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Abstract. A theorem of McCord of 1966 and Quillen’s Theorem A of 1973 provide
sufficient conditions for a map between two posets to be a homotopy equivalence at the
level of complexes. We give an alternative elementary proof of this result and we deduce
also a stronger statement: under the hypotheses of the theorem, the map is not only a
homotopy equivalence but a simple homotopy equivalence. This leads then to stronger
formulations of the simplicial version of Quillen’s Theorem A, the Nerve Lemma and
other known results. In particular we establish a conjecture of Kozlov on the simple
homotopy type of the crosscut complex and we improve a well-known result of Cohen on
contractible mappings.

1. Introduction

In his seminal paper [23] McCord gives a criterion for recognizing weak homotopy equiv-
alences between topological spaces (i.e. maps which induce isomorphisms in all the homo-
topy groups). Roughly speaking, his theorem [23, Theorem 6] says that a map is a weak
homotopy equivalence if it is locally a weak homotopy equivalence. This result allowed
him to establish the relationship between the homotopy theory of finite topological spaces
and finite complexes.

Given a finite poset X, the associated complex (also called order complex ) K(X) is the
simplicial complex whose simplices are the non-empty chains of X. An order preserving
map f : X → Y between finite posets induces a simplicial mapK(f) : K(X) → K(Y ) which
coincides with f on vertices. A finite poset X can be considered as a finite topological
space and it can be deduced from McCord’s Theorem that there is a weak homotopy
equivalence K(X) → X.

The celebrated Theorem A of Quillen [25] provides a sufficient condition for a functor
between two categories to induce a homotopy equivalence between the classifying spaces.

Although these powerful and general results apply in very different contexts, they have
a particular common application, which is without discussion one of the most useful known
tools to study the relationship between posets and homotopy theory. The McCord-Quillen
Theorem 1.1, many times referred to as “Quillen’s Fiber Lemma”, is on one hand McCord’s
Theorem applied to finite spaces and the covers given by the minimal bases, and on the
other hand Quillen’s Theorem A applied to finite posets.

Theorem 1.1 (McCord, Quillen). Let f : X → Y be an order preserving map between
two finite posets. Suppose that for every y ∈ Y , the complex K(f−1(Uy)) is contractible.
Then K(f) is a homotopy equivalence.
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Here, Uy ⊆ Y denotes the subset of elements which are smaller than or equal to y.
Quillen’s statement is implicit in [25] and explicit in [26, Proposition 1.6]. Theorem 1.1
has shown to be indispensable in the study of the topology of order complexes of posets.
Some important consequences are, for example, the simplicial version of Theorem A, the
so called Nerve Lemma, Dowker’s Theorem on complexes associated to a relation and the
Crosscut Theorem. Other versions of Theorem 1.1 can be found in [2, 9, 10].

Both McCord’s Theorem and Quillen’s Theorem A have technical nontrivial proofs.
In [27] Walker gives an elementary proof of Theorem 1.1 using a homotopy version of
the Acyclic Carrier Theorem. In this article we give a different proof of Theorem 1.1.
Our proof is also very basic but the most important consequence is that it can be easily
improved to obtain a stronger statement of the theorem.

Whitehead’s simple homotopy theory aimed to give a combinatorial description of homo-
topy types of simplicial complexes. This theory is of great importance for its applications
to combinatorial group theory [19], differential topology and piecewise-linear topology.
One of its most crucial applications is the s-cobordism Theorem which is used to prove
the Poincaré Conjecture in dimensions greater than or equal to 5 and which is a funda-
mental part of the surgery program [22].

The concepts of simplicial collapse and expansion give rise to the notions of simple ho-
motopy types and simple homotopy equivalences. Simple homotopy equivalent complexes
are homotopy equivalent and simple homotopy equivalences are homotopy equivalences,
but these implications are strict. These notions coincide for instance in the case of sim-
ply connected complexes. We will show that under the same hypotheses as in Theorem
1.1, the simplicial map K(f) is not only a homotopy equivalence but a simple homotopy
equivalence.

Theorem 1.2. Let f : X → Y be an order preserving map between two finite posets.
Suppose that for every y ∈ Y , the complex K(f−1(Uy)) is contractible. Then K(f) is a
simple homotopy equivalence.

Theorem 1.2 originally appears in the author’s Thesis [3, Proposition 6.2.9] formulated
in the setting of finite spaces. In Section 4 we present a self contained proof of the simplicial
statement which is more transparent than the one of [3]. From this result we immediately
obtain stronger formulations of the simplicial version, the Nerve Lemma and Dowker’s
Theorem. We also deduce a simple homotopy version of the Crosscut Theorem, settling
in this way a conjecture by Kozlov [21, Conjecture 5.6]. Theorem 1.2 is used to provide
an alternative proof of a well-known result by Cohen on contractible mappings. Moreover,
we will show that our simplicial variant of Theorem A, Theorem 4.2, is a stronger version
of Cohen’s result.

The key point of our approach is the so called non-Hausdorff mapping cylinder of a map
between posets introduced by Barmak and Minian in [5] where it is used to establish the
relationship between finite topological spaces (finite posets) and simple homotopy theory
of polyhedra.

In the last section of the paper we adapt the method used in the proof of Theorem 1.1 to
give a short proof of one extension of this result for n-equivalences and of its homological
version.
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2. Preliminaries

The star stK(v) of a vertex v in a simplicial complex K is the subcomplex of simplices
σ ∈ K such that σ ∪ {v} ∈ K. The link lkK(v) is the subcomplex of stK(v) of simplices
which do not contain v. The join of two (disjoint) simplicial complexes K and L is the
simplicial complex K ∗ L whose simplices are those of K, those of L and unions of a
simplex of K with a simplex of L. If two complexes are homotopy equivalent, their joins
with a third complex are also homotopy equivalent. In particular, the join of a contractible
complex with another complex is contractible. For simplicity we will identify a simplicial
complex with its geometric realization.

The following result [26, 1.3] is a particular case of the well known fact that natural
transformations induce homotopies in the classifying spaces. We include a simple proof
for completeness which appears in the author’s Thesis [3, Proposition 2.1.2] and in [7].

Lemma 2.1. Let f, g : X → Y be two order preserving maps between finite posets.
Suppose that f(x) ≤ g(x) for every x ∈ X. Then K(f) and K(g) are homotopic.

Proof. We proceed by induction on the number of order preserving maps h : X → Y such
that f(x) ≤ h(x) ≤ g(x) for every x ∈ X. Suppose that f 6= g. Let x ∈ X be a maximal
point with the property that f(x) 6= g(x). Let y ∈ Y be an element covering f(x) and
such that y ≤ g(x). Consider the map h : X → Y which coincides with f in every point
different from x and such that h(x) = y. By the maximality of x, h is order preserving.
The simplicial maps K(f) and K(h) are contiguous (i.e. K(f)(σ) ∪ K(h)(σ) ∈ K(Y ) for
every simplex σ ∈ K(X)) and in particular the linear homotopy between them is well
defined and continuous. By induction K(h) ' K(g) and therefore K(f) ' K(g). ¤

3. An alternative proof of the McCord-Quillen Theorem 1.1

The idea of our approach is to prove the theorem in some very particular cases in which
the map is just an inclusion of a poset into another poset with only one more point. The
general case will follow taking compositions of these basic maps and homotopy inverses.

The next result follows immediately from Theorem 1.1 as it is observed in [27, Propo-
sition 6.1] (see also [5]) but here we use a different idea (cf. [6, Proposition 3.10]) since we
will need it in the proof of the theorem.

Given a finite poset X, we will denote

UX
x = {x′ ∈ X | x′ ≤ x}, FX

x = {x′ ∈ X | x′ ≥ x},

ÛX
x = {x′ ∈ X | x′ < x}, F̂X

x = {x′ ∈ X | x′ > x}.
When there is no risk of confusion we will just write Ux, Fx, Ûx and F̂x.

Lemma 3.1. Let X be a finite poset and let x ∈ X be such that K(Ûx) or K(F̂x) is
contractible. Then K(X r {x}) ↪→ K(X) is a homotopy equivalence.

Proof. By hypothesis, lkK(X)(x) = K(Ûx) ∗ K(F̂x) is contractible. Therefore the inclusion
lkK(X)(x) = stK(X)(x) ∩ K(X r {x}) ↪→ stK(X)(x) is a homotopy equivalence. Moreover,
being an inclusion of complexes, it is a strong deformation retract (see [18, Proposition
0.16, Corollary 0.20]). Then, K(X r {x}) is a strong deformation retract of stK(X)(x) ∪
K(X r {x}) = K(X). ¤
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Definition 3.2. Let f : X → Y be an order preserving map between finite posets. The
non-Hausdorff mapping cylinder B(f) of f is a poset whose underlying set is the disjoint
union X t Y . The given ordering within X and Y is kept and for x ∈ X, y ∈ Y one
has x ≤ y in B(f) if f(x) ≤ y in Y . Therefore, the cover relations in B(f) are the cover
relations of X, those of Y and of the form x < f(x) for x ∈ X. The canonical inclusions
of X and Y into the non-Hausdorff mapping cylinder will be denoted by i : X ↪→ B(f)
and j : Y ↪→ B(f).

Proposition 3.3. Let f : X → Y be an order preserving map between finite posets. Then
K(j) : K(Y ) → K(B(f)) is a homotopy equivalence.

Proof. Let x1, x2, . . . , xn be a linear extension of X (i.e. an ordering of the elements of X
such that xr ≤ xs implies r ≤ s) and denote Yr = Y ∪ {x1, x2, . . . , xr} ⊆ B(f) for each
0 ≤ r ≤ n. Then

F̂ Yr
xr

= {y ∈ Y | y ≥ f(xr)} = F Y
f(xr).

Therefore K(F̂ Yr
xr

) = K(F Y
f(xr)) is a cone (with apex f(xr)) and in particular, contractible.

By Lemma 3.1, K(Yr−1) ↪→ K(Yr) is a homotopy equivalence and then the inclusion
K(j) : K(Y ) = K(Y0) ↪→ K(Yn) = K(B(f)) is also a homotopy equivalence. ¤

Another way to see that K(j) is a homotopy equivalence, is by defining a retraction
r : B(f) → Y with r(x) = f(x) for every x ∈ X. Since jr ≥ 1B(f), by Lemma 2.1 K(j)
is a homotopy equivalence with homotopy inverse K(r). The idea shown in our proof of
Proposition 3.3 will be used in the proof of Theorem 1.1 and in its simple version.

Proof of Theorem 1.1. Consider the non-Hausdorff mapping cylinder B(f). Following
the idea of the proof of Proposition 3.3 we show that K(i) : K(X) → K(B(f)) is a
homotopy equivalence. Let y1, y2, . . . , ym be a linear extension of Y and let Xr = X ∪
{yr+1, yr+2, . . . , ym} ⊆ B(f) for every 0 ≤ r ≤ m. Then

ÛXr−1
yr

= {x ∈ X | f(x) ≤ yr} = f−1(UY
yr

).

By hypothesis, K(ÛXr−1
yr ) is contractible. By Lemma 3.1, K(Xr) ↪→ K(Xr−1) is a homotopy

equivalence and then so is K(i) : K(X) = K(Xm) ↪→ K(X0) = K(B(f)).
Since i(x) ≤ jf(x) for every x ∈ X, by Lemma 2.1, K(i) ' K(jf) = K(j)K(f). Since

K(i) is a homotopy equivalence and K(j) is a homotopy equivalence by Proposition 3.3,
then so is K(f). ¤

4. A simple stronger statement

We will show that the proof of Theorem 1.1 can be easily modified to obtain the stronger
Theorem 1.2.

If K is a finite simplicial complex with a simplex τ which is a proper face of a unique
simplex σ, we say that there is an elementary collapse from K to the subcomplex L ⊂ K
which is obtained from K by removing the simplices σ and τ . If there is a sequence of
elementary collapses from a complex K to a subcomplex L, we say that K collapses to
L. Two complexes have the same simple homotopy type if it is possible to obtain one
from the other by performing collapses and their inverses (expansions). A class of maps
C between topological spaces is said to satisfy the 2-out-of-3 property if whenever there
are three maps f, g, h such that the composition fg is well defined, fg ' h and two of the
three maps are in C, then so is the third. The class of simple homotopy equivalences is the
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smallest class satisfying the 2-out-of-3 property and containing all the inclusions L ↪→ K
where K is a complex and L is a subcomplex which expands to K (see [20, p. 118]). Note
that this definition is not exactly the same as it appears in [20] but it is easily shown to
be equivalent to that one. For basic properties on simple homotopy theory we encourage
the readers to consult [13].

Theorem (20.1) of [13] states that if L is a subcomplex of a complex K, the inclusion
L ↪→ K is a homotopy equivalence and every connected component of the space K r L is
simply connected, then L ↪→ K is a simple homotopy equivalence.

From this result and Lemma 3.1 we obtain a refined statement of Lemma 3.1. Note
that if X is a finite poset and x ∈ X, then the space K(X) r K(X r {x}) is the open
star of x in K(X) (i.e. the union of the interiors of the simplices containing x) which is
contractible.

Lemma 4.1. Let X be a finite poset and let x ∈ X be such that K(Ûx) or K(F̂x) is
contractible. Then K(X r {x}) ↪→ K(X) is a simple homotopy equivalence.

Proof of Theorem 1.2. The proof is essentially the same as before, but in the proofs of
Proposition 3.3 and Theorem 1.1 we use Lemma 4.1 instead of Lemma 3.1. Note that the
inclusions K(Yr−1) ↪→ K(Yr) in the proof of Proposition 3.3 are simple homotopy equiv-
alences by Lemma 4.1. Therefore their composition K(j) : K(Y ) → K(B(f)) is a simple
homotopy equivalence (in fact K(B(f)) collapses to K(Y ) [5]). Analogously, the inclu-
sions K(Xr) ↪→ K(Xr−1) in the proof of Theorem 1.1 are simple homotopy equivalences
and then so is K(i) : K(X) → K(B(f)). Now, since K(i) ' K(j)K(f), by the 2-out-of-3
property, K(f) is a simple homotopy equivalence. ¤

Given a finite simplicial complex K, its associated poset X (K) (also known as face poset)
is the poset of simplices of K ordered by containment. A simplicial map ϕ : K → L also
has associated an order preserving map X (ϕ) : X (K) → X (L) defined by X (ϕ)(σ) = ϕ(σ).
Note that K(X (K)) coincides with the barycentric subdivision K ′. It is a standard fact
that a simplicial complex and its barycentric subdivision are simple homotopy equivalent.
Moreover, the linear map sK : K ′ → K that maps a simplex of K into its barycenter
is a simple homotopy equivalence (see [13, (25.1)]). Given a simplicial map ϕ : K → L,
we denote by ϕ′ = K(X (ϕ)) : K ′ → L′ the map induced in the barycentric subdivisions.
Since the maps sLϕ′ and ϕsK are homotopic for any simplicial map ϕ : K → L, from the
2-out-of-3 property we deduce that ϕ is a simple homotopy equivalence if and only if ϕ′
is a simple homotopy equivalence.

We prove the following result which is a stronger version of the simplicial statement of
Quillen’s Theorem A [25]. It also sharpens Theorem 4.3.14 of [3] which requires a more
restrictive hypothesis on the map ϕ.

Theorem 4.2. Let ϕ : K → L be a simplicial map between two finite complexes. Suppose
that the preimage of each closed simplex of L is contractible. Then ϕ is a simple homotopy
equivalence.

Proof. We show that the associated map X (ϕ) satisfies the hypotheses of Theorem 1.2.
Given σ ∈ X (L),

K(X (ϕ)−1(Uσ)) = K(X (ϕ−1(σ)))

is the barycentric subdivision of ϕ−1(σ) which is contractible by hypothesis. Thus, ϕ′ is
a simple homotopy equivalence and then so is ϕ. ¤
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The original result of Quillen concludes under the same hypotheses that ϕ is a homotopy
equivalence.

Another consequence of Theorem 1.2 is the following improvement of the Nerve Lemma
proved by Borsuk (see [8, Theorem 10.6]). Recall that the nerve of a family U = {Ui}i∈I

of subsets of a set is the simplicial complex N (U) whose simplices are the finite subsets J
of I such that

⋂
i∈J

Ui 6= ∅. Given a poset X, we denote by Xop the poset with the reversed

order. We follow the proof of [8, Theorem 10.6].

Theorem 4.3. Let K be a finite simplicial complex and let U = {Li}i∈I be a finite family
of subcomplexes of K such that

⋃
i∈I

Li = K and such that every intersection of elements of

U is empty or contractible. Then K has the same simple homotopy type as N (U).

Proof. The map X (K) → X (N (U))op that maps a simplex σ ∈ K into {i ∈ I | σ ∈ Li}
satisfies the hypotheses of Theorem 1.2. Therefore there is a simple homotopy equivalence
from K ′ to N (U)′. ¤

We deduce then a stronger version of Dowker’s Theorem [15]. The proof is the same as
in [8, Theorem 10.9] but using Theorem 4.3.

Theorem 4.4. Let X and Y be two finite sets and let R ⊆ X×Y be a relation. Consider
the simplicial complex K whose simplices are the subsets σ of X for which exists an element
of Y that is related to all the elements of σ. Symmetrically, the simplices of the complex
L are subsets σ of Y for which there is an element of X related to every element of σ.
Then K and L have the same simple homotopy type.

Recall that a crosscut in a poset X is an antichain A ⊆ X which satisfies the following
two properties: (1) For every chain C ⊆ X there exists a ∈ A comparable with every
element in C and (2) Every bounded subset B of A (i.e. with an upper or lower bound
in X) has a supremum or an infimum in X. The crosscut complex Γ(X, A) is the simpli-
cial complex whose simplices are the non-empty bounded subsets of A. Rota’s Crosscut
Theorem asserts that for any crosscut A in a finite poset X, Γ(X, A) and K(X) have the
same homotopy type. A proof can be obtained from a direct application of the Nerve
Lemma (see [8, Theorem 10.8]). In [21, Theorem 5.2], Kozlov proves that if the poset X
is a reduced lattice (i.e. a finite lattice with its maximum and minimum removed), and A
is the set of minimal elements, then the crosscut complex and K(X) have the same simple
homotopy type. He conjectures that this happens in general for any crosscut in a reduced
lattice [21, Conjecture 5.6]. As a corollary of our simple homotopy version of the Nerve
Lemma, Theorem 4.3, we establish this conjecture of Kozlov, which holds even when X is
not a reduced lattice.

Theorem 4.5. Let A be a crosscut in a finite poset X. Then Γ(X,A) and K(X) are
simple homotopy equivalent.

One of the main results in [21] (Theorem 7.2) says that the neighborhood complex N(G)
of a finite graph G and the polyhedral complex Hom(K2, G) have the same simple ho-
motopy type (see [21] for definitions). A shorter alternative proof can be found in [14,
Theorem 8, Theorem 9]. However, this result follows directly from the well-known proof
that these complexes are homotopy equivalent [1, Proposition 4.2] and our Theorem 1.2,
since the map X (Hom(K2, G)) → X (N(G)) defined in the proof of [1, Proposition 4.2]
satisfies the hypothesis of the Fiber Lemma.
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5. Relationship with Cohen’s Theorem on contractible mappings

Theorem 4.2 is closely related to a result of Cohen on the so called contractible mappings.
A simplicial map ϕ : K → L is called a contractible mapping if the preimage ϕ−1(y) of
each point y in the underlying space of L is contractible. Cohen’s result [12, Theorem
11.1] is the following

Theorem 5.1 (Cohen). Let ϕ : K → L be a contractible mapping between two finite
simplicial complexes. Then ϕ is a simple homotopy equivalence.

Contractible mappings are related to the Poincaré Conjecture (see the discussion in
[12, p. 243]). They are fundamental in the development of Hatcher’s theory in [17]. It is
not hard to prove that compositions of contractible mappings are again contractible and
that two simplicial complexes have the same simple homotopy type if and only if there is
a chain of contractible mappings connecting them. We provide here a short and simple
proof of Theorem 5.1 using our simple homotopy version of the McCord-Quillen Theorem.

Remark 5.2. If ϕ : K → L is a simplicial map, the preimage of each subcomplex of L
is a subcomplex of K. Although the barycenter b(σ) of a simplex σ ∈ L is a vertex of
L′, the preimage ϕ−1(b(σ)) need not be a subcomplex of K ′ because ϕ : K ′ → L′ is not
simplicial in general. Here we consider the vertices of K ′ and L′ as the barycenters of the
simplices of K and L, and we identify the underlying spaces of K ′ and K and of L′ and L.
If instead of K ′ we take a suitable derived subdivision δK of K choosing points different
from the barycenters, we can make ϕ : δK → L′ simplicial. Specifically, for each τ ∈ K

let aτ be a point in
◦
τ ∩ ϕ−1(b(ϕ(τ))) (here

◦
τ denotes the interior of τ), for instance the

convex combination ∑
v∈τ

v

#ϕ(τ)#(ϕ−1(ϕ(v)) ∩ τ)
.

Now, the derived subdivision δK is a simplicial complex whose vertices are the points
aτ and whose simplices are the sets {aτ0 , aτ1 , . . . , aτn} where τ0 ( τ1 ( . . . ( τn. Clearly
δK is isomorphic to K ′. The complex δK is a subdivision of K and therefore we identify
both underlying spaces. For more information about derived subdivisions see [16, Chapter
I, B].

For this subdivision, the map ϕ : δK → L′ is simplicial since ϕ(aτ ) = b(ϕ(τ)). Thus,
the preimage of b(σ) ∈ L′ is a subcomplex of δK. Concretely, it is the full subcomplex
spanned by the vertices aτ such that ϕ(τ) = σ. This is isomorphic to the full subcomplex
M of K ′ spanned by the vertices b(τ) ∈ K ′ (or equivalently τ ∈ K) such that ϕ(τ) = σ.
This idea appears in [12, Remark 1, p. 225].

Proof of Theorem 5.1. Consider the map X (ϕ) : X (K) → X (L) between the associated
posets. Let σ be a simplex of L. Then σ is an element of X (L) and Fσ is a subset of X (L).
Let i : X (ϕ)−1(σ) ↪→ X (ϕ)−1(Fσ) be the inclusion and define a map r : X (ϕ)−1(Fσ) →
X (ϕ)−1(σ) by r(τ) = τ ∩ ϕ−1(σ). This map is well-defined, order preserving and it is a
retraction of i. Moreover ir(τ) ≤ τ and then by Lemma 2.1, K(i)K(r) ' 1K(X (ϕ)−1(Fσ)).
Therefore K(X (ϕ)−1(σ)) and K(X (ϕ)−1(Fσ)) are homotopy equivalent.

On the other hand, K(X (ϕ)−1(σ)) is exactly the subcomplex M ⊆ K ′ of Remark 5.2,
homeomorphic to the preimage ϕ−1(b(σ)) of the barycenter of σ, which is contractible by
hypothesis. Therefore, K(X (ϕ)−1(Fσ)) is contractible.

We can then apply Theorem 1.2 to the map X (ϕ)op : X (K)op → X (L)op to conclude
that ϕ′ : K ′ → L′ is a simple homotopy equivalence, and hence, so is ϕ. ¤
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Contractible mappings are closely related to the maps considered in Theorem 4.2. In
fact we will see that any contractible mapping satisfies the hypothesis of the simplicial
version of Quillen’s Theorem A. Furthermore, we will show that Theorem 4.2 improves
Cohen’s result since it applies also to maps which are not necessarily contractible (see
Example 5.4).

Proposition 5.3. Let ϕ : K → L be a simplicial map between two finite simplicial
complexes. If ϕ is a contractible mapping, then the preimage ϕ−1(σ) of each simplex σ of
L is a contractible space.

Proof. Let σ ∈ L. Then ϕ|ϕ−1(σ) : ϕ−1(σ) → σ is a contractible mapping. By Theorem
5.1, ϕ|ϕ−1(σ) is a homotopy equivalence and therefore ϕ−1(σ) is contractible. ¤
Example 5.4. Let K by an acyclic and non-contractible finite simplicial complex. Let L
be a contractible finite simplicial complex containing K as a subcomplex (for instance we
can take L as the simplex with the same vertices as K). Let v be a vertex not in L and
consider the simplicial cone vK. Let M = vK ∪ L. Let σ = {w0, w1} be a 1-dimensional
simplex and let ϕ : M → σ be the simplicial map that maps v into w0 and all L into w1.

Since M is covered by two contractible subcomplexes vK and L, it is homotopy equiv-
alent to the suspension Σ(vK ∩ L) = Σ(K) of their intersection (see [4, Lemma 3.3] for
instance). Since K is acyclic, the suspension Σ(K) is acyclic and simply connected, and
then contractible by Hurewicz and Whitehead’s Theorems. Therefore, M is contractible.
Then, the preimages v, L, M of the simplices of σ are contractible. However, the preimage
ϕ−1(b(σ)) of the barycenter of σ is the middle section of the cone vK parallel to the base,
which is homeomorphic to the non-contractible complex K.

6. Two more applications

Other versions of the McCord-Quillen Theorem can be obtained by modifying the hy-
potheses on the subcomplexes K(f−1(Uy)). The following result was proved by Björner
[9, Theorem 2] using the homotopy version of the Acyclic Carrier Theorem. We exhibit
here an alternative proof using our approach to Theorem 1.1. Recall that a continuous
map f : X → Y between two topological spaces is said to be an n-equivalence if for every
x ∈ X, the induced map πi(X, x) → πi(Y, f(x)) is an isomorphism for i < n and an
epimorphism for i = n.

Theorem 6.1 (Björner). Let f : X → Y be an order preserving map between two finite
posets and let n be a nonnegative integer. Suppose that for every y ∈ Y , the complex
K(f−1(Uy)) is n-connected. Then K(f) is an (n + 1)-equivalence.

We need a third version of Lemma 3.1.

Lemma 6.2. Let n ≥ 0, let X be a finite poset and let x ∈ X be such that K(Ûx) is
n-connected. Then K(X r {x}) ↪→ K(X) is an (n + 1)-equivalence.

Proof. The link lkK(X)(x) = K(Ûx) ∗ K(F̂x) is also n-connected by [24, Lemma 2.3] and
therefore the pair (stK(X)(x), lkK(X)(x)) is (n + 1)-connected by the long exact sequence
for relative homotopy groups. We can assume that K(X) is connected and therefore,
(K(X r {x}), lkK(X)(x)) is 0-connected. By the Excision Theorem for homotopy groups
[18, Theorem 4.23], the map πi(stK(X)(x), lkK(X)(x)) → (K(X),K(X r {x})) induced by
the inclusion is an isomorphism for i < n + 1 and an epimorphism for i = n + 1. Thus,
(K(X),K(X r {x})) is (n + 1)-connected and the lemma follows. ¤
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Proof of Theorem 6.1. Following the idea of the proof of Theorem 1.1, K(i) is a compo-
sition of (n + 1)-equivalences by Lemma 6.2, and then it also is an (n + 1)-equivalence.
Since K(j) is a homotopy equivalence by Proposition 3.3 and K(i) ' K(j)K(f), K(f) is
an (n + 1)-equivalence. ¤

Before proving the homological analog of Theorem 6.1 due to Quillen [26], we state a
fourth version of Lemma 3.1.

Lemma 6.3. Let n ≥ 0, let X be a finite poset and let x ∈ X be such that the reduced (in-
tegral) homology groups H̃i(K(Ûx)) are trivial for i ≤ n. Then the map H̃i(K(Xr{x})) ↪→
H̃i(K(X)) induced by the inclusion is an isomorphism for i ≤ n and an epimorphism for
i = n + 1.

Proof. The groups H̃i(lkK(X)(x)) = H̃i(K(Ûx)∗K(F̂x)) are trivial for i ≤ n by [24, Lemma
2.1]. The result then follows from the Mayer-Vietoris sequence for the decomposition
K(X) = K(X r x) ∪ stK(X)(x). ¤

Using again the ideas of the proof of Theorem 1.1 we deduce the following result.

Theorem 6.4 (Quillen). Let f : X → Y be an order preserving map between two finite
posets and let n be a nonnegative integer. Suppose that for every y ∈ Y , the reduced ho-
mology groups H̃i(K(f−1(Uy))) are trivial for i ≤ n. Then K(f)∗ : H̃i(K(X)) → H̃i(K(Y ))
is an isomorphism for i ≤ n and an epimorphism for i = n + 1.

Corollary 6.5. Let f : X → Y be an order preserving map between two finite posets.
If K(f−1(Uy)) is acyclic for every y ∈ Y , then K(f) induces isomorphisms in all the
homology groups.
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