〉 ⊗ ∆) ∩ (k〈Y 〉 ⊗ An+r) ∩ (k〈Y 〉 ⊗ Ai) =
(k〈Y 〉 ⊗∆2n+2r) ∩ (k〈Y 〉 ⊗Ai) holds and so, we have the following ring inclusion

k〈Y 〉 ⊗Ai/(k〈Y 〉 ⊗∆) ∩ (k〈Y 〉 ⊗Ai) ↪→ k〈Y 〉 ⊗ (A2n+2r/∆2n+2r).

Set Fi := Frac(k〈Y 〉⊗Ai/(k〈Y 〉⊗∆)∩(k〈Y 〉⊗Ai)) and G := Frac(k〈Y 〉⊗(A2n+2r/∆2n+2r)).
The above ring inclusion induces a field extension k〈Y 〉 ↪→ Fi ↪→ G, which implies that
Hk〈Y 〉⊗∆, k〈Y 〉(i) = trdegk〈Y 〉(Fi) = trdegk〈Y 〉(G)− trdegFi

(G).
By Corollary 9, the polynomials F,G, . . . , F (2n+2r−1), G(2n+2r−1) are a regular sequence

in k〈Y 〉 ⊗ A2n+2r. Therefore, trdegk〈Y 〉(G) = (2n + 2r + 1)(n + m) − (2n + 2r)(n + r).
In order to compute trdegFi

(G), notice that G can be regarded as the fraction field of the
quotient ring

Fi[X(i+1), . . . , X(2n+2r), U (i+1), . . . , U (2n+2r)]/(F (i), . . . , F (2n+2r−1), G(i), . . . , G(2n+2r−1)).

Then, the Jacobian criterion ([25, Ch. VI, §1, Theorem 1.15 and Proposition 1.5]) implies
that trdegFi

(G) = (2n + 2r− i)(n + m)− rank(Ji), where the rank is computed in k〈Y 〉 ⊗
(A2n+2r/∆2n+2r). We conclude that Hk〈Y 〉⊗∆, k〈Y 〉(i) = (n+m)(i+1)− (2n+2r)(n+ r)+
rank(Ji) for i ≤ n + r.

In particular, Hk〈Y 〉⊗∆, k〈Y 〉(n+r) = (n+m)(n+r+1)−(2n+2r)(n+r)+rank(Jn+r) and
then, by identity (2), we deduce that ordk〈Y 〉(k〈Y 〉⊗∆) = rank(Jn+r)− (n+ r)(n+ r− 1)
and, therefore, Hk〈Y 〉⊗∆, k〈Y 〉(i) = (m−r)(i+1)+rank(Jn+r)− (n+r)(n+r−1) for every
i ≥ n + r.
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4.2 Differential Transcendence Basis

Here we will show how to obtain a differential transcendence basis of the differential field
extension k〈Y 〉 ↪→ F . Taking into account the literature on algebraic observability (see, for
instance, [33]), we will look for a differential transcendence basis involving only variables
U , which is not restrictive as it is shown in the following:

Lemma 17 There exists a differential transcendence basis W of the extension k〈Y 〉 ↪→ F
with W ⊂ U .

Proof. Let W be a maximal subset of U being differentially algebraically independent
in k〈Y 〉 ↪→ F . Then, the field subextension k〈Y, U〉 of k〈Y, W 〉 ↪→ F is differentially
algebraic over k〈Y, W 〉. On the other hand, the extension k〈U〉 ↪→ F is also differentially
algebraic, since F ' k(X)〈U〉, and so, the same holds for k〈Y, U〉 ↪→ F . Therefore, the
extension k〈Y, W 〉 ↪→ F is differentially algebraic.

The next proposition provides a finiteness criterion of differential transcendence in F .

Proposition 18 The element Ul is differentially transcendental in k〈Y 〉 ↪→ F if and
only if the family {Ul, . . . , U

(n+r)
l } is algebraically independent in k〈Y 〉 ⊗ An+r/(k〈Y 〉 ⊗

∆2n+2r) ∩ (k〈Y 〉 ⊗An+r) over k〈Y 〉.

Proof. Assume that {Ul, . . . , U
(n+r)
l } ⊂ k〈Y 〉 ⊗ An+r/(k〈Y 〉 ⊗∆2n+2r) ∩ (k〈Y 〉 ⊗ An+r)

is algebraically independent over k〈Y 〉.
Consider an elimination ranking on k〈Y 〉{X, U} with Ul � {X, U} \ {Ul}. By [29,

Lemma 19 and Theorem 24], there exists a characteristic set C of the ideal k〈Y 〉⊗∆ with
respect to this ranking, such that ord(C) ≤ ordk〈Y 〉(k〈Y 〉 ⊗∆) ≤ n + r for every C ∈ C
(Remark 13). Now, if Ul is differentially algebraic in k〈Y 〉 ↪→ F , there exists C ∈ C with
C ∈ (k〈Y 〉⊗∆)∩k〈Y 〉[U [n+r]

l ] ⊂ (k〈Y 〉⊗∆)∩ (k〈Y 〉⊗An+r) = (k〈Y 〉⊗∆2n+2r)∩ (k〈Y 〉⊗
An+r) (see Subsection 2.1.2), where the last identity is due to Lemma 14, contradicting
the hypothesis of algebraic independence of Ul, . . . , U

(n+r)
l .

In order to apply the previous result we will use the following well-known technical
lemma from commutative algebra:

Lemma 19 Let K be a field of characteristic 0 and let ℘ ⊂ K[Z1, . . . , Zα] be a prime
ideal generated by polynomials f1, . . . , fs. Set R for the ring K[Z1, . . . , Zα]/℘ and de-
note by J ∈ Rs×α the Jacobian matrix of the system f1, . . . , fs. For j = 1, . . . , α, set
JZj ∈ Rs×(α−1) for the submatrix of J obtained by removing the column corresponding to
derivatives with respect to the variable Zj. Then, Zj ∈ R is transcendental over K if and
only if rankR(JZj ) = rankR(J).

Proof. Assuming that Zj is transcendental modulo ℘, we have inclusions K(Zj) ⊂ R ⊗
K(Zj) ⊂ Frac(R). Therefore, by the Jacobian criterion (see [25, Ch. VI, §1, Theorem
1.15]), we have rankR(JZj ) = (α−1)− trdegK(Zj)(Frac(R)) = α−1− (trdegK(Frac(R))−
1) = α− trdegK(Frac(R)) = rankR(J).
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In order to prove the converse, assume that there exists a non-zero polynomial fs+1 ∈ ℘
pure in the variable Zj with minimal degree. The rank of the Jacobian matrix J of the
system f1, . . . , fs, fs+1 equals that of the Jacobian matrix J , since both are the codimension
of ℘. On the other hand, we have that rankR(J ) = rankR(JZj )+1. Therefore, rankR(J) =
rankR(JZj ) + 1.

Now we are able to prove our main result on the computation of differential transcen-
dence bases:

Proposition 20 Let J be the Jacobian matrix J :=
∂{F,G}[2n+2r−1]

∂{X, U}[2n+2r]
(see Notation 15).

Then, a set W := {Ul1 , . . . , Ulm−r} with m−r elements is a differential transcendence basis
of k〈Y 〉 ↪→ F if and only if the columns of J corresponding to derivatives with respect to
variables in W [n+r] can be removed with no change in rank (here, the ranks are taken over
the ring k〈Y 〉 ⊗ (A2n+2r/∆2n+2r)).

Proof. Due to Proposition 18, an element Ul (1 ≤ l ≤ m) belongs to a differential
transcendence basis of k〈Y 〉 ↪→ F if and only if the set {Ul, . . . , U

(n+r)
l } is algebraically

independent in k〈Y 〉 ⊗ An+r/(k〈Y 〉 ⊗ ∆2n+2r) ∩ (k〈Y 〉 ⊗ An+r) over k〈Y 〉. Since the
ring inclusion k〈Y 〉 ⊗An+r/(k〈Y 〉 ⊗∆2n+2r) ∩ (k〈Y 〉 ⊗An+r) ⊂ k〈Y 〉 ⊗ (A2n+2r/∆2n+2r)
holds, this condition is equivalent to the algebraic independence of {Ul, . . . , U

(n+r)
l } in

k〈Y 〉 ⊗ (A2n+2r/∆2n+2r), which is met in turn if and only if the columns of the matrix J

corresponding to derivatives with respect to variables in U
[n+r]
l can be removed with no

change in rank (Lemma 19).
Set l1 for the minimum l (1 ≤ l ≤ m) such that the last condition holds for Ul (its

existence is ensured by Lemma 17 and the previous arguments).
Then, we can replace the differential base field k〈Y 〉 with the differential field k〈Y, Ul1〉

and look for a differential transcendence basis of the extension k〈Y, Ul1〉 ↪→ F , whose
transcendence degree is m − r − 1. That is, we consider the same problem on the input
differential equation system regarded as a system in k〈Ul1〉{Y, X,U \{Ul1}}, and we repeat
the process.

4.3 The Algorithms and their Complexities

In this subsection, we present probabilistic algorithms for the computation of the differen-
tial Hilbert function of the ideal k〈Y 〉 ⊗∆ and of a differential transcendence basis of the
extension k〈Y 〉 ↪→ F following the theoretical results stated in Propositions 16 and 20.

Before going on, we show a very elementary example to illustrate how these results
can be applied. Consider the differential system:{

Y1 = U1 + U̇2 + U̇3

Y2 = U̇1 + U2 + U3
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In this case, n = 0, r = 2 and m = 3. Therefore, the matrix J defined in Proposition 20 is

J =



1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0


Clearly, rank(J0) = 8, rank(J1) = 6 and rank(J2) = 4, where J0, J1 and J2 are the
distinguished submatrices of J defined in Proposition 16, and then

Hk〈Y 〉⊗∆, k〈Y 〉(i) = (i + 1) + 2 for i ≥ 0.

In order to apply the result in Proposition 20, we observe that the matrix J has full
row rank and the same remains true when the columns corresponding to derivatives with
respect to either the variables U2, U̇2, U

(2)
2 or U3, U̇3, U

(2)
3 are removed; however, the

rank drops when removing the columns corresponding to U1, U̇1, U
(2)
1 . Therefore, both

{U2} and {U3} are differential transcendence bases, but {U1} is not (in fact we have
U

(2)
1 − U1 − Ẏ2 + Y1 = 0).

Now, we start with the description of the algorithms. For technical and algorithmic
reasons, we will assume throughout this subsection that the base differential field k is
the rational effective field Q(t) (with the standard derivation), and that the polynomials
defining system (1) have coefficients in Q[t].

Our algorithms will deal not only with the input polynomials f, g (which will be en-
coded by straight-line programs), but also with their successive derivatives ḟ , ġ, f (2), g(2)

and so on. As pointed out in [26, Section 5.2], one can obtain short slp’s for these successive
derivatives from slp’s for the input polynomials:

Lemma 21 Let Z := {Z1, . . . , Zα} be a set of differential indeterminates over Q(t) and
let f ∈ Q[t][Z, Ż] be a polynomial encoded by a straight-line program of length L. Let
ν ∈ N. Then, there exists a straight-line program of length O(ν2(να+L)) which computes
f (j) for every j < ν.

Proof. Let T be a new variable. For i = 1, . . . , α, let ηi(T ) :=
∑ν

k=0
Z

(k)
i
k! T k. Denote

η := (η1, . . . , ηα) and set S(T ) := f(T + t, η, η̇) ∈ Q[t, Z, Ż, . . . , Z(ν)][T ]. The chain rule
implies that ∂jS

∂T j = f (j)(T + t, η, η̇, . . . , η(j+1)) for j = 0, . . . , ν − 1, and so, specializing
T = 0, we obtain ∂jS

∂T j (0) = f (j)(t, Z, Ż, . . . , Z(j+1)) for j = 0, . . . , ν − 1. Then, if S(T ) =∑ν
j=0 sj(t, Z, Ż, . . . , Z(j+1))T j , the following identities hold:

f (j)(t, Z, Ż, . . . , Z(j+1)) = j! sj(t, Z, Ż, . . . , Z(j+1)), j = 0, . . . , ν − 1. (3)

These identities enable us to obtain an slp for the computation of these polynomials:
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The first step consists in the computation of an slp encoding S(T ): we compute the
monomials T k

k! = T
k

T k−1

(k−1)! for k = 2, . . . , ν recursively with 2ν − 2 operations, and then
we obtain slp’s for the polynomials ηi, η̇i for i = 1, . . . , α by multiplying these monomials
by the corresponding coefficients Z

(k)
i and adding the results. This requires α(4ν − 2)

additional operations. Finally, an slp encoding S(T ) is obtained as the composition of
the slp encoding f , an slp of length 1 computing T + t, and those obtained for ηi, η̇i

(1 ≤ i ≤ α). The total length of this slp is L := 2ν − 1 + α(4ν − 2) + L.
In a second step, the procedure described in [22, Lemma 13] is applied to obtain an

slp of length ν2L encoding all the coefficients sj , j = 0, . . . , ν − 1, of S(T ). Finally, the
coefficients sj are multiplied by the corresponding constant factors according to (3) in
order to obtain the slp for the polynomials f (j), j = 0, . . . , ν − 1. The total length of the
slp obtained is bounded by 6 ν3α + ν2L.

Notice that, due to the ring inclusion Q(t)[X, U [2n+2r]] ↪→ Q(t)〈Y 〉⊗ (A2n+2r/∆2n+2r)
(see Proposition 8), the rank computations involved in Propositions 16 and 20 amount to
rank computations in the polynomial ring Q[t, X,U [2n+2r]]: for i = 0, . . . , n + r, let J̃i be
the matrix with entries in Q[t][X, U [2n+2r]] which is obtained by substituting X

(l)
j = f̃

(l−1)
j

(see Notation 6) for j = 1, . . . , n, l = 1, . . . , 2n + 2r in the entries of the matrix Ji defined
in Proposition 16. Finally, set J̃ for the matrix with entries in Q[t][X, U [2n+2r]] obtained
by making this substitution in the Jacobian matrix J introduced in Proposition 20. Then,
rankQ(t)〈Y 〉⊗(A2n+2r/∆2n+2r)(Ji) = rankQ[t][X,U [2n+2r]](J̃i), and the same holds for J and J̃ .

Now, Propositions 16 and 20 can be restated as follows:

Corollary 22 The Hilbert function of the ideal Q(t)〈Y 〉⊗∆ over Q(t)〈Y 〉 is H : N0 → N0,

H(i) =

{
(n + m)(i + 1)− (2n + 2r)(n + r) + rank(J̃i) if i ≤ n + r

(m− r)(i + 1) + rank(J̃n+r)− (n + r)(n + r − 1) if i ≥ n + r

where the ranks of the matrices J̃i are taken over the polynomial ring Q[t, X,U [2n+2r]].

Corollary 23 A set W ⊂ U with m − r elements is a differential transcendence basis
of the differential extension Q(t)〈Y 〉 ↪→ F if and only if the columns of J̃ corresponding
to derivatives with respect to variables in W [n+r] can be removed with no change in rank
(where the ranks are taken over the ring Q[t, X,U [2n+2r]]).

The rank computations over a polynomial ring involved in the previous corollaries will
be reduced to rank computations over Q by means of the next result which follows easily
from the Zippel-Schwartz zero-test (see Subsection 2.2):

Lemma 24 Let Z := {Z1, . . . , Zα} be a set of indeterminates over Q and let A ∈ Q[Z]p×q

be a matrix whose entries satisfy deg(Aij) ≤ Di for i = 1, . . . , p. Then, if the coordinates
of a point z := (z1, . . . , zα) are chosen at random in the set {0, . . . , N − 1}, we have
rankQ[Z](A) = rankQ(A(z)) with error probability bounded by 1

N

∑p
i=1 Di.

This lemma provides a straightforward probabilistic algorithm for the computation
of the rank of a polynomial matrix: under the previous assumptions and notations, the
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algorithm chooses at random the coordinates of the point z in a set of type {0, . . . , N −1}
for a sufficiently big integer N and computes the rank of the matrix A(z) ∈ Qp×q applying
any of the well-known algorithms for the computation of the rank of a matrix with rational
entries. The random choice of the element z can be made within complexity O(α log(N)),
while the complexity of computing rank(A(z)) may be estimated as O((p + q)3) (see, for
instance, [2, Ch. 2, Sec. 2, Problem 2.10]).

In order to estimate the error probability of our algorithms we will need an upper
bound on the degrees of the polynomials involved:

Remark 25 For h = 1, . . . , n, j = 1, . . . , r and l ∈ N0, let f̃
(l)
h , g̃

(l)
j be the polynomi-

als introduced in Notation 6. A recursive computation shows that, if deg(fh) ≤ d and
deg(gj) ≤ d for every 1 ≤ h ≤ n and 1 ≤ j ≤ r, then d + l(d − 1) is an upper bound for
the degrees of f̃

(l)
h and g̃

(l)
j for every l ∈ N0.

Now, we are ready to prove our algorithmic result on the computation of the differential
Hilbert function. We keep the same notations and assumptions as in Subsection 3.1:

Theorem 26 Assume that f1, . . . , fn ∈ Q[t, X,U ] and g1, . . . , gr ∈ Q[t, X,U, U̇ ] have
degrees bounded by d and are encoded by a straight-line program of length L. Then, there
is a probabilistic algorithm which computes, for every ε ∈ (0, 1), the differential Hilbert
function of the ideal Q(t)〈Y 〉 ⊗∆ over Q(t)〈Y 〉 with error probability bounded by ε within
complexity O((log(1/ε) + log(d))(n + m)3(n + r)8L).

Proof. The algorithm is based on Corollary 22. Thus, for i = 0, . . . , n + r, it computes
the rank of the matrix J̃i ∈ (Q[t][X, U [2n+2r]])(n+r)(2n+2r−i)×(n+m)(2n+2r−i).

Fix i with 0 ≤ i ≤ n + r. From the definition of J̃i and Remark 25, we deduce that for
l = 0, . . . , 2n + 2r− i− 1 and j = 1, . . . , n + r, the entries in the (l(n + r) + j)th row of J̃i

are polynomials in Q[t, X,U [2n+2r]] with degrees bounded by d +(l + i)(d− 1). Therefore,
by Lemma 24, the rank of the matrix J̃i can be computed with error probability bounded
by pi := 1

N

∑2n+2r−i−1
l=0 (n+r)(d+(l+ i)(d−1)) ≤ 4

N d(n+r)3 by choosing the coordinates
of a point zi := (zi,t, zi,X , zi,U [2n+2r]) at random from the set {0, . . . , N − 1}. This random
choice can be made within complexity O(m(n + r) log(N)). Then, once the matrix J̃i(zi)
is obtained, its rank can be computed within complexity O((n + m)3(n + r)3).

In order to compute the entries of the matrices J̃i(zi), we proceed as follows: first,
we derive slp’s of length O((n + r)2((n + r) (n + m) + L)) for the polynomials F

[2n+2r−1]
h ,

G
[2n+2r−1]
j from the slp’s encoding f1, . . . , fn, g1, . . . , gr, as stated in Lemma 21. The

complexity of this step is of order O((n+r)3((n+r)(n+m)+L)). Then, we compute slp’s
for the partial derivatives of these polynomials with respect to the variables {X, U}[2n+2r].
A result due to Baur and Strassen (see, for instance, [3, Section 7.2]) enables us to obtain
slp’s of length O((n+r)2((n+r) (n+m)+L)) for these partial derivatives within complexity
O((n+ r)4((n+ r) (n+m)+L)). Now, we obtain an slp of length O(n(n+ r)3((n+ r) (n+
m)+L)) for the polynomials f̃

(l)
h (1 ≤ h ≤ n, 0 ≤ l ≤ 2n+2r) and then, slp’s of the same

order for the entries of J̃i, by composition. Finally, we compute the entries of J̃i(zi) by
specializing the slp’s encoding the entries of J̃i into zi. This can be done within complexity
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O(n(n + r)6(n + m)((n + r)(n + m) + L)), which dominates the complexity of the whole
computation.

Thus, we obtain the differential Hilbert function of the ideal Q(t)〈Y 〉 ⊗∆ with prob-
ability at least

∏n+r
i=0 (1 − pi) ≥ 1 −

∑n+r
i=0 pi ≥ 1 −

∑n+r
i=0

4
N d(n + r)3 ≥ 1 − 8

N d(n + r)4

within complexity O(m(n + r)2 log(N) + (n + m)3(n + r)8L).
In order that the error probability of the algorithm is bounded by ε, we take N :=

d1/εe8d(n + r)4. With this choice, the overall complexity of the procedure is of order
O((log(1/ε) + log(d))(n + m)3(n + r)8L).

The computation of a differential transcendence basis of Q(t)〈Y 〉 ↪→ F follows the
recursive procedure leading to the proof of Proposition 20. In fact, we will compute the
minimal index differential transcendence basis of Q(t)〈Y 〉 ↪→ F , which we define to be
the differentially algebraically independent subset {Ul1 , . . . , Ulm−r} that is minimal with
respect to the lexicographical ordering of the variables U in which U1 < U2 < . . . < Um.

Theorem 27 There is a probabilistic algorithm which computes, for every ε ∈ (0, 1),
the minimal index differential transcendence basis of Q(t)〈Y 〉 ↪→ F with error probability
bounded by ε within complexity O((log(1/ε) + log(d))m(n + m)3(n + r)7L).

Proof. Let J̃ be the matrix introduced in the paragraph preceding Corollary 22. Note
that, due to Corollary 9, J̃ has full row rank. In a first step, the algorithm chooses the
coordinates of a point z := (zt, zX , zU [2n+2r]) at random from the set {0, . . . , N − 1} for
a sufficiently big integer N and computes rank(J̃(z)). If J̃(z) has not full row rank, it
returns an error message. Otherwise, the algorithm proceeds recursively, starting with the
set of variables W being the empty set:

For k ≤ m, the kth recursive step is as follows: if #W < m − r, the algorithm
computes the rank of the matrix J̃(z)W∪{Uk} which is obtained by removing the columns
of J̃(z) corresponding to derivatives with respect to the variables (W ∪ {Uk})[n+r]. If
rank(J̃(z)W∪{Uk}) = rank(J̃(z)), the variable Uk is added to the set W . Otherwise, W is
not modified. When #W = m− r, the algorithm outputs the set W .

If the recursion finishes with #W < m− r, the algorithm returns an error message.
Now let us estimate the error probability of this procedure: let W be the minimal index

differential transcendence basis of Q(t)〈Y 〉 ↪→ F . Then, the matrix J̃W which is obtained
from J̃ by removing the columns corresponding to derivatives with respect to the variables
W [n+r] has full row rank, and so, it has a square submatrix of size (n + r)(2n + 2r) with
non-zero determinant P0. Therefore, any point z := (zt, zX , zU [2n+2r]) satisfying P0(z) 6= 0
leads to a matrix J̃(z) with full row rank for which the algorithm computes the desired
minimal index differential transcendence basis. Since deg P0 ≤ 4d(n + r)3 (this estimate
follows as in the proof of Theorem 26), we conclude that the error probability of the
algorithm is at most 4

N d(n + r)3.
In order that the error probability of the algorithm is bounded by ε, we choose N :=

d1/εe4d(n + r)3. The complexity bound can be obtained as in the proof of Theorem 26.

Remark 28 The algorithm in Theorem 27 may fail to compute the minimal index dif-
ferential transcendence basis of the extension, but any set W output by the algorithm is
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a differential transcendence basis of Q(t)〈Y 〉 ↪→ F . If the algorithm is unable to obtain a
set W with m− r elements, it will return an error message.

5 Resolvent Representation

This section is concerned with the notions of a primitive element of a differentially algebraic
field extension and of a resolvent representation of a prime differential ideal introduced
by Ritt (see [27]). We present these concepts following [34] in Subsection 5.1 and then,
in the remaining subsections, we study quantitative aspects, namely order and degree of
these objects, for our particular system (1).

5.1 Existence of a Primitive Element and a Resolvent Representation

In this subsection we recall the notion of primitive element of a finite differentially alge-
braic field extension and the closely related concept of resolvent representation of a prime
differential ideal.

Let K be a differential field with char(K) = 0 containing a non-constant element ξ
(i.e. ξ̇ 6= 0), and let Z := {Z1, . . . , Zα} be a set of differential indeterminates over K. Let
I be a prime differential ideal of K{Z} with diffdim(I) = 0. Set F := Frac(K{Z}/I)
and consider the differential field extension K ↪→ F . Then, a differential analogue of
the well-known theorem of the primitive element holds (see [28] and [34]). We include
Seidenberg’s proof ([34, Theorem 1]) since the arguments therein are the basis for several
effective results we will prove later.

Theorem 29 With the previous assumptions and notations, there exists γ ∈ F such that
F = K〈γ〉. Moreover, γ can be chosen as a linear combination γ = λ1Z1 + · · · + λαZα,
where λi is a polynomial in Q[ξ] ⊂ K for i = 1, . . . , α.

Proof. Let Λ := {Λ1, . . . ,Λα} be a set of indeterminates over K〈Z〉. Let us observe that
F〈Λ〉 is the fraction field of K〈Λ〉{Z}/K〈Λ〉 ⊗ I and K〈Λ〉 ↪→ F〈Λ〉 is a differentially
algebraic field extension. Then, if Γ := Λ1Z1 + · · · + ΛαZα, the set of derivatives {Γ(l) :
l ∈ N0} ⊂ F〈Λ〉 is differentially algebraically dependent over K〈Λ〉 and so, there exists a
differential polynomial X in K〈Λ〉{T}, where T is a new differential indeterminate over
K〈Λ〉, satisfying X (Γ) = 0 in F〈Λ〉. Assume X to be of minimal order h and of minimal
degree among the differential polynomials of order h vanishing at Γ.

Without loss of generality we may assume that the coefficients of X are polynomials
in K{Λ} and that X (Γ, Γ̇, . . . ,Γ(h)) ∈ K{Λ} ⊗ I. Then, for i = 1, . . . , α, we have that
∂X (Γ, . . . ,Γ(h))/∂Λ(h)

i ∈ K{Λ} ⊗ I, that is,

∂X
∂T (h)

(Γ, . . . ,Γ(h)) Zi +
∂X

∂Λ(h)
i

(Γ, . . . ,Γ(h)) ∈ K{Λ} ⊗ I. (4)

Let Q := ∂X
∂T (h) (T, . . . , T (h)) ∈ K{Λ}{T}. The minimality conditions set on X imply that,

specializing the differential variable T into Γ, we obtain a non-zero polynomial QΛ :=
∂X

∂T (h) (Γ, . . . ,Γ(h)) in F{Λ}. Since ξ ∈ F is a non-constant element, a result in [28, Ch. 2,
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§22] shows the existence of elements λi ∈ Q[ξ] for i = 1, . . . , α, with QΛ(λ1, . . . , λα) 6= 0.
Now, if we take γ := λ1Z1 + · · · + λαZα ∈ F , we deduce from Identity (4) that Zi ∈
K〈γ〉 ⊂ F for i = 1, . . . , α, which implies that F = K〈γ〉.

Under the previous assumptions, an element γ ∈ F such that F = K〈γ〉 will be called
a primitive element of the differential field extension K ↪→ F .

The following result shows that the order of a zero-dimensional prime differential ideal
is an upper bound for the number of derivatives of the primitive element involved in a
representation of an arbitrary element of the field extension.

Proposition 30 Let γ be a primitive element of the extension K ↪→ F as above. Let
s ∈ N be the maximum positive integer such that {γ, . . . , γ(s−1)} ⊂ F is algebraically
independent over K. Let T be a new differential variable. Then:

i) For every ζ ∈ F , there exist polynomials Pζ and Qζ ∈ K[T [s]] such that ζ =
Pζ(γ[s])/Qζ(γ[s]) in F . In particular, {γ, . . . , γ(s−1)} is a transcendence basis of
K ↪→ F and F = K(γ, . . . , γ(s−1), γ(s)).

ii) s = ordK(I).

Proof. In order to prove i), let ζ ∈ F . Since F = K〈γ〉, there exist polynomials
P,Q ∈ K{T} such that ζ = P (γ)/Q(γ) in F .

Now, the assumption on s implies the existence of a polynomial M ∈ K[T [s]] with
M(γ[s]) = 0 in F . We may assume M to be of minimal degree in the variable T (s) so that
∂M

∂T (s) (γ[s]) 6= 0 in F . Let IM ∈ K[T [s−1]] be the leading coefficient of M in the variable
T (s) and let SM := ∂M

∂T (s) ∈ K[T [s]]. We have IM (γ) 6= 0 and SM (γ) 6= 0.
By a derivation and division process (see Subsection 2.1.2), it follows that there

exist non-negative integers a1, b1, a2, b2 and polynomials RP , RQ ∈ K[T [s]] such that
Ia1
M Sb1

MP − RP and Ia2
M Sb2

MQ − RQ belong to the differential ideal [M ] ⊂ K{T}. Since
M (j)(γ) = 0 in the differential field F for every j ≥ 0, we have that the identities
RP (γ[s]) = Ia1

M (γ)Sb1
M (γ)P (γ) and RQ(γ[s]) = Ia2

M (γ)Sb2
M (γ)Q(γ) hold in F . Thus, defin-

ing Pζ := Ia2
M Sb2

MRP ∈ K[T [s]] and Qζ := Ia1
M Sb1

MRQ ∈ K[T [s]] we obtain the identity
ζ = Pζ(γ[s])/Qζ(γ[s]) in F , which finishes the proof of the first part of the proposition.

To prove ii), we observe that the elements γ, . . . , γ(s) can be regarded as elements of
Lν := Frac(K[Z [ν]]/I ∩ K[Z [ν]]) ⊂ F for ν big enough and so, we deduce from i) that
Lν = F . Therefore, s = trdegK(F) = trdegK(Lν) = HI,K(ν) = ordK(I), for ν big
enough, where the last equality is due to the fact that I is a zero-dimensional differential
ideal.

Let γ ∈ K{Z} be such that its class in F is a primitive element of the differential field
extension K ↪→ F . Set s := ordK(I). By Proposition 30, {γ, . . . , γ(s−1)} is a transcendence
basis of K ↪→ F . Multiplying the minimal (monic) polynomial of γ(s) in the algebraic field
extension K(γ, . . . , γ(s−1)) ↪→ F by a non-zero element in K(γ, . . . , γ(s−1)) and renaming
the variables γ, . . . , γ(s−1) as T, . . . , T (s−1), we can obtain an irreducible polynomial M ∈
K[T, . . . , T (s−1), T (s)] with M(γ, . . . , γ(s−1), γ(s)) = 0 in F . Any irreducible polynomial
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M ∈ K[T, . . . , T (s)] with M(γ, . . . , γ(s)) = 0 in F will be called a minimal polynomial of
γ in K ↪→ F .

Notice that, if P ∈ K[T, . . . , T (s)] is a polynomial with P (γ, . . . , γ(s)) = 0 in F , then a
minimal polynomial M of γ divides P in K(T, . . . , T (s−1))[T (s)] and, M being primitive, it
also divides P in K[T, . . . , T (s−1), T (s)]. Then, the set of all polynomials P ∈ K[T, . . . , T (s)]
with P (γ, . . . , γ(s)) = 0 in F is a principal ideal of K[T, . . . , T (s)] which is generated by
any minimal polynomial of γ in K ↪→ F . Thus, a minimal polynomial of γ in K ↪→ F is
uniquely determined up to scalar factors in K \ {0}.

On the other hand, for i = 1, . . . , α, there exist polynomials pi(T ), qi(T ) ∈ K{T} with
qi(γ) 6= 0 in F , such that Zi = pi(γ)/qi(γ) in F . In other words, qi(γ)Zi − pi(γ) ∈ I for
i = 1, . . . , α (in fact, due to Proposition 30, there exist polynomials pi, qi of order bounded
by s satisfying these conditions).

Definition 31 Under the previous assumptions and notation, the set {M, q1(T )Z1−p1(T ),
. . . , qα(T )Zα − pα(T )}, where M is a minimal polynomial of γ in K ↪→ F , is called a
resolvent representation of the zero-dimensional prime differential ideal I with respect to
the primitive element γ.

This notion can be extended to the positive-dimensional case: let K be a differential
field containing a non-constant element and let I be a prime differential ideal of K{Z} with
diffdim(I) = r. Consider a differential transcendence basis W ⊂ Z of K ↪→ F . Setting
K := K〈W 〉 and Z̄ := Z \W , the ideal K⊗I of K{Z̄} has differential dimension zero and
the field F is the fraction field of K{Z̄}/K⊗I. Then, the previous assumptions hold and
so, there exist a primitive element γ of the extension K ↪→ F and a resolvent representation
{M, q1(T )Z̄1 − p1(T ), . . . , qα−r(T )Z̄α−r − pα−r(T )} of the ideal K ⊗ I. Without loss of
generality, we may assume that M ∈ K{W}{T}, and also that qi, pi ∈ K{W}{T} for
1 ≤ i ≤ α. The set {M, q1(T )Z̄1 − p1(T ), . . . , qα−r(T )Z̄α−r − pα−r(T )} ⊂ K{W}{T}
is called a resolvent representation of the prime differential ideal I with respect to the
transcendence basis W and the primitive element γ.

A generalization of the notion of resolvent representation for the class of regular dif-
ferential ideals, which will not be considered in this paper, can be found in [4] or [5].

5.2 Bounds for the Order and Degree of a Minimal Polynomial of a
Primitive Element

In what follows, we go back to our particular situation arising from the differential equation
system (1). We keep the same notations and assumptions as in Sections 3 and 4. We will
assume further that our differential base field k contains a non-constant element and that
a differential transcendence basis W ⊂ U of k〈Y 〉 ↪→ F has been fixed.

First, we will prove an upper bound for the total order of a minimal polynomial of a
primitive element of the extension k〈Y, W 〉 ↪→ F . Then, we will show that this polynomial
can be regarded as an eliminating polynomial associated to a suitable linear projection of
a certain algebraic variety, which will enable us to deduce a degree upper bound.

Denote Ū := U \ W and K := k〈Y, W 〉. Then, K ⊗ ∆ is a zero-dimensional prime
differential ideal of K{X, Ū}. Let γ := λ1X1+· · ·+λnXn+λn+1Ū1+· · ·+λn+rŪr ∈ k[X, Ū ]
be a linear form such that its class in F is a primitive element of the differential field
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extension K ↪→ F . Set s := ordK(K ⊗∆); so, a minimal polynomial M of γ in K ↪→ F
lies in K[T, . . . , T (s)] (see Proposition 30).

Now, we will show the existence of a minimal polynomial of γ in K ↪→ F with ‘low’
order also in the variables Y, W .

Lemma 32 There exists a minimal polynomial M ∈ K[T, . . . , T (s)] of γ in K ↪→ F such
that M ∈ k[Y [2n+2r−1],W [2n+2r]][T [s]] and M(γ, . . . , γ(s)) ∈ ∆2n+2r.

Proof. As in the proof of Proposition 30 ii), since γ has order 0 and s ≤ n + r, we have
that the field F coincides with the fraction field Frac(K ⊗An+r/(K ⊗∆) ∩ (K ⊗An+r)).
Then, if P ∈ K[T, . . . , T (s)] is a minimal polynomial of γ in K ↪→ F , we have that
P (γ, . . . , γ(s)) ∈ (K ⊗ ∆) ∩ (K ⊗ An+r). Multiplying it by a non-zero element of K, we
may assume P ∈ k{Y, W}[T [s]].

Now, with a proof analogous to that of Lemma 14, it can be shown that (K⊗∆)∩(K⊗
An+r) ⊂ K ⊗∆2n+2r and so, P (γ, . . . , γ(s)) ∈ (K ⊗ An+r) ∩ (K ⊗∆2n+2r). Thus, there
exist polynomials aik, bjk ∈ K ⊗ A2n+2r (1 ≤ i ≤ n, 1 ≤ j ≤ r, 0 ≤ k ≤ 2n + 2r − 1) such
that P (γ, . . . , γ(s)) =

∑2n+2r−1
k=0 (

∑n
i=1 aikF

(k)
i +

∑r
j=1 bjkG

(k)
j ). Multiplying this identity

by a polynomial in k{Y, W}, we may assume that aik, bjk ∈ k[Y [l],W [l], X [2n+2r], Ū [2n+2r]]
and P ∈ k[Y [l],W [l]][T [s]] for some l ∈ N.

Let IP ∈ k[Y [l],W [l], T [s−1]] be the leading coefficient of the polynomial P in the
variable T (s), and let y0 := (y2n+2r, . . . , yl), w0 := (w2n+2r+1, . . . , wl) be rational vec-
tors such that IP (Y [2n+2r−1], y0,W

[2n+2r], w0, T
[s−1]) 6≡ 0. Making this substitution in

all the coefficients of P and in the polynomials aik, bjk, we obtain a non-zero polyno-
mial M ∈ k[Y [2n+2r−1],W [2n+2r]][T [s]] satisfying M(γ, . . . , γ(s)) ∈ ∆2n+2r. In particular,
M(γ, . . . , γ(s)) = 0 in F , and it follows straightforwardly that M is a minimal polynomial
of γ in K ↪→ F .

From the proof of the previous lemma, we can restate our result as follows:

Remark 33 Let σ be the minimum integer such that the identity (K ⊗∆) ∩ (K ⊗Ai) =
(K ⊗ ∆i+σ) ∩ (K ⊗ Ai) holds for every i ∈ N. Then, there is a minimal polynomial
M ∈ k[Y [s+σ−1],W [s+σ]][T [s]] such that M(γ, . . . , γ(s)) ∈ ∆s+σ. Note that σ ≤ n + r (see
proof of Lemma 32) and s ≤ n + r (see Proposition 2).

Lemma 32 enables us to characterize a minimal polynomial of a primitive element as
any defining equation of an algebraic variety and thus, to estimate its degree.

In the sequel, unless otherwise stated, we will consider affine spaces over the field k̄
equipped with their Zariski topologies over k, which will be denoted simply by A.

Notation 34 Let N1 := r(2n + 2r) + (n + m)(2n + 2r + 1) and let V ⊂ AN1 be the
irreducible variety defined by the ideal ∆2n+2r ⊂ A2n+2r (see Remark 7).

Arbitrary points of the corresponding affine spaces will be denoted by

y := (y1, . . . , yr, . . . , y
(2n+2r−1)
1 , . . . , y

(2n+2r−1)
r ) ∈ Ar(2n+2r)

w := (w1, . . . , wm−r, . . . , w
(2n+2r)
1 , . . . , w

(2n+2r)
m−r ) ∈ A(m−r)(2n+2r+1)

x := (x1, . . . , xn, . . . , x
(2n+2r)
1 , . . . , x

(2n+2r)
n ) ∈ An(2n+2r+1)

ū := (ū1, . . . , ūr, . . . , ū
(2n+2r)
1 , . . . , ū

(2n+2r)
r ) ∈ Ar(2n+2r+1)

(5)
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Let N2 := r(2n+2r)+(m−r)(2n+2r+1)+s+1 and consider the linear map π : V → AN2

defined by π(y, w, x, ū) = (y, w, γ(x, ū), . . . , γ(s)(x, ū)), where, for l = 0, . . . , s,

γ(l) =
l∑

k=0

(
l

k

)
(

n∑
i=1

λ
(k)
i X

(l−k)
i +

r∑
j=1

λ
(k)
n+j Ū

(l−k)
j ). (6)

Proposition 35 The Zariski closure π(V) is an irreducible hypersurface in AN2, and
any irreducible polynomial M ∈ k[Y [2n+2r−1],W [2n+2r], T [s]] defining π(V) is a minimal
polynomial of γ in the differential extension k〈Y, W 〉 ↪→ F .

Proof. Since V is an irreducible subvariety of AN1 , the Zariski closure π(V) is an irre-
ducible subvariety of AN2 .

In order to prove that it is a hypersurface, let us observe first that if a non-zero
polynomial P ∈ k[Y [2n+2r−1],W [2n+2r], T [s−1]] vanishes over π(V), then P (γ, . . . , γ(s−1)) =
0 in F , contradicting the algebraic independence of γ, . . . , γ(s−1) in k〈Y, W 〉 ↪→ F (recall
that ∆ ∩ k{Y, W} = 0). This implies that π(V) has codimension at most 1. On the other
hand, due to Lemma 32, there is a non-zero polynomial M ∈ k[Y [2n+2r−1],W [2n+2r]][T [s]]
such that M(γ, . . . , γ(s)) ∈ ∆2n+2r. Then, π(V) ⊂ {M = 0} and so, its codimension is at
least 1.

It is clear that any irreducible polynomial defining π(V) is a minimal polynomial of γ
in k〈Y, W 〉 ↪→ F .

Using [16, Lemma 2 and Theorem 1], we obtain an upper bound on the degree of the
minimal polynomial given by the previous proposition:

Theorem 36 Let γ = λ1X1 + · · ·+λnXn +λn+1Ū1 + · · ·+λn+rŪr be a primitive element
of the differential field extension k〈Y, W 〉 ↪→ F . Then, there is a minimal polynomial
M ∈ k[Y [2n+2r−1],W [2n+2r], T [s]] of γ with total degree bounded by deg(V). In particular,
if d := max{deg(fi), deg(gj); 1 ≤ i ≤ n, 1 ≤ j ≤ r}, due to the Bezout inequality, we have
deg(M) ≤ d2(n+r)2.

Following Remark 33, we are able to give a more precise degree upper bound for a
minimal polynomial of a primitive element as in the previous theorem:

Remark 37 If Vs+σ denotes the variety defined by the ideal ∆s+σ, there is a minimal
polynomial M ∈ k[Y [s+σ−1],W [s+σ], T [s]] with deg(M) ≤ deg(Vs+σ) ≤ d(n+r)(s+σ).

The following example proves that the upper bounds stated in our previous results are
optimal. In addition, it shows that for certain particular systems, our geometric upper
bounds may be considerably smaller than the syntactic single exponential ones.

Example 38 Let us consider the following system over the differential field k = Q(t):
Ẋ1 = X2

1

Ẋ2 = X2
1

...
...

...
Ẋn = X2

1

.
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Here, r = m = 0. It is easy to see that s = ordk(∆) = n and that ∆ ∩ Ai = ∆i for every
i ∈ N (and so, σ = 0). On the other hand, the degree of the variety Vn defined by the
ideal ∆n is n + 1. Therefore, Remark 37 implies that any linear primitive element γ has
a minimal polynomial M ∈ k[T [n]] with deg(M) ≤ deg(Vn) = n + 1.

Actually, it is not too difficult to show that γ := X2 + tX3 + · · ·+ tn−2Xn is a primitive
element of k ↪→ Frac(k{X}/∆) and that if Q := 1 + t + · · ·+ tn−2,

M := −nn
(
T (n−1)

)n+1
+

n−2∑
j=0

(n− 1)!
j!

Q(j)
(
nT (n−1)

)j
(T (n))n−j

is a minimal polynomial of γ. Let us observe that ord(M) = n = ordk(∆) and deg(M) =
n + 1 = deg(Vn).

5.3 The Minimal Polynomial of a Generic Primitive Element

The algorithm we will present in Section 6 for the computation of a resolvent representation
follows closely Seidenberg’s proof of Theorem 29 relying on a construction based on the
minimal polynomial of a generic primitive element. For this reason, we will need estimates
for the order and degree of this polynomial also in the variables corresponding to the
coefficients of this generic primitive element.

Let Λ := {Λ1, . . . ,Λn+r} be a set of new differential indeterminates over k. We change
our base field k by kΛ := k〈Λ〉. Let ∆Λ ⊂ kΛ{Y, X,U} be the differential ideal generated
by the differential polynomials F,G and let FΛ := F〈Λ〉, which is the fraction field of
kΛ{Y, X,U}/∆Λ. The differential transcendence basis W of k〈Y 〉 ↪→ F continues to be a
differential transcendence basis of kΛ〈Y 〉 ↪→ FΛ and so, by considering KΛ := kΛ〈Y, W 〉, we
obtain a differential field extension KΛ ↪→ FΛ which is finite and differentially algebraic.
Furthermore, FΛ is the fraction field of KΛ{X, Ū}/KΛ ⊗ ∆Λ, and the class in FΛ of
Γ := Λ1X1 + · · · + ΛnXn + Λn+1Ū1 + · · · + Λn+rŪr ∈ kΛ[X, Ū ] is a primitive element of
KΛ ↪→ FΛ (see the proof of Theorem 29).

Due to Proposition 30, {Γ, . . . ,Γ(s−1)} is a transcendence basis of KΛ ↪→ FΛ, where
s = ordKΛ

(KΛ ⊗ ∆Λ) = ordK(K ⊗ ∆), and FΛ coincides with the fraction field of
KΛ ⊗An+r/(KΛ ⊗∆Λ) ∩ (KΛ ⊗An+r). Thus, Lemma 32 ensures the existence of a mini-
mal polynomial MΛ of Γ in KΛ ↪→ FΛ, such that MΛ ∈ kΛ[Y [2n+2r−1],W [2n+2r]][T [s]] and
MΛ(Γ, . . . ,Γ(s)) ∈ (∆Λ)2n+2r := (F [2n+2r−1], G[2n+2r−1]) ⊂ kΛ[Y [2n+2r−1], X [2n+2r], U [2n+2r]].
Finally, Theorem 36 states that such a minimal polynomial MΛ can be chosen with to-
tal degree bounded by the degree of the variety defined by the ideal (∆Λ)2n+2r in the
corresponding affine space over an algebraic closure of kΛ.

Moreover, with the same arguments of specialization as in the proof of Lemma 32, the
following result concerning the order in the variables Λ of a minimal polynomial MΛ of Γ
can be proved:

Proposition 39 There is a minimal polynomial MΛ of the generic primitive element Γ of
the extension KΛ ↪→ FΛ satisfying the degree upper bound of Theorem 36 in the variables
Y [2n+2r−1], W [2n+2r], T [s], such that MΛ ∈ k[Λ[s], Y [2n+2r−1],W [2n+2r]][T [s]] is irreducible,
and MΛ(Γ, . . . ,Γ(s)) ∈ (F [2n+2r−1], G[2n+2r−1]) ⊂ k[Λ[s], Y [2n+2r−1], X [2n+2r], U [2n+2r]].
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As in the previous subsection, we will show that the polynomial MΛ can be seen as an
eliminating polynomial, which will enable us to give an upper bound on its degree.

Let N1 and N2 be as before and let VΛ ⊂ AN1(k(Λ[s])) be the irreducible variety defined
by the polynomials F [2n+2r−1], G[2n+2r−1]. Consider the linear map π : VΛ → AN2(k(Λ[s]))
defined by π(y, w, x, ū) = (y, w, Γ(x, ū), . . . ,Γ(s)(x, ū)).

Then, from Proposition 39, we deduce the following analogue of Proposition 35:

Proposition 40 The Zariski closure π(VΛ) ⊂ AN2(k(Λ[s])) is an irreducible hypersurface,
and any irreducible polynomial MΛ ∈ k(Λ[s])[Y [2n+2r−1],W [2n+2r], T [s]] defining π(VΛ) is
a minimal polynomial of Γ in KΛ ↪→ FΛ.

Now we will obtain an upper bound for the total degree of a minimal polynomial of
the generic primitive element Γ.

Theorem 41 Let MΛ ∈ k[Λ[s], Y [2n+2r−1],W [2n+2r], T [s]] be as in Proposition 39 and let
V ⊂ AN1 be the algebraic variety introduced in Notation 34. Then, the total degree of MΛ

is bounded by (n + 1 + m(2n + 2r + 1)) deg(V).

Proof. First, let us observe that {Y [2n+2r−1],W [2n+2r],Γ[s−1]} is an algebraically in-
dependent set in kΛ ↪→ Frac(kΛ ⊗ A2n+2r/(∆Λ)2n+2r), which is a field extension with
transcendence degree equal to n + m(2n + 2r + 1) (see Remark 7). Then, there is a set
E ⊂ {X, Ū [2n+2r]} with n + r − s elements such that {Y [2n+2r−1],W [2n+2r],Γ[s−1], E} is a
transcendence basis of this extension.

Throughout the proof, we will use the notation η := (y, w, x, ū) for the elements of
AN1 (keeping the notation introduced in (5)), and λ := (λ1, . . . , λn+r, . . . , λ

(s)
1 , . . . , λ

(s)
n+r)

for the elements of the affine space A(n+r)(s+1).
Let N0 := n + 1 + m(2n + 2r + 1), and let π1 : A(n+r)(s+1) × AN1 → A(n+r)(s+1) ×

AN0 be the (non-linear) map defined by π1(λ, η) = (λ, y, w, Γ(λ, x, ū), . . . ,Γ(s)(λ, x, ū), e).
Consider the irreducible variety V1 := A(n+r)(s+1) × V ⊂ A(n+r)(s+1) × AN1 .

Notice that {Λ[s], Y [2n+2r−1],W [2n+2r],Γ[s−1], E} is a transcendence basis of k(V1) over
k. This implies that π1(V1) is a hypersurface in A(n+r)(s+1)×AN0 . On the other hand, it is
straightforward to check that a minimal polynomial MΛ ∈ k[Λ[s], Y [2n+2r−1],W [2n+2r], T [s]]
as in Proposition 39 vanishes over π1(V1), and so, π1(V1) ⊂ {MΛ = 0}. We conclude
that π1(V1) = {MΛ = 0}, both varieties being irreducible hypersurfaces. Therefore,
deg(MΛ) = deg(π1(V1)).

In order to estimate deg(π1(V1)), we will give an alternative description of π1(V1).
First, let us observe that dim(V) = N0 − 1.

For i = 1, . . . , N0, let Ci be a set of N1 + 1 new variables indexed by Y [2n+2r−1],
W [2n+2r], X [2n+2r], Ū [2n+2r] and 0 which stand for the coefficients of a generic affine linear
form Li in these variables (Ci0 corresponds to the constant term of Li). Consider the map
φ : A(N1+1)N0 × V → A(N1+1)N0 × AN0 defined by φ(c, η) = (c, L1(c1, η), . . . , LN0(cN0 , η)),
where c := (c1, . . . , cN0).

The Zariski closure of φ(A(N1+1)N0 × V) is a hypersurface in A(N1+1)N0 × AN0 , which
is defined by a multihomogeneous polynomial of degree deg(V) in each group of variables
Ci for i = 1, . . . , N0 (see [23, Section 2.3.1]). Thus, deg(φ(A(N1+1)N0 × V)) = N0 deg(V).
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We will show that the variety π1(V1) can be obtained as a linear projection of the
intersection of φ(A(N1+1)N0 × V) with a linear variety.

First, we define a linear variety L ⊂ A(N1+1)N0 whose points correspond to the coeffi-
cient vectors of families of linear forms of type Y [2n+2r−1],W [2n+2r], γ[s], E; that is, a point
c is in L if and only if its first coordinates are the coefficient vectors of the linear forms
Y [2n+2r−1],W [2n+2r], its last coordinates are the coefficients of the linear forms E, and the
remaining ones are the coefficients of γ, γ̇, . . . , γ(s) for the derivatives γ(l) of some linear
form as in (6). Set i0 := r(2n+2r)+(m− r)(2n+2r +1), i1 := i0 + s+1. Identifying Λ(l)

with Ci0+1+l,{X,Ū} for l = 0, . . . , s, the variety L can be defined by means of the following
equations (where ε1, . . . , εN1+1 denote the vectors of the canonical basis of kN1+1):

• For i = 1, . . . , i0: Ci = εi.

• For i = i0 + 1, . . . , i1: Ci,Y [2n+2r−1] = Ci,W [2n+2r] = 0, Ci,{X,Ū}(j) = 0 for j ≥ i − i0,
Ci,{X,Ū}(j) =

(
i−i0−1

j

)
Ci−j,{X,Ū}(0) for j < i− i0 (see Identity (6)).

• For i = i1 + 1, . . . , N0: Ci := εji−i1
, where εjk

is the vector of the canonical basis
corresponding to the coefficient vector of Ek for k = 1, . . . , n + r − s.

Let πΛ : A(N1+1)N0 × AN0 → A(n+r)(s+1) × AN0 be the linear projection defined by
πΛ(c, b) = (ci0+1,{X,Ū}, . . . , ci1,{X,Ū}, b).

Then, we have the following equality πΛ

(
φ(A(N1+1)N0 × V) ∩ (L× AN0)

)
= π1(V1).

Taking into account that the degree of a variety does not increase when intersecting
it with an affine linear space [16, Remark 2] or under a linear projection [16, Lemma
2], we conclude that deg(MΛ) = deg(π1(V1)) ≤ deg(φ(A(N1+1)N0 × V) ∩ (L × AN0)) ≤
deg(φ(A(N1+1)N0 × V)) = (n + 1 + m(2n + 2r + 1)) deg(V).

5.4 The Resolvent Representation

In this subsection we deduce some results concerning the choice of a primitive element of
the extension K ↪→ F (see Subsection 5.2) and the order and degrees of the polynomials
involved in a resolvent representation of the prime differential ideal ∆.

Let MΛ ∈ k[Λ[s], Y [2n+2r−1],W [2n+2r]][T [s]] be a minimal (irreducible) polynomial of
the generic primitive element Γ = Λ1X1+· · ·+ΛnXn+Λn+1Ū1+· · ·+Λn+rŪr of KΛ ↪→ FΛ

as in Proposition 39. Let us observe that the polynomial X appearing in the proof of The-
orem 29 can be taken as X = MΛ. Since QΛ := ∂MΛ

∂T (s) (Γ, . . . ,Γ(s)) is a polynomial in
k[Λ[s], Y [2n+2r−1], X [2n+2r], U [2n+2r]] which is a non-zero element in FΛ, the proof of The-
orem 29 provides a resolvent representation of the ideal KΛ⊗∆ by computing the partial
derivatives of MΛ(Γ, . . . ,Γ(s)) with respect to Λ(s)

i for i = 1, . . . , n + r (see condition (4)
in that proof). In particular, all the polynomials involved in this resolvent representation
are elements of k[Λ[s], Y [2n+2r−1],W [2n+2r], T [s]] and have degrees bounded by that of MΛ.

In addition, the proof of that theorem shows that a sufficient condition for an element
γ = λ1X1 + · · ·+ λnXn + λn+1Ū1 + · · ·+ λn+rŪr to be a primitive element of K ↪→ F is
the non-vanishing in F of the specialization of the differential polynomial QΛ ∈ F{Λ} at
(λ1, . . . , λn+r). As the order of QΛ in the variables Λ is bounded by s, the arguments in
the proof of [28, Ch. 2, §22] imply:
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Corollary 42 Let ξ ∈ k ⊂ K be a non-constant element. There exists a primitive element
γ of the extension K ↪→ F of type γ = λ1X1 + · · ·+ λnXn + λn+1Ū1 + · · ·+ λn+rŪr where
λi ∈ Q[ξ] is a polynomial of degree bounded by s = ordK(K ⊗∆) for i = 1, . . . , n + r.

Now, let λ := (λ1, . . . , λn+r) be an (n + r)-tuple with QΛ(λ) 6= 0 in F . Then, by
considering a minimal polynomial M of γ := Γ(λ) as in Proposition 35 and specializing
the differential variables Λ into λ in the polynomials Q := ∂MΛ

∂T (s) (T, . . . , T (s)) ∈ K{Λ, T}
and Pi := − ∂MΛ

∂Λ
(s)
i

(T, . . . , T (s)) ∈ K{Λ, T} appearing in the generic resolvent representation,

we obtain a resolvent representation of the ideal ∆ with respect to the transcendence basis
Y, W and the primitive element γ. We conclude:

Theorem 43 There is a resolvent representation {M, q X1−p1, . . . , q Xn−pn, q Ū1−pn+1,
. . . , q Ūr − pn+r} of the prime differential ideal ∆ with respect to the transcendence basis
Y, W and a primitive element γ = λ1X1 + · · ·λnXn + λn+1Ū1 + · · · + λn+rŪr of the
differential field extension k〈Y, W 〉 ↪→ F satisfying: M, q, pi ∈ k[Y [2n+2r−1],W [2n+2r], T [s]]
for i = 1, . . . , n + r and their total degrees are bounded by deg(V).

6 Algorithmic Computation of a Resolvent Representation

The main goal of this section is the computation of a resolvent representation of the
differential ideal ∆ associated to system (1) (see Notation 5).

As in Subsection 4.3, we will consider the ground differential field k to be the rational
effective field Q(t) (with the standard derivation). Furthermore, in order to make the
presentation of our algorithm simpler, we will assume that the polynomials defining system
(1) have coefficients in Q. This assumption is not restrictive, since we may replace our
original system over Q[t] by an equivalent one over Q by adding a new differential variable
t and the equation ṫ = 1.

In the previous section we proved that the minimal polynomial of a primitive element
can be seen as an eliminating polynomial of a suitable linear projection in the classical
algebraic geometry context. Now, we will apply some well-known algorithmic techniques
from computer algebra (mainly from [17] and [31]) to the computation of this polynomial.

6.1 Computing the Generic Minimal Polynomial

As in Subsection 5.2, fix a differential transcendence basis W ⊂ U of the field extension
Q(t)〈Y 〉 ↪→ F (see Notation 11), and consider the differentially algebraic field extension
Q(t)〈Y, W 〉 ↪→ F . This transcendence basis W can be obtained by applying the algorithm
underlying Theorem 27. Denote Ū := U \ W and K := Q(t)〈Y, W 〉. We introduce a
new set Λ := {Λ1, . . . ,Λn+r} of differential indeterminates over K and set kΛ := Q(t)〈Λ〉,
∆Λ := [F,G] ⊂ kΛ{Y, X,U}, KΛ := kΛ〈Y, W 〉 and FΛ := F〈Λ〉.

This subsection focuses on the computation of the minimal polynomial MΛ of the
generic primitive element Γ := Λ1X1 + · · ·+ ΛnXn + Λn+1Ū1 + · · ·+ Λn+rŪr in KΛ ↪→ FΛ

satisfying the degree upper bound stated in Theorem 41.
First, we compute s := ordK(K ⊗∆). We point out that, for an arbitrary differential

transcendence basis W , ordQ(t)〈Y,W 〉(Q(t)〈Y, W 〉 ⊗∆) ≤ ordQ(t)〈Y 〉(Q(t)〈Y 〉 ⊗∆), and the
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equality may not hold. The computation of s can be made using the same techniques
as those applied in Section 4 for the computation of the Hilbert function of Q(t)〈Y 〉 ⊗∆
over Q(t)〈Y 〉: taking into account that diffdim(K ⊗∆) = 0, we deduce from Proposition
2 that s = HK⊗∆,K(n + r). In order to compute this Hilbert function value we apply the
following analogue of Lemma 14 that holds in our new framework with a similar proof:
for every i ≥ 0, we have (K ⊗∆) ∩ (K ⊗Ai) = (K ⊗∆i+n+r) ∩ (K ⊗Ai).

Arguing as in the proofs of Proposition 16 and Corollary 22, we obtain:

Proposition 44 Let JW
n+r := ∂{F,G}[n+r, 2n+2r−1]

∂{X, U\W}[n+r+1, 2n+2r] (see Notation 15). Then, the following

identity holds: HK⊗∆, K(n + r) = rank(JW
n+r)− (n + r)(n + r− 1), where the rank is taken

over the polynomial ring Q[t, X,U [2n+2r]].

Let E ⊂ {X, U [2n+2r]} be a set with n+r−s elements such that {Y [2n+2r−1], W [2n+2r],
Γ[s−1], E} is a transcendence basis of the field Frac(kΛ ⊗ A2n+2r/(∆Λ)2n+2r) over kΛ. As
in Notation 34, let N1 = r(2n + 2r) + (n + m)(2n + 2r + 1). Let us consider the variety
V ⊂ A(n+r)(s+1) × AN1 × As defined as

V := {(λ, y, w, x, ū, τ) ∈ A(n+r)(s+1) × AN1 × As : F [2n+2r−1](w, x, ū) = 0,

G[2n+2r−1](y, w, x, ū) = 0,Γ(λ, x, ū) = τ0, . . . ,Γ(s−1)(λ, x, ū) = τs−1},

which is irreducible of dimension µ := (n + r)(s + 1) + m(2n + 2r + 1) + n. We have the
ring inclusion Q[Λ[s], Y [2n+2r−1],W [2n+2r], E, T [s−1]] ↪→ Q[V] and that the cardinality of
the family Λ[s], Y [2n+2r−1], W [2n+2r], E, T [s−1] is µ. Thus, the linear projection π : V → Aµ

defined by π(λ, y, w, x, ū, τ) = (λ, y, w, e, τ) is a dominant map with generically finite fibers.
Let ϕ : V → Aµ×A1 be defined by ϕ(λ, y, w, x, ū, τ) = (π(λ, y, w, x, ū, τ),Γ(s)(λ, x, ū)).

Then, the Zariski closure ϕ(V) is a hypersurface and any square-free polynomial defining
ϕ(V) is a minimal polynomial for the generic primitive element Γ.

We will consider the polynomial equation system defining V as a parametric system,
where the parameters are P := (Λ[s], Y [2n+2r−1],W [2n+2r], E, T [s−1]) and the variables –
the set of which will be denoted Z in the sequel– are those variables in X [2n+2r], Ū [2n+2r]

that are not in the set of variables E. Thus, we obtain a polynomial system with
2(n + r)2 + s equations in 2(n + r)2 + s unknowns defining a zero-dimensional vari-
ety VK over the algebraic closure K of K := Q(P ). Let us observe that the ideals
I := (F [2n+2r−1], G[2n+2r−1],Γ−T, . . . , Γ(s−1)−T (s−1)) ⊂ Q[P,Z] and IK := K⊗I ⊂ K[Z]
are the (prime) ideals of the varieties V and VK respectively.

The following result relates the minimal polynomial MΛ we want to compute to the
minimal polynomial of a K-linear map.

Lemma 45 Let mΓ(s) : K[Z]/IK → K[Z]/IK be the K-linear map defined as mΓ(s)(f) =
Γ(s) ·f and let M0 ∈ K[T (s)] be its minimal polynomial. Then, there exists Q0 ∈ Q[P ]−{0}
such that MΛ = Q0 ·M0.

Proof. First, let us observe that MΛ(Γ(s)) ∈ I and so, MΛ(Γ(s)) ∈ IK. Therefore,
M0 divides MΛ in Q(P )[T (s)]. On the other hand, since M0(Γ(s)) ∈ IK, there exists
Q ∈ Q[P ] − {0} with Q · M0(Γ(s)) ∈ I. Then, the fact that MΛ is the polynomial with
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minimal degree in Q[P, T (s)] satisfying MΛ(Γ(s)) ∈ I implies that MΛ divides Q · M0 in
Q[P, T (s)]. The lemma follows now from the irreducibility of MΛ and the fact that M0 is
a monic polynomial.

Since IK is a zero-dimensional prime ideal of K[Z], its extension IK to K[Z] is a
zero-dimensional radical ideal. Then, the linear map mΓ(s) : K[Z]/IK → K[Z]/IK is
diagonalizable and its characteristic polynomial is X :=

∏D
i=1(T

(s) − Γ(s)(Ri)) ∈ K[T (s)],

where D := deg(VK) and R1, . . . ,RD ∈ K2(n+r)2+s denote the points in VK. Therefore,
the minimal polynomial M0 of mΓ(s) can be obtained as the square-free part of X .

Our algorithm for the computation of the polynomial MΛ is based on an extension
of the results in [17] (which hold for a finite morphism) to the case of a dominant map,
which is achieved by using the techniques described in [31].

Proposition 46 With the same notation as before, assume that f1, . . . , fn ∈ Q[X, U ],
g1, . . . , gr ∈ Q[X, U, U̇ ] have degrees bounded by d and are encoded by an slp of length
L. Then, there is a probabilistic algorithm which computes the minimal polynomial of
the generic primitive element Γ in KΛ ↪→ FΛ with error probability bounded by ε, with
0 < ε < 1, within complexity O(log(1/ε)(n + r)20(n + m)6d2 deg(V)10L), where V is the
algebraic variety introduced in Notation 34.

Proof. First, we present a sketch of the algorithm:

(1) Take a point p ∈ Qµ at random and compute a geometric resolution of π−1(p), that
is, a family of 2(n + r)2 + s + 1 univariate polynomials q, v1, . . . , v2(n+r)2+s with
coefficients in Q(P ) such that π−1(p) = {p}×{(v1(ζ), . . . , v2(n+r)2+s(ζ)), q(ζ) = 0}.

(2) Applying a symbolic version of Newton’s algorithm to the geometric resolution, com-
pute a polynomial Xκ ∈ Q(P )[T (s)] whose coefficients approximate the coefficients
of the polynomial X as power series in Q̄[[P − p]] with prescribed precision 2κ for a
suitably chosen κ ∈ N.

(3) Compute a polynomial Υκ ∈ Q(P )[T (s)] whose coefficients approximate the coeffi-
cients of the square-free polynomial red(X ) := X

gcd(X , ∂X/∂T (s))
∈ Q(P )[T (s)] with

precision 2κ in Q[[P − p]].

(4) By means of a Padé approximation type procedure, compute relatively prime polyno-
mials Π1 and Π2 in Q[P, T (s)] such that red(X ) = Π1/Π2. The minimal polynomial
MΛ ∈ Q[P, T (s)] is the numerator Π1.

Now, we detail the procedures underlying each of the above mentioned steps of the
algorithm, compute their complexities and estimate their error probability.

The first step of the algorithm consists in the computation of a geometric resolution
of a fiber π−1(p) for a randomly chosen point p ∈ Qµ. This point is chosen at random so
that with high probability the fiber π−1(p) is zero-dimensional and unramified. In order
to compute the geometric resolution of π−1(p), we apply the procedure for the resolution
of zero-dimensional systems described in [18], which takes a reduced regular sequence as
input (alternatively, this first step could be achieved by means of any algorithm solving
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zero-dimensional algebraic systems). We will also need the following technical assumption
on the point p: #{Γ(s)(η) : η ∈ π−1(p)} = #{Γ(s)(R) : R ∈ VK} (or, equivalently, the
polynomial MΛ(p) is square-free). Both these conditions also hold for a generic p ∈ Aµ.
Moreover, there is a non-zero polynomial H0 ∈ Q[P ] of degree bounded by 6d4(n+r)2+2s

such that all the previous conditions hold for any point p ∈ Aµ with H0(p) 6= 0 (see [31,
Section 3.4]). Thus, if we choose the coordinates of p at random in a set of cardinality
12 d4(n+r)2+2s[1/ε], the conditions hold with error probability bounded by ε/2. These
random choices can be made within complexity O((n + r)2 log(d) + log(1/ε)).

Recall that the polynomials F [2n+2r−1], G[2n+2r−1] can be encoded by slp’s of length
O((n + r)3(n + m)L) (see Lemma 21). Assume that the randomly chosen point p ∈ Aµ

satisfies all the genericity conditions stated above. Then, if δ is the maximum of the degrees
of the varieties successively defined by the equations of π−1(p), a geometric resolution
of π−1(p) can be computed with error probability bounded by ε/4 within complexity
O(log(1/ε)(n+m)(n+ r)10d δ4L) (see [18, Theorem 1]). Let us observe that δ is bounded
by the maximum of the degrees of the varieties successively defined by the ideals pi,s, qi,l

for 1 ≤ i ≤ 2n + 2r, 1 ≤ s ≤ n, 1 ≤ l ≤ r, introduced in Remark 7. It is easy to see that
the degrees of these varieties form a non-decreasing sequence and so, their maximum is
the degree of the last variety. Therefore, δ ≤ deg(V), and the complexity of step (1) can
be estimated as O(log(1/ε)(n + m)(n + r)10d deg(V)4L).

Denote q, v1, . . . , v2(n+r)2+s ∈ Q[T ] the polynomials appearing in the geometric reso-
lution of π−1(p). Let S := (F [2n+2r−1], G[2n+2r−1],Γ − T (0), . . . ,Γ(s−1) − T (s−1)) be the
polynomial system defining V. Let DS(Z) be the Jacobian matrix of S with respect to
the variables Z and let JS be its Jacobian determinant.

Our assumptions on p ∈ Aµ state that the fiber π−1(p) is a zero-dimensional variety
with exactly D = deg(VK) points and that, for every η ∈ π−1(p), we have JS(p, η) 6= 0.
Then, by the implicit function theorem (see, for instance, [17, Lemma 3] for a proof
in this context), for every η ∈ π−1(p) there exists Rη ∈ Q̄[[P − p]]2(n+r)2+s such that
Rη ∈ VK and Rη(p) = η. This implies that {Rη : η ∈ π−1(p)} = VK, since both sets
have the same cardinality. Moreover, the proof of [17, Lemma 3] shows that, for every
η ∈ π−1(p), the corresponding point Rη ∈ Q̄[[P − p]]2(n+r)2+s can be ‘approximated’ by
applying successively to η the Newton operator associated to the system S, defined as
NS(Z)t := Zt −DS(Z)−1S(Z)t.

If Nκ
S denotes the κth iteration of NS and (P − p) is the maximal ideal of Q̄[[P − p]],

we have that Nκ
S (η) ∈ Q̄[[P − p]]2(n+r)2+s and (Rη)i − (Nκ

S (η))i ∈ (P − p)2
κ

for i =
1, . . . , 2(n+r)2+s, that is, the ith coordinate of Nκ

S (η) approximates with precision 2κ the
ith coordinate of Rη in the sense that their power series expansions coincide up to degree
2κ− 1. We conclude that the coefficients of the polynomial

∏
η∈π−1(p)(T

(s)−Γ(s)(Nκ
S (η)))

approximate the coefficients of X with precision 2κ.
From the algorithmic viewpoint, we cannot apply Newton’s operator to the points

η ∈ π−1(p), since we cannot compute these points. However, we can obtain all the approx-
imations ‘simultaneously’ in order to compute an approximation Xκ of the characteristic
polynomial X by applying it to a geometric resolution of the fiber π−1(p).

Let h0, h1, . . . , h2(n+r)2+s ∈ Q[P,Z] be polynomials with Nκ
S =

(
h1
h0

, . . . ,
h2(n+r)2+s

h0

)
and h0(p, η) 6= 0 for every η ∈ π−1(p). Let v := (v1, . . . , v2(n+r)2+s) and let Cq be
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the companion matrix of the polynomial q. Then, the matrix h0(P, v(Cq)) is invertible
and, if Ni := h0(P, v(Cq))−1hi(P, v(Cq)) for i = 1, . . . , 2(n + r)2 + s, the characteristic
polynomial of Γ(s)(P,N1, . . . ,N2(n+r)2+s) equals

∏
η∈π−1(p)(T

(s) − Γ(s)(Nκ
S (η))) (see [17,

Lemma 6]). In order to approximate this polynomial we first obtain straight-line programs
of length O(κ d2(n + r)17(n + m)L) for the polynomials h0, h1, . . . , h2(n+r)2+s by means of
the procedure underlying [12, Lemma 30] and then we proceed as in [17, Proof of Theorem
2] to obtain a matrix whose entries approximate those of Γ(s)(P,N1, . . . ,N2(n+r)2+s) with
the desired precision, but avoiding matrix inverse computations. Finally, we compute the
characteristic polynomial Xκ of this matrix, whose coefficients approximate the coefficients
of X in Q[[P − p]] with precision 2κ. The overall complexity of this step is O(κ 2κd2(n +
r)17(n + m)D4L), which is also the length of the slp obtained for the coefficients of the
polynomial Xκ.

Now, we describe the procedure to achieve the third step of our algorithm. The
hypothesis #{Γ(s)(η) : η ∈ π−1(p)} = #{Γ(s)(R) : R ∈ VK} ensures that, considering X
and ∂X

∂T (s) as polynomials in the variable T (s), deg(gcd(X , ∂X
∂T (s) )) = deg(gcd(X (p), ∂X (p)

∂T (s) )).
Thus, we can obtain this degree by computing the characteristic polynomial of Γ(s) with
respect to π−1(p) from the geometric resolution of π−1(p) and subresultants of X (p) and
∂X (p)

∂T (s) within complexity O(D5) (see, for instance, [1, Section 8.3]). By [1, Corollary 10.14],
once this degree is known, the coefficients of a scalar multiple Υ of red(X ) can be obtained
by computing determinants of square submatrices of the Sylvester matrix of X and X ′,
and, making the same computations with the Sylvester matrix of X (p), the polynomial
Υ(p) is obtained. Since Υ and Υ(p) have the same degree, we conclude that the scalar
factor is an invertible element of Q[[P−p]]. Note that the previous procedure involves only
polynomial computations in the coefficients of X . Then, we apply it to the polynomial Xκ

instead of X to obtain a polynomial Υκ whose coefficients approximate the coefficients of
Υ with precision 2κ. The complexity of this computation does not increase the order of
the complexity of the previous steps.

In order to compute the polynomials Π1 and Π2 of step (4), we apply a slightly modified
version of the multivariate Padé approximation procedure described in [31, Section 4.3.1],
adapted to deal with the straight-line program encoding of polynomials. In fact, our
main change consists in replacing the Euclidean extended algorithm with subresultant
computations (see [11, Section 5.9 and Corollary 6.49]). Note that the upper bound on
the degree of the polynomial MΛ proved in Theorem 41 implies that the total degrees of
the polynomials Π1 and Π2 are bounded by (n + 1 + m(2n + 2r + 1)) deg(V). Therefore,
they can be computed from the Taylor expansion centered at P = p, T (s) = 0 of red(X ) up
to degree 2(n+1+m(2n+2r +1)) deg(V), which can be obtained from the corresponding
Taylor expansion of Υκ divided by its leading coefficient provided that κ ≥ dlog(2(n+1+
m(2n + 2r + 1)) deg(V))e + 1. Then, the input for the Padé approximation procedure is
the set of graded parts up to the required degree of Υκ divided by its leading coefficient,
which is computed within complexity O((n + r)20(n + m)4d2 deg(V)2D4L).

The complexity of the entire step (4) is O(log(1/ε)(n + r)20(n + m)6d2 deg(V)6D4L)
and its output is an slp of length O((n + r)20(n + m)6d2 deg(V)6D4L) encoding Π1 and
Π2 with error probability bounded by ε/2 provided that the previous computations are
correct.
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The announced complexity bound for the whole procedure follows by adding up the
complexities of steps (1) to (4) and taking into account that D ≤ deg(V).

6.2 Computation of a Primitive Element

In what follows we show how to compute a primitive element of the differential field
extension induced by system (1) with respect to a fixed differential transcendence basis
within complexity polynomial in n, m, r, d, deg(V) and linear in L. The procedure follows
closely the arguments in Subsection 5.4. We keep our previous assumptions and notations.

Let MΛ ∈ Q[Λ[s], Y [2n+2r−1],W [2n+2r], T [s]] be the minimal polynomial of the generic
linear form Γ = Λ1X1+· · ·+ΛnXn+Λn+1Ū1+· · ·+Λn+rŪr in the differential field extension
KΛ ↪→ FΛ, and let QΛ := ∂MΛ

∂T (s) (Γ, . . . ,Γ(s)) ∈ Q[Λ[s], Y [2n+2r−1], X [2n+2r], U [2n+2r]]. As
explained in Subsection 5.4, in order for a linear form γ = λ1X1+· · ·+λnXn+λn+1Ū1+· · ·+
λn+rŪr to be a primitive element, it suffices that QΛ(λ1, . . . , λn+r) 6= 0 in F . Furthermore,
for every 1 ≤ i ≤ n + r, λi can be chosen to be a polynomial in Q[t] of degree bounded by
s.

For i = 1, . . . , n+r, let Aij (0 ≤ j ≤ s) be new indeterminates which stand for the coef-
ficients of a generic polynomial

∑s
j=0

Aij

j! tj of degree s. Set A := {Aij : 1 ≤ i ≤ n+ r, 0 ≤
j ≤ s}. If we substitute the variables Λi (1 ≤ i ≤ n + r) in the polynomial QΛ by these
generic polynomials, we obtain a new polynomial Q0 ∈ Q[t, A][Y [2n+2r−1], X [2n+2r], U [2n+2r]]
with the property that, for any specialization of the variables A in a set of rational num-
bers a := (aij) with Q0(a) 6= 0 in F , the polynomials λi :=

∑s
j=0

aij

j! tj are the coefficients
of a primitive element of the field extension K ↪→ F .

Let us observe that substituting t = 0 in Q0 has the same effect as renaming Λ(j)
i = Aij

in QΛ. This implies that any family of rational numbers a with QΛ(a) 6= 0 in F yields
a primitive element of the extension K ↪→ F . The procedure to test the non-vanishing
of QΛ in F relies on the isomorphism F ' Q(t)(X, U [2n+2r]): we substitute X

(l)
h = f̃

(l−1)
h

(1 ≤ h ≤ n, 1 ≤ l ≤ 2n + 2r) and Y
(k)
j = g̃

(k)
j (1 ≤ j ≤ r, 0 ≤ k ≤ 2n + 2r − 1)

in the polynomial QΛ to obtain a new polynomial Q̃Λ (see Notation 6), and we look
for a tuple (a, x, u[2n+2r]) of rational numbers that does not annihilate Q̃Λ (this is done
probabilistically by choosing their coordinates at random). The vector a of the first
coordinates of this tuple yields the desired primitive element.

Assuming that the polynomial MΛ is given, we obtain the following complexity result:

Proposition 47 Assume that a differential transcendence basis W of the differential field
extension induced by system (1) is fixed and that the minimal polynomial MΛ with respect
to W of the generic primitive element Γ is given by an slp of length L. Then, we can
compute a primitive element of the differential field extension Q(t)〈Y, W 〉 ↪→ F , with
error probability bounded by ε, within complexity O(L+ log(deg(V)/ε)(n + r)4(n + m)L),
where L is the length of an slp encoding f1, . . . , fn, g1, . . . , gr.

Taking into account the complexity estimate for the computation of MΛ stated in
Proposition 46, we can obtain complexity bounds for the probabilistic computation of a
primitive element of the differential extension (see Theorem 48 below).
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6.3 Computing a Resolvent Representation of the System

As it was shown in Proposition 47, a primitive element γ of the differential extension
Q(t)〈Y, W 〉 ↪→ F can be computed algorithmically. Let us observe that specializing the
generic minimal polynomial MΛ into the coefficients λ1, . . . , λn+r ∈ Q[t] of γ, we obtain
a differential polynomial Mλ ∈ Q[t][Y [2n+2r−1],W [2n+2r], T [s]] such that Mλ(γ) = 0 in F
but, unfortunately, this polynomial need not be the minimal polynomial of γ.

However, the arguments in Subsection 5.4 give an algorithmic procedure, based on the
computation of derivatives of MΛ and specialization, to compute polynomials q, p1, . . . , pn+r

in Q[t][Y [2n+2r−1],W [2n+2r], T [s]] such that q(γ)Xi − pi(γ) ∈ ∆ for i = 1, . . . , n and
q(γ)Ūj − pn+j(γ) ∈ ∆ for j = 1, . . . , r.

Therefore, in order to obtain a resolvent representation of the ideal ∆ with respect
to the differential transcendence basis Y, W and the primitive element γ, only a minimal
polynomial of γ remains to be computed. This can be achieved using the algorithm
described in the previous subsections for the computation of the minimal polynomial of a
generic primitive element within the same complexity.

Combining this procedure with Theorem 27 and Propositions 46 and 47, we deduce
our main result:

Theorem 48 Let f1, . . . , fn ∈ Q[t][X, U ], g1, . . . , gr ∈ Q[t][X, U, U̇ ] polynomials with de-
grees bounded by d and encoded by an slp of length L. Let ∆ be the differential ideal
associated with system (1) and let V be the algebraic variety defined by ∆2n+2r introduced
in Notation 34. Then, there is a probabilistic algorithm which computes:

• a differential transcendence basis W of Q(t)〈Y 〉 ↪→ Frac(Q(t){Y, X,U}/∆),

• a primitive element γ of Q(t)〈Y, W 〉 ↪→ Frac(Q(t){Y, X,U}/∆),

• a resolvent representation of the differential ideal ∆ with respect to the differential
transcendence basis Y, W and the primitive element γ,

with error probability bounded by ε, 0 < ε < 1, within complexity O(log(1/ε)(n + r)20(n +
m)6d2 deg(V)10L). In particular, the complexity of the algorithm can be estimated as
((n + r)(n + m)d(n+r)2)O(1) log(1/ε)L.

We point out that our complexity upper bound in terms of a geometric invariant
(namely, deg(V)) is more accurate than the one that can be stated using only syntactic
parameters, as illustrated by the system considered in Example 38. In this case, deg(V) =
2n + 1, leading to a polynomial complexity bound for our algorithm. However, the upper
bound 22n2

for this parameter would imply a single exponential complexity bound.

7 Over-determined Differential Systems

In the previous sections, we focused on the computation of a resolvent representation
of the generic differential system (1) under Assumption 4 on the differential algebraic
independence of the polynomials g1, . . . , gr, which played a crucial role in our arguments.
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Now, we will drop that assumption. More precisely, we will consider a differential system
of the form: 

Ẋ1 = f1(X, U)
...

Ẋn = fn(X, U)
Y1 = g1(X, U, U̇)

...
Yρ = gρ(X, U, U̇)

(7)

where f1, . . . , fn ∈ k[X, U ] and g1, . . . gρ ∈ k[X, U, U̇ ] are arbitrary polynomials in the
variables X := {X1, . . . , Xn} and U := {U1, . . . , Um}.

Our aim is to compute an alternative (resolvent-like) representation of system (7). In
order to do this, we will modify the system so that the condition in Assumption 4 is met
and compute a resolvent representation of the modified system together with a family of
additional polynomials giving further information on the original system.

Since most of the proofs in this section are similar to those of the results we have
presented so far, we will not give the details, but we will outline the main ideas involved.

7.1 Independent Equations

Keeping our previous notation (see Section 3), let Fi := fi − Ẋi ∈ k[X, Ẋ, U ] for i =
1, . . . , n, and Gj := gj − Yj ∈ k[Y, X,U, U̇ ] for j = 1, . . . , ρ.

Let Ω ⊂ k{Y, X,U} be the differential ideal [F1, . . . , Fn, G1, . . . , Gρ]. For every l ∈ N,
let Al := k[Y [l−1], X [l], U [l]] and Ωl := (F [l−1], G[l−1]) ⊂ Al.

The following analogues of Remark 7, Proposition 12 and Remark 13 hold in this
context:

Remark 49 For every l ∈ N, the ideal Ωl ⊂ Al is prime and Al/Ωl ' k[X, U [l]]. The
differential ideal Ω is prime and k{Y, X,U}/Ω ' k[X]{U} with the derivation induced by
Ẋj = fj(X, U). Moreover, diffdim(Ω) = m and ordk(Ω) ≤ n + ρ.

The fact that the ideal Ω might contain a non-zero polynomial involving only the
variables Y1, . . . , Yρ (since Assumption 4 is no longer valid) prevents us from consid-
ering these variables as being part of a differential transcendence basis of k ↪→ G :=
Frac(k{Y, X,U}/Ω). Now we will show how to obtain a maximal differentially indepen-
dent subset of the set {Y1, . . . , Yρ}.

In order to turn to a non-differential situation we will use the following technical result
whose proof is straightforward: for every positive integer l, we have Ω ∩Al = Ωl.

Now, following the proof of Proposition 18, we are able to derive an algebraic condition
for a set Y ⊂ {Y1, . . . , Yρ} to be differentially algebraically independent in the differential
extension k ↪→ G:

Proposition 50 The set Y ⊂ {Y1, . . . , Yρ} is differentially algebraically independent in
k ↪→ G if and only Y [n+ρ] is algebraically independent in An+ρ+1/Ωn+ρ+1 over k.
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Combining this proposition with Lemma 19, we deduce the following algorithmic cri-
terion:

Proposition 51 Let J0 be the Jacobian matrix J0 :=
(

∂{F,G}[n+ρ]

∂{X, U}[n+ρ+1]

∣∣∣ ∂{F,G}[n+ρ]

∂Y [n+ρ]

)
.

Then, Y ⊂ {Y1, . . . , Yρ} is a differentially algebraically independent set in k ↪→ G if and
only if the columns of J0 corresponding to derivatives with respect to variables in Y [n+ρ]

can be removed with no change in rank. Here, the ranks are taken over the polynomial
ring k[X, U [n+ρ]] ' k[Y [n+ρ], X [n+ρ+1], U [n+ρ+1]]/(F [n+ρ], G[n+ρ]).

In the case when k = Q(t), this result enables us to obtain a maximal differentially
algebraically independent subset Y ⊂ {Y1, . . . , Yρ} by means of a probabilistic recursive
procedure (similar to the algorithm underlying the proof of Theorem 27) within complex-
ity polynomial in the number of variables and equations, and linear in the logarithm of
the maximum degree of the input polynomials and the length of a straight-line program
encoding them.

7.2 Extended Resolvent Representation

In the sequel, we will assume that a maximal differentially algebraically independent subset
Y ⊂ {Y1, . . . , Yρ} in k ↪→ G has been chosen. In order to simplify notations, will assume
that this set is Y = {Y1, . . . , Yr}.

The differential equation system obtained by removing from system (7) the equations
corresponding to Yr+1, . . . , Yρ satisfies Assumption 4 and so, it can be characterized by
means of a resolvent representation as shown in Sections 5 and 6.

Furthermore, for j = r + 1, . . . , ρ, there is a non-zero polynomial Mj ∈ k{Y}{T}
with Mj(Yj) ∈ Ω. Due to Proposition 50, {Y [n+ρ], Y

[n+ρ]
j } is algebraically dependent in

An+ρ+1/Ωn+ρ+1 and so, we can choose Mj ∈ k[Y [n+ρ]][T [n+ρ]] with Mj(Y [n+ρ], Y
[n+ρ]
r+j ) ∈

Ωn+ρ+1. An irreducible polynomial Mj ∈ k[Y [n+ρ]]{T} of minimal order in the variable T
satisfying the previous condition will be called a minimal polynomial for Yj .

We will be interested in providing a representation of system (7) of the following type:

Definition 52 An extended resolvent representation of system (7) consists of:

• A maximal differentially algebraically independent subset Y ⊂ {Y1, . . . , Yρ} in the
differential extension k ↪→ Frac(k{Y, X,U}/[F1, . . . , Fn, G1, . . . , Gρ]).

• Assuming Y = {Y1, . . . , Yr}, a differential transcendence basis W of the extension
k〈Y〉 ↪→ F := Frac(k{Y, X, U}/[F1, . . . , Fn, G1, . . . , Gr]) and a primitive element γ
of k〈Y,W 〉 ↪→ F .

• A resolvent representation of the ideal [F1, . . . , Fn, G1, . . . , Gr] with respect to the
transcendence basis W and the primitive element γ.

• Minimal polynomials Mr+1, . . . ,Mρ ∈ k{Y}{T} for the variables Yr+1, . . . , Yρ.
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Denote G := {G1, . . . , Gr}. For j = r + 1, . . . , ρ, let Ωj ⊂ k{Y, Yj , X, U} be the differ-
ential ideal [F,G,Gj ] and, for every non-negative integer l, let Ωj

l := (F [l−1], G[l−1], G
[l−1]
j )

be the polynomial ideal defined in k[Y [l−1], X [l], U [l]][Y [l−1]
j ].

Let sj be the minimum non negative integer h such that {Y [n+ρ], Y
[h]
j } is algebraically

dependent in An+ρ+1/Ωn+ρ+1. The fact that for a minimal polynomial for Yj we have
Mj(Y [n+ρ], Y

[sj ]
j ) ∈ Ωn+ρ+1 implies straightforwardly that this polynomial is in Ωj

n+ρ+1,

since it does not depend on the variables Y
(h)
k with k > r, k 6= j. Thus, in order to find

the polynomial Mj it is enough to consider the differential system F = 0, G = 0, Gj = 0
and its associated ideals

Ωj and Ωj
l , l ≥ 0. This implies, in turn, the existence of a minimal polynomial

Mj ∈ k[Y [n+r]][T [sj ]] for Yj with sj ≤ n + r and Mj(Y [n+r], Y
[sj ]
j ) ∈ Ωj

n+r+1.
Finally, we can estimate the total degree of the minimal polynomials Mj , j = r +

1, . . . , ρ, by characterizing them as the defining equations of certain hypersurfaces. To
do so, let n1 := (n + m + r + 1)(n + r + 1) + n + m. Fix j, r + 1 ≤ j ≤ ρ, let Vj be
the irreducible variety defined in An1 by the ideal Ωj

n+r+1 and consider the linear map

πj : Vj → Ar(n+r+1)+sj+1 defined by πj(y[n+r], x[n+r+1], u[n+r+1], y
[n+r]
j ) = (y[n+r], y

[sj ]
j ).

Proposition 53 Under the previous assumptions and notations, for j = r + 1, . . . , ρ, the
Zariski closure πj(Vj) is an irreducible hypersurface of Ar(n+r+1)+sj+1 and any irreducible
polynomial Mj ∈ k[Y [n+r], T [sj ]] defining πj(Vj) is a minimal polynomial for Yj.

We deduce:

Corollary 54 For j = r + 1, . . . , ρ, a minimal polynomial Mj ∈ k[Y [n+r], T [sj ]] for Yj

satisfies: sj ≤ n + r, Mj(Y [n+r], Y
[sj ]
j ) ∈ Ωj

n+r+1 and deg(Mj) ≤ deg(Vj).

From the algorithmic point of view (assuming k = Q(t)), the order sj of the minimal
polynomial Mj can be computed with the same techniques of matrix rank computations
as those used in Section 4 as the minimum non negative integer h such that {Y [n+r], Y

[h]
j }

is algebraically independent in k[Y [n+r], X [n+r+1], U [n+r+1], Y
[n+r]
j ]/Ωj

n+r+1 (using the Ja-
cobian matrix of the generator system of Ωj

n+r+1). Then, a minimal polynomial Mj can
be computed as a polynomial defining πj(Vj) following the procedure underlying the proof
of Proposition 46.

Therefore, we obtain a probabilistic algorithm that computes an extended resolvent
representation of system (7) within the same order of complexity as for the computation
of a resolvent representation under Assumption 4:

Corollary 55 The computational complexity of an extended resolvent representation of
system (7) is polynomial in the number of variables, the number of input polynomials,
an upper bound for their degrees and the degree of an algebraic variety defined by these
polynomials and their derivatives up to a fixed order, and linear in the length of a straight-
line program encoding them.
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