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Abstract. We introduce the notion of star cluster of a simplex in a simplicial complex.
This concept provides a general tool to study the topology of independence complexes
of graphs. We use star clusters to answer a question arisen from works of Engström and
Jonsson on the homotopy type of independence complexes of triangle-free graphs and to
investigate a large number of examples which appear in the literature. We present an
alternative way to study the chromatic number of a graph from a homotopical point of
view and obtain new results regarding the connectivity of independence complexes.

1. Introduction

Since Lovász’ proof of the Kneser conjecture in 1978, numerous applications of algebraic
topology to combinatorics, and in particular to graph theory, have been found. A recur-
rent strategy in topological combinatorics consists of the study of homotopy invariants
of certain CW-complexes constructed from a discrete structure to obtain combinatorial
information about the original object. In Lovász’ prototypical example, connectivity prop-
erties of the neighborhood complex N (G) of a graph G are shown to be closely related to
the chromatic number χ(G) of G. Lovász conjecture states that there exists a similar
relationship between the so called Hom complexes Hom(H,G) and χ(G) when H is a
cycle with an odd number of vertices. The Hom complex Hom(H,G) is homotopy equiv-
alent to N (G) when H is the complete graph on two vertices K2. Babson and Kozlov
[2] proved this conjecture in 2007. In their proof they used that Hom(G,Kn) is linked
to another polyhedron associated to G, which is called the independence complex of G.
Given a graph G, its independence complex IG is the simplicial complex whose simplices
are the independent sets of vertices of G. In this approach to the conjecture it was then
needed to understand the topology of independence complexes of cycles. Independence
complexes have also been used to study Tverberg graphs [21] and independent systems of
representatives [1].

For any finite simplicial complexK there exists a graph G such that IG is homeomorphic
to K. Specifically, given a complex K, we consider the graph G whose vertices are the
simplices of K and whose edges are the pairs (σ, τ) of simplices such that σ is not a face
of τ and τ is not a face of σ. Then IG is isomorphic to the barycentric subdivision K ′ of
K. In particular, the homotopy types of independence complexes of graphs coincide with
homotopy types of compact polyhedra.

In the last years a lot of attention has been drawn to study the general problem of
determining all the possible homotopy types of the independence complexes of graphs
in some particular class. For instance, Kozlov [25] investigates the homotopy types of
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independence complexes of cycles and paths, Ehrenborg and Hetyei [17] consider this
question for forests, Engström [18] for claw-free graphs, Bousquet-Mélou, Linusson and
Nevo [10] for some square grids, Braun [11] for Stable Kneser graphs and Jonsson [24] for
bipartite graphs. Other results investigate how the topology of the independence complex
changes when the graph is modified in some particular way. Engström [19] analyzes what
happens when some special points of the graph are removed and Csorba [15] studies how
subdivisions of the edges of a graph affect the associated complex.

The purpose of this paper is two-fold: to introduce a notion that allows the develop-
ment of several techniques which are useful to study homotopy types of independence
complexes, and to establish new relationships between combinatorial properties of graphs
and homotopy invariants of their independence complexes. We have mentioned that in-
dependence complexes are closely related to Hom complexes and therefore, they can be
used to study chromatic properties of graphs. In this paper we show in a direct way how
to use independence complexes to investigate colorability of graphs. We will obtain lower
bounds for the chromatic number of a graph in terms of a numerical homotopy invariant
associated to its independence complex. On the other hand we will introduce some ideas
that are used to study the connectivity of IG in terms of combinatorial properties of G.

One of the motivating questions of this work appears in Engström’s Thesis [20] and
concerns the existence of torsion in the homology groups of independence complexes of
triangle-free graphs (i.e. graphs which do not contain triangles). Recently, Jonsson [24]
proved that for any finitely generated abelian group Γ and any integer n ≥ 2, there exists a
triangle-free graph G such that the (integral) homology group Hn(IG) is isomorphic to Γ.
In fact, he shows that the homotopy types of independence complexes of bipartite graphs
are exactly the same as the homotopy types of suspensions of compact polyhedra. This
result had also been proved independently by Nagel and Reiner [28, Proposition 6.2]. Two
natural questions arise from Jonsson’s work. Can H1(IG) have torsion for some triangle-
free graph G? And furthermore, what are the homotopy types of independence complexes
of triangle-free graphs? In order to give a solution to these problems we introduce the
notion of star cluster of a simplex in a simplicial complex. The star cluster SC(σ) of a
simplex σ ∈ K is just the union of the simplicial stars of the vertices of σ. In general
these subcomplexes can have non-trivial homotopy type but we will see that if K is the
independence complex of a graph, then the star cluster of every simplex is contractible
(Lemma 3.2). These fundamental blocks are used to answer both questions stated above.
We prove that the homotopy types of complexes associated to triangle-free graphs also
coincide with those of suspensions. In fact we show the following stronger result.

Theorem 3.4. Let G be a graph such that there exists a vertex v ∈ G which is contained in
no triangle. Then the independence complex of G has the homotopy type of a suspension.
In particular, the independence complex of any triangle-free graph has the homotopy type
of a suspension.

From this it is immediately deduced that H1(IG) is a free abelian group for every
triangle-free graph G.

We will see that fortunately, these results are just the first application of star clusters.
The fact of being contractible, makes these subcomplexes suitable for developing general
tools to attack problems regarding independence complexes. We use star clusters to give
alternative and shorter proofs of various known results. Many of the original proofs use
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Forman’s discrete Morse theory or the Nerve lemma [6, Theorem 10.6]. Star clusters
provide a much more basic technique to deal with these and other problems.

The matching complex Mn of Kn and the chessboard complex Mn,m appear in many
different contexts in mathematics. The chessboard complex was first considered by Garst
[23] in connection with Tits coset complexes, and Mn was studied by Bouc in [8] where he
worked with Quillen complexes. The homotopy type of these complexes is not completely
determined although sharp bounds for the connectivity are known [7, 29]. Mn and Mn,m

are some examples of the larger class of matching complexes. This class is in turn contained
in the class of independence complexes of claw-free graphs. In [18] Engström gives a bound
for the connectivity of independence complexes of claw-free graphs in terms of the number
of vertices and the maximum degree. In Section 5 of this article we use star clusters
to prove a sharp bound for the connectivity of matching complexes and independence
complexes of claw-free graphs which depends only on the dimension of the complexes.

Theorem 5.5. Let G be a claw-free graph. Then IG is [dim(IG)−2
2 ]-connected.

From this result one can deduce that the homology of those complexes is non-trivial
only for degrees contained in an interval of the form {[n2 ], . . . , n}. These techniques are
also used to give results of connectivity for general graphs.

The neighborhood complex N (G) mentioned at the beginning is a simplicial complex
that one can associate to a given graph G. The simplices of N (G) are the sets of vertices
that have a common neighbor. One of the key points of Lovász’ celebrated proof of the
Kneser conjecture [26] is the following result which relates the chromatic number χ(G)
with the connectivity ν(N (G)) = sup{n | N (G) is n-connected} of the neighborhood
complex.

Theorem 1.1 (Lovász). Let G be a graph. Then χ(G) ≥ ν(N (G)) + 3.

In Section 6 we study the relationship between the chromatic number of a graph and
the topology of its independence complex. The Strong Lusternik-Schnirelmann category
Cat(X) of a space X is one less that the minimum number of contractible subcomplexes
which are needed to cover some CW-complex homotopy equivalent to X. This homotopy
invariant is not easy to determine in concrete examples. We prove the following result as
another application of star clusters:

Theorem 6.2. Let G be a graph. Then χ(G) ≥ Cat(IG) + 1.

In particular we obtain non-trivial bounds for the chromatic number of graphs whose
independence complexes are homotopy equivalent to a projective space or a torus. We
will see that in fact there is a bound which is stronger than the one given by Theorem 6.2
and involves a more subtle combinatorial invariant.

In the last section of the paper we introduce a construction which generalizes Csorba’s
edge subdivision. This is used to give an alternative proof of a recent result by Skwarski [30]
regarding planar graphs and to obtain new results about homotopy types of independence
complexes of graphs with bounded maximum degree.

2. Preliminaries

In this section we recall some basic results and introduce the notation that will be
needed in the rest of the article. All the graphs considered will be simple (undirected,
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loopless and without parallel edges) and finite. All the simplicial complexes we work with
are finite. Many times we will use just the word “complex” to refer to these objects.
We will confuse a simplicial complex with its geometric realization. If two complexes K
and L are homotopy equivalent, we will write K ≃ L. The (non-reduced) suspension of
a topological space X is denoted as usual by Σ(X). The (simplicial) star stK(σ) of a
simplex σ in a complex K is the subcomplex of simplices τ such that τ ∪ σ ∈ K. The
star of a simplex is always a cone and therefore contractible. When there is no risk of
confusion we will omit the subscripts in the notation.

Definition 2.1. We say that a complex K is clique if for each non-empty set of vertices
σ such that {v, w} ∈ K for every v, w ∈ σ, we have that σ ∈ K.

The clique complex of a graph G is a simplicial complex whose simplices are the cliques
of G, that is, the subsets of pairwise adjacent vertices of G. Then, a complex K is clique
if and only if it is the clique complex of some graph. In fact, if K is clique, it is the clique
complex of its 1-skeleton K1.

The independence complex IG of a graph G is the simplicial complex whose simplices
are the independent subsets of vertices of G. In other words, it is the clique complex of
the complementary graph G. Therefore a complex K is the independence complex of some
graph if and only if it is clique.

If σ is an independent set in a graph G and v is a vertex of G such that σ ∪ {v} is
also independent, we will say that σ can be extended to v. This is equivalent to say that
σ ∈ stIG(v) when σ is non-empty.

Remark 2.2. If a graph G is the disjoint union of two graphs H1 and H2, then its inde-
pendence complex IG is the (simplicial) join IH1 ∗ IH2 . In particular if H1 is just a point,
IG is the simplicial cone with base IH2 and if H1 is an edge, IG = Σ(IH2).

Recall that if X1, X2 and Y are three topological spaces and the first two have the same
homotopy type, then X1 ∗ Y ≃ X2 ∗ Y .

A basic result in topology, sometimes called gluing theorem, says that if

A
f

//

i
��

Y

��

X
f

// Z

is a push-out of topological spaces, f is a homotopy equivalence and i is a closed cofibration
(A is a closed subspace of X and (X,A) has the homotopy extension property), then f
is also a homotopy equivalence. For a proof of this result the reader can see [12, 7.5.7
(Corollary 2)]. If K is a simplicial complex and L ⊆ K is a subcomplex, the inclusion
L →֒ K is a closed cofibration. This is in fact the unique type of cofibrations that we
will work with here. We can use this result to prove that the quotient K/L of a complex
K by a contractible subcomplex L is homotopy equivalent to K or that the union of two
contractible complexes is contractible if the intersection is contractible. These applications
will appear in some proofs below (Lemma 3.2 and Theorem 4.11). We will also use the
gluing theorem in the proof of Lemma 3.3.
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3. Star clusters and triangle-free graphs

Definition 3.1. Let σ be a simplex of a simplicial complex K. We define the star cluster
of σ in K as the subcomplex

SCK(σ) =
⋃

v∈σ

stK(v).

Lemma 3.2. Let K be a clique complex. Let σ be a simplex of K and let σ0, σ1, . . . , σr
be a collection of faces of σ (r ≥ 0). Then

r⋃

i=0

⋂

v∈σi

stK(v)

is a contractible subcomplex of K. In particular, the star cluster of a simplex in a clique
complex is contractible.

Proof. By the clique property
⋂

v∈σ0

stK(v) = stK(σ0),

which is contractible. Then the statement is true for r = 0. Now assume that r is positive.
In order to prove that the union of the complexes

K1 =

r−1⋃

i=0

⋂

v∈σi

stK(v), K2 =
⋂

v∈σr

stK(v)

is contractible, it suffices to show that each of them and the intersection are. But

K1 ∩K2 =
r−1⋃

i=0

⋂

v∈σi∪σr

stK(v),

so by induction all three complexes K1,K2 and K1 ∩K2 are contractible, and then so is
K1 ∪K2.

To deduce that the star cluster of a simplex σ in a clique complex is contractible, it
suffices to take the collection {σi} as the set of 0-dimensional faces of σ. �

In fact it can be proved that star clusters in clique complexes are collapsible. Moreover,
they are non-evasive.

s s

Figure 1. A 2-dimensional clique complex at the left and the star cluster
of a simplex σ at the right.

The following result is easy to prove. We give a proof for completeness.
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Lemma 3.3. Let K be a complex and K1,K2 two contractible subcomplexes such that
K = K1 ∪K2. Then K ≃ Σ(K1 ∩K2).

Proof. Since K1 is contractible, the inclusion K1 ∩K2 →֒ K1 extends to a map f : v(K1 ∩
K2) → K1 from the cone v(K1 ∩K2) where v is a vertex not in K. Analogously, there is
a map g : w(K1 ∩K2) → K2 which extends the inclusion K1 ∩K2 →֒ K2. Consider the
following diagram of push-outs

K1 ∩K2� _

��

� � i
// v(K1 ∩K2)� _

��

∼

f
// K1

��

w(K1 ∩K2)
� � j

//

≀g

��

Σ(K1 ∩K2)
∼

f

// K1 ∪ w(K1 ∩K2)

≀g

��

K2
// K1 ∪K2 = K.

Since v(K1 ∩K2) is a subcomplex of Σ(K1 ∩K2) and f is a homotopy equivalence, by the
gluing theorem f : Σ(K1 ∩K2) → K1 ∪w(K1 ∩K2) is a homotopy equivalence. The map
fj : w(K1 ∩K2) →֒ K1 ∪w(K1 ∩K2) is also an inclusion of a subcomplex into a complex
and since g is a homotopy equivalence, so is g. Then the composition gf gives a homotopy
equivalence from Σ(K1 ∩K2) to K. �

Theorem 3.4. Let G be a graph such that there exists a vertex v ∈ G which is contained in
no triangle. Then the independence complex of G has the homotopy type of a suspension.
In particular, the independence complex of any triangle-free graph has the homotopy type
of a suspension.

This theorem will follow directly from a more refined version that we state now.

Theorem 3.5. Let G be a graph and let v be a non-isolated vertex of G which is contained
in no triangle. Then NG(v) is a simplex of IG and

IG ≃ Σ(st(v) ∩ SC(NG(v))).

Proof. Since v is contained in no triangle, its neighbor setNG(v) is independent. Moreover,
it is non-empty by hypothesis and then it is a simplex of IG. By Lemma 3.2, SCIG(NG(v))
is contractible.

If an independent set σ of G cannot be extended to v, then one of its vertices w is
adjacent to v in G. Then σ ∈ st(w) ⊆ SC(NG(v)). Therefore, st(v) ∪ SC(NG(v)) = IG
and the result follows from Lemma 3.3. �

Since the reduced homology group H̃n(Σ(K)) is isomorphic to H̃n−1(K), we deduce the
following

Corollary 3.6. If K is the independence complex of a triangle-free graph, H1(K) is a free
abelian group.

As a consequence of Theorem 3.4 we obtain that independence complexes of bipartite
graphs are suspensions, up to homotopy. That corollary was originally proved by Nagel
and Reiner [28, Proposition 6.2] and by Jonsson [24]. They also proved the converse of



STAR CLUSTERS IN INDEPENDENCE COMPLEXES OF GRAPHS 7

that result using the Nerve Lemma in [28] and discrete Morse theory in [24]. Here we
exhibit a short proof using star clusters.

Theorem 3.7 (Nagel−Reiner, Jonsson). For any complex K there exists a bipartite graph
G whose independence complex IG is homotopy equivalent to Σ(K).

Proof. Let V be the set of vertices of K and let W be the set of maximal simplices of K.
Take as in [24] the bipartite graph G with parts V and W and whose edges are the pairs
(v, σ) with v a vertex of K and σ a maximal simplex such that v /∈ σ. Since V and W are
independent, they are simplices of IG, and SC(W ) is contractible by Lemma 3.2. Clearly
V ∩ SC(W ) = K and by Lemma 3.3, IG = V ∪ SC(W ) ≃ Σ(V ∩ SC(W )) = Σ(K). �

Corollary 3.8. The following homotopy classes of finite complexes coincide:
(1) Independence complexes of bipartite graphs.
(2) Independence complexes of triangle-free graphs.
(3) Independence complexes of graphs that have a vertex contained in no triangle.
(4) Suspensions of finite complexes.

Given a finitely generated abelian group Γ and an integer n ≥ 1, there exists a finite
simplicial complex K such that Hn(K) is isomorphic to Γ. Then for any n ≥ 2 and
any finitely generated abelian group Γ, there exist a bipartite graph G such that Hn(IG)
is isomorphic to Γ. In particular, the homology groups of independence complexes of
triangle-free graphs can have torsion with exception of degrees 0 and 1.

4. Further applications

Although the notion of star cluster was introduced to be used in the proof of Theorem
3.4, we will see that it is useful to attack many problems related to independence com-
plexes. In this section we will show some new results and we will also give alternative and
shorter proofs to known results.

4.1. A criterion for contractibility.

Example 4.1. Let n ≥ 3 be an odd integer. Let G be the graph with vertex set Zn ×
{a, b, c} and with edge set {((i, a), (i, b)) | i ∈ Zn} ∪ {((i, b), (i, c)) | i ∈ Zn} ∪ {((i, a), (i+
1, a)) | i ∈ Zn} ∪ {((i, c), (i+ 1, c)) | i ∈ Zn} (see Figure 2).

Figure 2. The graph described above for n = 5.

The set σ = {(i, b) | i ∈ Zn} is independent and its star cluster coincides with the
whole independence complex. Suppose that a simplex τ of IG is not in SC(σ). Then
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it contains a neighbor of (i, b) for every i ∈ Zn. However, (i, b) and (j, b) do not have
common neighbors if i 6= j and therefore τ has at least n vertices contained in the two
n-gons {((i, a), (i+ 1, a)) | i ∈ Zn} ∪ {((i, c), (i+ 1, c)) | i ∈ Zn}. But then one of the two
n-gons has n+1

2 vertices of τ , and thus, two of them are adjacent in G. This contradicts
the independence of τ .

The idea of the example above can be generalized in the following

Remark 4.2. Let v0, v1, . . . , vn be a set of vertices in a graph G such that the distance
between any two of them is at least 3. Suppose that for every collection of vertices
{w0, w1, . . . , wn} with wi ∈ NG(vi) for every i, we have that there are two of them wi, wj ,
which are adjacent. Then IG is contractible.

4.2. Cycles. In [25], Kozlov proved the following result

Theorem 4.3 (Kozlov). Let Cn be the cycle graph on n ≥ 3 elements with vertex set
Zn and edges {(i, i + 1) : i ∈ Zn}. Then the independence complex of Cn is homotopy
equivalent to Sk−1 if n = 3k ± 1 and to Sk−1 ∨ Sk−1 if n = 3k.

Proof. Assume n ≥ 6. Since the vertex v = n− 2 is contained in no triangle, by Theorem
3.5,

ICn ≃ Σ(st(v) ∩ SC(N(v))).

The simplices of st(v)∩SC(N(v)) are the independent sets σ of Cn which can be extended
to n−2 and simultaneously can be extended to n−1 or to n−3. Therefore, st(v)∩SC(N(v))
is isomorphic to ICn−3 . Thus, ICn is homotopy equivalent to the suspension of ICn−3 . The
result then follows by an inductive argument analyzing the cases n = 3, 4 and 5, which
are easy to check. �

In the proof we have used that suspensions of homotopy equivalent spaces have the
same homotopy type. This is easy to verify. We also used that for (pointed) complexes
K and L, Σ(K ∨ L) ≃ Σ(K) ∨ Σ(L). The corresponding result for reduced suspensions
is trivial, and that reduced and non-reduced suspensions are homotopy equivalent follows
from our first application of the gluing theorem.

The inductive step in this proof is a particular case of Proposition 4.9 below.

4.3. Forests. A forest is a graph wich contains no cycles. In [17, Corollary 6.1], Ehrenborg
and Hetyei prove that the independence complex of a forest is contractible or homotopy
equivalent to a sphere. This follows from a more technical result with a long proof. In a
later work [19, Proposition 3.3], it is proved in a very elegant way something stronger, that
such complexes are collapsible or that they collapse to the boundary of a cross-polytope.
This proof relies in the following key observation ([19, Lemma 3.2]):

Lemma 4.4 (Engström). Let v, w be two different vertices of a graph G. If NG(v) ⊆
NG(w), then IG collapses to IG r w, the subcomplex of simplices not containing w.

In fact the collapse of the statement is a strong collapse in the sense of [5]. Thus,
independence complexes of forests are strong collapsible or have the strong homotopy type
of the boundary of a cross-polytope (see [5] for definitions). The reader interested in
generalizations of Lemma 4.4 is suggested to look into [9] and [13]. In these papers it
is proved that the simple homotopy type of the clique complex of a graph is preserved
under the deletion of some vertices or edges. These results can be easily translated to
independence complexes.
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Here we present a different approach to Ehrenborg and Hetyei’s result using star clusters.

Theorem 4.5 (Ehrenborg−Hetyei). The independence complex of a forest is contractible
or homotopy equivalent to a sphere.

Proof. Let G be a forest. If G is discrete, then its independence complex is a simplex
or the empty set, which are contractible and a sphere, respectively. Assume then that
G is not discrete. Let v be a leaf of G and let w be its unique neighbor. By Theorem
3.5, IG ≃ Σ(st(v) ∩ st(w)). The simplices of the complex st(v) ∩ st(w) are exactly those
independent sets of G which can be extended to both v and w. Therefore st(v) ∩ st(w) is
the independence complex of the subgraph H of G induced by the vertices different from
w and any of its neighbors. By an inductive argument, IH has the homotopy type of a
point or a sphere, and then, so does IG. �

At this point it may seem that the complex st(v) ∩ SC(NG(v)) in the statement of
Theorem 3.5 is always the independence complex of some graph. However this is not the
case.

Consider the graph W of seven vertices of Figure 3. The vertex v is contained in no
triangle. The subcomplex st(v)∩SC(NG(v)) is isomorphic to the boundary of a 2-simplex
and in particular it is not clique.

v

Figure 3. The graph W .

Remark 4.6. In fact, if w is a non-isolated vertex of a graph G which is contained in no
triangle and st(w) ∩ SC(NG(w)) is not clique, there exists an induced subgraph H of G
which is isomorphic to W via an isomorphism H → W that maps w into v. Moreover
st(w) ∩ SC(NG(w)) is the independence complex of the subgraph of G induced by the
vertices u /∈ NG(w) such that NG(w) * NG(u) if there is no induced path of G of length
4 whose middle vertex is w.

This remark can be used for instance to prove the following result. The idea of the
proof is more interesting than the result itself.

Proposition 4.7. If G is a triangle-free graph with no induced paths of length 4, then IG
is homotopy equivalent to a sphere or it is contractible.

4.4. Edge subdivision and Alexander dual. Recall that the Alexander dual K∗ of a
simplicial complex K (K not a simplex) with vertex set V is a simplicial complex whose
simplices are the proper subsets σ of V such that V r σ /∈ K.

Let G be a graph. We denote by G′ the subdivision of G obtained when we subdivide
each edge of G inserting a new vertex on it.

The relationship between the independence complex of a graph and the one of its
subdivision is given by the following Theorem of Csorba ([15, Theorem 6]).

Theorem 4.8 (Csorba). Let G be a non-discrete graph. Then IG′ is homotopy equivalent
to Σ((IG)

∗).
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Csorba’s proof relies on the Nerve lemma [6, Theorem 10.6], but we exhibit here an
alternative simpler proof using the tools developed so far.

Proof. Let V be the set of vertices of G. Subdividing G adds a new set of vertices W ,
with one element vab for each edge (a, b) of G. Thus, the graph G′ is bipartite with parts
V and W . By Lemma 3.3,

IG′ = V ∪ SC(W ) ≃ Σ(V ∩ SC(W )).

The simplices of V ∩SC(W ) are the subsets σ of V which can be extended to some vertex
of W . However, σ ⊆ V can be extended to vab ∈ W if and only if a, b /∈ σ. Hence, σ ⊆ V
is in V ∩ SC(W ) if and only if there exists an edge (a, b) of G such that a, b ∈ V r σ,
which is equivalent to saying that V rσ is not independent or, in other words, σ ( V and
V r σ /∈ IG. Thus V ∩ SC(W ) = (IG)

∗ and the theorem follows. �

Another result dealing with subdivisions of edges is the following ([15, Theorem 11])

Proposition 4.9 (Csorba). Let G be a graph and e an edge of G. Let H be the graph
obtained from G by subdividing the edge e in four parts. Then IH ≃ Σ(IG).

Proof. The idea is the same as in Theorem 4.3. When the edge e is replaced by a path of
length 4, three new vertices appear. The vertex v in the middle of this path is contained
in no triangle and st(v) ∩ SC(NH(v)) is isomorphic to IG. �

From this result it is easy to compute inductively the homotopy types of independence
complexes of paths (cf. [25, Proposition 4.6]). IfG is a path, IG is contractible or homotopy
equivalent to a sphere.

4.5. Homology groups of relations. One result that is impossible not to mention when
working with complexes associated to bipartite graphs, is Dowker’s Theorem [16]. Given
finite sets X, Y and a relation R ⊆ X × Y , two complexes are considered. The simplices
of the complex KX are the non-empty subsets of X which are related to a same element of
Y . Symmetrically, the complex KY is defined. A theorem of C.H. Dowker [16, Theorem
1], states that KX and KY have isomorphic homology and cohomology groups. In fact
they are homotopy equivalent, and moreover, simple homotopy equivalent (see [4]). We
deduce Dowker’s Theorem from our ideas of star clusters applied to bipartite graphs.

Theorem 4.10 (Dowker). Let R be a relation between two finite sets X and Y . Then
Hn(KX) is isomorphic to Hn(KY ) and H

n(KX) is isomorphic to Hn(KY ) for every n ≥ 0.

Proof. We may assume that X and Y are non-empty. Let G be the bipartite graph with
parts X and Y and where x ∈ X is adjacent to y ∈ Y if x is not related to y. By
Lemma 3.3, Σ(X ∩ SC(Y )) ≃ IG ≃ Σ(SC(X) ∩ Y ). On the other hand it is clear that
X ∩ SC(Y ) = KX and SC(X) ∩ Y = KY . Therefore Σ(KX) and Σ(KY ) are homotopy
equivalent and in particular have isomorphic homology and cohomology groups. Then,
the latter is true also for KX and KY . �

4.6. Kneser graph. Let n ≥ 1 and k ≥ 0 be two integer numbers. The vertices of the
Kneser graph KGn,k are the n-subsets of the integer interval {1, . . . , 2n+k} and the edges
are given by pairs of disjoint subsets. The famous Kneser conjecture formulated in 1955 by
Martin Kneser states that the chromatic number of the graph KGn,k is k+2. For twenty
three years this problem remained open, until László Lovász managed to give finally a
proof. His argument is based on a topological result known as the Lusternik-Schnirelmann
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Theorem. This result which involves coverings of the sphere is equivalent to the Borsuk-
Ulam Theorem. As mentioned in the introduction, Lovász used the neighborhood complex
to turn the combinatorial data of the graph into the topological setting. A key step in his
proof is Theorem 1.1 in Section 1, which establishes a relationship between connectivity
properties of the neighborhood complex and chromatic properties of the graph. We will
now study not neighborhood complexes but the topology of independence complexes of
some Kneser graphs. We will explicitly compute the homotopy type of these complexes
in the particular case n = 2. In this section we will not derive any results in connection
with chromatic numbers of graphs. However, the relationship between colorability and
independence complexes will be analyzed in Section 6 of the paper, where the names of
L. Lusternik and L. Schnirelmann will reappear in connection to the LS-category, which
is also related to coverings of spaces.

The so called stable Kneser graph SGn,k is the subgraph of KGn,k induced by the stable
subsets, i.e. subsets containing no consecutive elements (nor 1 and 2n+k). In [11], Braun
studies the homotopy type of the independence complex of the stable Kneser graph for
n = 2 and proves that for k ≥ 4, ISG2,k

is homotopy equivalent to a wedge of 2-dimensional
spheres (see [11, Theorem 1.4]). His proof uses discrete Morse theory. Here we show a
similar result for the non-stable case.

Theorem 4.11. Let k ≥ 0. Then the independence complex of KG2,k is homotopy equiv-

alent to a wedge of
(
k+3
3

)
spheres of dimension two.

Proof. The simplices of the independence complex I are given by sets of pairwise intersect-
ing 2-subsets of [k+4]. Thus, the maximal simplices of I are of the form σa = {{a, b}}b 6=a
for some 1 ≤ a ≤ k + 4 or of the form τa,b,c = {{a, b}, {a, c}, {b, c}} for some dis-
tinct a, b, c ∈ [k + 4]. The star cluster SC(σ1) contains all the simplices σa because
σa ∈ st({1, a}) ⊆ SC(σ1) for every a 6= 1. Moreover τ1,a,b ∈ SC(σ1) for any a, b. However
if a, b, c are different from 1, the simplex τa,b,c is not in SC(σ1), although its boundary
is. Therefore, I is obtained from SC(σ1) attaching 2-cells, one for each triple {a, b, c} of

elements different from 1. The quotient I/SC(σ1) is a wedge of
(
k+3
3

)
spheres of dimension

two, and since SC(σ1) is contractible, it is homotopy equivalent to I. �

4.7. Square grids. Let n,m be two non-negative integers. The graph G(n,m) is defined
as follows. The vertices are the points (x, y) of the plane with integer coordinates such
that −x ≤ y ≤ x and x−m ≤ y ≤ −x+n. Two vertices are adjacent if their distance is 1.
Similarly, the vertices of the graph H(n,m) are the points of Z2 such that −x−1 ≤ y ≤ x
and x−m ≤ y ≤ −x+n− 1, and again adjacent vertices correspond to points at distance
1. It is proved in [10, Theorem 6] that the homotopy type of the complexes IG(n,m) and
IH(n,m) is the one of a sphere or a point. The original proof uses discrete Morse theory
although there is a very simple argument based on Lemma 4.4. This nice idea by Cukic
and Engström is explained in the final remark of [10]. Just as another example we give an
alternative proof of this result which is an application of star clusters.

Given non-negative integers n,m and k, consider the subgraph G̃(n,m, k) of G(n,m)
induced by the points which satisfy y ≥ −x + k or y ≤ x − 3. It is easy to see

that G̃(n,m, 0) = G(n,m) and that G̃(n,m + 3, k) is isomorphic to H(n,m) if k > n.

Analogously, H̃(n,m, k) is the subgraph of H(n,m) induced by the points satisfying

y ≥ −x + k − 1 or y ≤ x − 3. Therefore H̃(n,m, 0) = H(n,m) and H̃(n,m + 3, k) is
isomorphic to G(n,m) if k > n.
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Lemma 4.12. If k < n and m 6= 0, then

I
G̃(n,m,k)

≃ Σ(I
G̃(n,m,k+3)

)

and
I
H̃(n,m,k)

≃ Σ(I
H̃(n,m,k+3)

).

Proof. The condition k < n and m 6= 0 ensures that the vertex v = ([k+1
2 ], [k+1

2 ]) is

in G̃(n,m, k) and it is not isolated. Since it is contained in no triangle, I
G̃(n,m,k)

≃

Σ(st(v) ∩ SC(N
G̃(n,m,k)

(v))).

v

Figure 4. The graph G̃(7, 6, 3). The complex st(v) ∩ SC(N(v)) is the

independence complex of the subgraph G̃(7, 6, 6) induced by the round
vertices.

The vertex v is not the middle vertex of an induced path of length 4, therefore by Remark
4.6, st(v)∩SC(N

G̃(n,m,k)
(v)) is the independence complex of the subgraph induced by the

vertices w which are not adjacent to v and such that there is some neighbor of v which is

not adjacent to w. This graph is exactly G̃(n,m, k+3). The assertion for H̃ follows from
a similar argument. �

Proposition 4.13. Let n,m, k ≥ 0. Then I
G̃(n,m,k)

is contractible or homotopy equivalent

to a sphere. The same is true for I
H̃(n,m,k)

.

Proof. We prove both statements simultaneously by induction, first inm and then in n−k.
If m = 0, G̃(n,m, k) is discrete. If it is non-empty, its independence complex is a simplex
and otherwise it is a −1 dimensional sphere. Assume then that m > 0. If n− k < 0, then

G̃(n,m, k) is empty when m = 1, 2 and it is isomorphic to H(n,m− 3) = H̃(n,m− 3, 0)
when m ≥ 3. Thus the case n− k < 0 follows by induction. Suppose then that k ≤ n.

If k = n, the vertex v = ([n+1
2 ], [n2 ]) ∈ G̃(n,m, k) is isolated, and then the independence

complex is contractible. We can assume that m,n and k satisfy the hypothesis of Lemma
4.12. Therefore I

G̃(n,m,k)
≃ Σ(I

G̃(n,m,k+3)
) and by induction, it has the homotopy type of

a sphere or a point.
Similarly the same is true for I

H̃(n,m,k)
. �

In particular when k = 0 we obtain the result of [10].

Corollary 4.14 (Bousquet-Mélou−Linusson−Nevo). The independence complexes of the
graphs G(n,m) and H(n,m) are contractible or homotopy equivalent to a sphere.
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4.8. Order complexes. The order complex of a finite poset P is the simplicial complex
whose simplices are the non-empty chains of P . Order complexes are clique and therefore
it is possible to use our results to study them.

Example 4.15. The order complex of the poset whose Hasse diagram is in Figure 5 is
contractible. The points of the diagonal constitute a chain σ which intersects any maximal

Figure 5. A poset with a chain that intersects all the maximal chains.

chain of the poset. In other words, the order complex of P is the star cluster of σ.

The following result summarizes the idea of the example.

Proposition 4.16. Let P be a finite poset. Suppose that there exists a chain of P which
intersects any maximal chain. Then the order complex of P is contractible.

In fact it can be proved that in the hypothesis of the proposition, the poset P is dis-
mantlable, or equivalently that the order complex is strong collapsible, which is something
stronger (see [5]). Order complexes appear in problems of different areas of mathematics,
like algebraic topology, combinatorics, group theory and discrete geometry. They allow
to establish the relationship between the homotopy theory of simplicial complexes and of
finite topological spaces [3].

5. Matching complexes and claw-free graphs

The paper [17], that we have already discussed, concludes with a question about the
homotopy type of a polyhedron called Stirling complex.

Definition 5.1. Let n ≥ 2. The vertices of the Stirling complex Stirn are the pairs (i, j)
with 1 ≤ i < j ≤ n. The simplices are given by sets of vertices which pairwise differ in
the first and in the second coordinate.

The number of k-dimensional simplices of Stirn is the Stirling number of second kind
S(n, n − k − 1) (see [31, Proposition 2.4.2]). In our attempt to attack this problem, we
will prove a general result on the connectivity of a certain class of well-known complexes.

Given a graph G, its matching complex M(G) is defined as the simplicial complex
whose simplices are the non-trivial matchings of G, that is, the non-empty collections
of edges which are pairwise non-adjacent. It is easy to see that matching complexes are
independence complexes of graphs. Precisely,M(G) = IE(G), where E(G) denotes the edge
graph (or line graph) of G. The vertices of E(G) are the edges of G and its edges are given
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by adjacent edges of G. In the last twenty years, two (classes of) matching complexes
were particularly studied. One is the matching complex Mn of the complete graph Kn.
The other, known as the chessboard complex Mn,m, is the independence complex of the
complete bipartite graph Kn,m. The vertices of the chessboard complex Mn,m can be
considered as the squares of an n×m chessboard and its simplices as the sets of squares
which can be occupied by rooks in such a way that no rook attacks another. Note that
the Stirling complex Stirn also is a matching complex and it is closely related to Mn,m.
The difference is that in Stirn the rooks are only allowed to be above the diagonal.

Some of the most important results obtained in relation to the homotopy of the spaces
Mn andMn,m are about connectivity and existence of torsion in homology groups. Bounds

for the connectivity were proved by Björner, Lovász, Vrećica, Živaljević [7] and Bouc [8].

Theorem 5.2 (Björner−Lovász−Vrećica−Živaljević, Bouc). Let n,m be positive integers.
Then Mn is [n−5

3 ]-connected and Mn,m is min{n− 2,m− 2, [n+m−5
3 ]}-connected.

It was conjectured in [7] that the bounds given by this result are in fact optimal. Some
cases were first established by Bouc [8] but the complete result was obtained by Shareshian
and Wachs [29].

In this section we will prove a general bound for the connectivity of a matching complex.
In fact we will show a stronger result, regarding independence complexes of claw-free
graphs. In particular we will apply this to study the Stirling complex. We will also use
these ideas to prove two results on the connectivity of independence complexes of general
graphs.

Definition 5.3. A graph is called claw-free if it has no induced subgraph isomorphic to
the complete bipartite graph K1,3.

The following result is due to Engström [18, Theorem 3.2].

Theorem 5.4 (Engström). Let G be a claw-free graph with n vertices and maximum
degree m. Then IG is [ 2n−1

3m+2 − 1]-connected.

The maximum degree of a graph is the maximum degree of a vertex of the graph. This
improves a similar result for general graphs which says that IG is [n−1

2m − 1]-connected (see
[19]). More results about connectivity and homotopy of independence complexes of graphs
with bounded maximum degree will be given in Section 7. The main result of this section
is the following bound for the connectivity of independence complexes of claw-free graphs
which does not depend on the maximum degree m.

Theorem 5.5. Let G be a claw-free graph. Then IG is [dim(IG)−2
2 ]-connected.

Proof. Let σ be an independent set of G of maximum cardinality d + 1 = dim(IG) + 1.
Suppose that τ ∈ IG and r = dim(τ) ≤ [d−2

2 ]. Since G is claw-free and σ is independent,
every vertex of τ is adjacent to at most two vertices of σ. Since 2(r + 1) ≤ d < d + 1,
there is a vertex of σ which is not adjacent to any vertex of τ . Therefore the independent
set τ can be extended to some vertex of σ, which means that τ ∈ SC(σ). Since SC(σ)
contains the [d−2

2 ]-skeleton of IG, the relative homotopy groups πk(IG, SC(σ)) are trivial

for k ≤ [d−2
2 ]. The result now follows from the contractibility of SC(σ) and the long exact

sequence of homotopy groups of the pair (IG, SC(σ)),

. . .→ πk(SC(σ)) → πk(IG) → πk(IG, SC(σ)) → . . .

�
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This bound and Theorem 5.4 give different information. In same cases the number

[ 2n−1
3m+2 − 1] is smaller than [dim(IG)−2

2 ] and in others it is bigger.
Since the homology of a complex is trivial for degrees greater than its dimension and

since the homology groups of degree less than or equal to k are trivial for k-connected
complexes by the Hurewicz theorem, from Theorem 5.5 we deduce the following

Corollary 5.6. Let G be a claw-free graph. Then there exists an integer n such that the
support of the reduced homology of IG lies in the interval {[n2 ], . . . , n}.

Example 5.7. The independence complex of the claw-free graph in Figure 6 is homotopy
equivalent to S1 ∨ S2. Therefore, the support of its reduced homology is exactly the
interval {[22 ], . . . , 2}.

Figure 6. A claw-free graph G such that H̃k(IG) 6= 0 only for k = 1 and
k = 2.

The following observation shows that there is a direct relationship between matching
complexes and claw-free graphs.

Remark 5.8. If three edges in a graph G are adjacent to a same other edge, then two of
the first are adjacent. Therefore for every graph G, the edge graph E(G) is claw-free. In
particular the matching complex M(G) is the independence complex of a claw-free graph.

Example 5.9. The graph G of Figure 7 is claw-free but it is not isomorphic to E(H) for
any graph H. Therefore IG is the independence complex of a claw-free graph which is not
isomorphic to any matching complex, for if IG were isomorphic to M(H) = IE(H), then
the complementary graphs of their 1-skeletons, G and E(H) should be isomorphic graphs.

Figure 7. A claw-free graph whose independence complex is not a match-
ing complex.

Corollary 5.10. If K is a matching complex, then it is [dim(K)−2
2 ]-connected. In particular

there is an integer n such that the support of H̃(K) lies in {[n2 ], . . . , n}.

Since the dimension of Stirn is n− 2, we deduce the following

Corollary 5.11. The Stirling complex Stirn is [n−4
2 ]-connected.
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Analogous results could be deduced for the complexes Mn and chessboard complexes.
Corollary 5.10 says that Mn is

[
dim(Mn)− 2

2
] = [

1

2
([
n

2
]− 1− 2)] = [

1

2
[
n− 6

2
]] = [

n− 6

4
]-connected,

and that Mn,m is

[
dim(Mn,m)− 2

2
] = [

n− 3

2
]-connected

if n ≤ m. Therefore the bounds given by Theorems 5.5 and 5.10 are not optimal in
these particular examples in contrast with the bounds of Theorem 5.2. However, we prove
that in the generality of Theorems 5.5 and 5.10, the bounds we exhibit are sharp in the
following sense:

Proposition 5.12. For every non-negative integer n there exists a matching complex K
(and therefore an independence complex of a claw-free graph) such that K is n-dimensional
and it is not [n2 ]-connected.

Proof. Given k ≥ 1 consider the graph Ak which is a disjoint union of k squares and the
graph Bk which is the disjoint union of two adjacent edges and k − 1 squares (see Figure
8).

. . .

Ak

. . .

B k

Figure 8. Graphs Ak and Bk.

The complex M(Ak) is the independence complex of E(Ak) = Ak, which is the join of
the independence complexes of the connected components of Ak. Since the independence
complex of a square is homotopy equivalent to S0, M(Ak) ≃ (S0)∗k = Sk−1 is not (k− 1)-
connected. On the other hand dim(M(Ak)) = 2k − 1. Therefore we have constructed a
matching complex which is (2k − 1)-dimensional but not [2k−1

2 ] = (k − 1)-connected.
Similarly, M(Bk) is the independence complex of E(Bk), which is the disjoint union of

an edge and k − 1 squares. Therefore M(Bk) ≃ Σ((S0)∗(k−1)) = Sk−1. Thus M(Bk) is
(2k − 2)-dimensional but not [2k−2

2 ] = (k − 1)-connected.
Clearly the numbers 2k − 1 and 2k − 2 take all the non-negative integer values for

k ≥ 1. �

A difficult problem seems to be the classification of all the homotopy types of matchings
complexes and of independence complexes of claw-free graphs or, at least to see whether
these two sets differ.

Theorem 5.5 can be deduced from the following result.
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Proposition 5.13. If σ is an independent set of a graph G such that every independent
set τ of G with at most r vertices can be extended to some vertex of σ, then IG is (r− 1)-
connected.

The proof can be made as for Theorem 5.5 using the long exact sequence of homotopy
groups of the pair (IG, SC(σ)) (or collapsing SC(σ) and using cellular approximation).
This result appears mentioned in [1] where the notion of bi-independent domination number
of a graph is introduced. In [1] other general bounds for the connectivity of independence
complexes are stated in connection with different notions of domination numbers. The
proof of this particular result is really simple using star clusters. A useful application of
Proposition 5.13 to general graphs is the next

Corollary 5.14. Let G be a graph. Let S be a subset of vertices of G which satisfies that
the distance between any two elements of S is at least 3. Then IG is (#S − 2)-connected.

The last result of this section relates the connectivity of the independence complex of
a general graph G with the diameter of G.

Corollary 5.15. Let G be a connected graph of diameter n. Then IG is [n3 −1]-connected.

Proof. Let v, w ∈ G such that d(v, w) = n and let v = v0, v1, . . . , vn = w be a path in G.
Then the set S = {v0, v3, . . . , v3[n

3
]} satisfies the hypothesis of Corollary 5.14. �

6. Chromatic number and Strong Lusternik-Schnirelmann category

In this section we present a new approach to study the relationship between the chro-
matic number of a graph and the topology of the associated complex. The category of a
topological space is a numerical homotopy invariant that was introduced by L. Lusternik
and L. Schnirelmann in the thirties. This deeply studied notion is closely related to other
well known concepts such as the cup length (the maximum number of positive degree
elements in the cohomology ring whose product is non-trivial); the minimum number of
critical points of a real valued map, when the space is a manifold; the homotopical dimen-
sion of the space. The category of a space in general is not easy to determine. The reader
is referred to [14] for results on this invariant.

Definition 6.1. Let X be a topological space. The strong (Lusternik-Schnirelmann) cat-
egory Cat(X) of X is the minimum integer number n such that there exists a CW-complex
Y homotopy equivalent to X which can be covered by n + 1 contractible subcomplexes.
If there is not such an integer, we say that Cat(X) is infinite.

For instance, a space has strong category 0 if and only if it is contractible. Lemma
3.3 is still true if we consider not necessarily finite CW-complexes and therefore a space
has strong category less than or equal to 1 if and only if it has the homotopy type of a
suspension. The 2-dimensional torus S1 × S1 is an example of space with strong category
equal to 2. There are spaces with arbitrarily large strong category. The following results
establish a direct relationship between the chromatic number of a graph and the strong
category of its independence complex.

Theorem 6.2. Let G be a graph. Then χ(G) ≥ Cat(IG) + 1.

Proof. Let n = χ(G). Then the set of vertices of G can be partitioned into n independent
sets. The star clusters of these sets cover IG. �
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We will see that Cat(IG) is in fact a lower bound for a local parameter which can be
much smaller than the chromatic number. Note for instance that if G has one isolated
vertex, then IG is contractible and therefore its strong category is 0.

In the next, NG(v) denotes the subgraph of G induced by the neighbors of v.

Theorem 6.3. Let v be a vertex in a graph G. Then

Cat(IG) ≤ χ(NG(v)).

Proof. If n = χ(NG(v)), then the set of neighbors of v can be partitioned into n indepen-
dent sets σ1, σ2, . . . , σn. The contractible subcomplexes st(v), SC(σ1), SC(σ2), . . . , SC(σn)
cover IG since an independent set which cannot be extended to v must contain a neighbor
of v. Thus, Cat(IG) ≤ n. �

Example 6.4. The chromatic number of the graph G of Figure 9 is 4. However the bound
of Theorem 6.2 is not sharp since there is a vertex v such that χ(NG(v)) = 2 and then, by
Theorem 6.3, Cat(IG) ≤ 2. In this case, the equality holds.

v

Figure 9. The graph G in Example 6.4.

Unfortunately, the numbers Cat(IG) and χ(NG(v)) of Theorem 6.3 can be very far one
from the other. Consider the Kneser graph G = KG2,k for k ≥ 2. Then the subgraph
induced by the neighbors of any vertex v = {a, b} is isomorphic to KG2,k−2. By the
Theorem of Lovász, the Kneser conjecture, χ(NG(v)) = k. On the other hand Cat(IG) = 1
since IG is homotopy equivalent to a wedge of 2-dimensional spheres by Corollary 4.11.

Example 6.5. It is well known that the cup-length of a space is a lower bound for the
strong category. The cup length of the complex projective space CPn equals its complex
dimension n. In particular we deduce from Theorem 6.2 that if G is a graph whose
independence complex is homotopy equivalent to CPn, then χ(G) ≥ n+ 1.

The cup length of the n-dimensional torus Tn is also n. Therefore if IG ≃ Tn, χ(G) ≥
n+ 1.

Corollary 6.6. If G is a planar graph, then Cat(IG) ≤ 3.

Proof. This follows immediately from the Four color theorem and Theorem 6.2, but we
give a proof using more basic results. Since G is planar, there exists a vertex v of degree
less than or equal to five. Again, by the planarity of G, the subgraph NG(v) induced by
the neighbors of v does not contain a clique of four vertices. Then it is easy to check that
χ(NG(v)) ≤ 3 and the result follows from Theorem 6.3. �

Theorem 6.3 can be used to obtain lower bounds for the chromatic number of a graph
G, since for any graph H containing a vertex v such that NH(v) is isomorphic to G, we
have χ(G) ≥ Cat(IH). However, we show that these bounds do not improve the one given
by Theorem 6.2.
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Proposition 6.7. Let G and H be two graphs such that there exists a vertex v of H with
NH(v) isomorphic to G. Then Cat(IH) ≤ Cat(IG) + 1.

Proof. Let G′ = NH(v). Let K = IG′ and let L be the full subcomplex of IH spanned by
the vertices which are different from v and all its neighbors. We consider IG realized in an
euclidean space. The points of the space IH which are not in st(v) are convex combinations
(1− t)k + tl of a point k of K and a point l of L. Let

K̃ = {(1− t)k + tl ∈ IH | k ∈ K, l ∈ L and 0 ≤ t ≤
1

2
},

L̃ = {(1− t)k + tl ∈ IH | k ∈ K, l ∈ L and
1

2
≤ t ≤ 1}.

A linear homotopy shows that K is a strong deformation retract of K̃. Analogously, L is

a strong deformation retract of L̃ and therefore, st(v) = st(v) ∪ L is a strong deformation

retract of st(v) ∪ L̃. The spaces K̃ and L̃ are regular CW-complexes, moreover they are

polytopal complexes, and their intersection K̃ ∩ L̃ is a subcomplex of both.
Let n = Cat(IG), then there exists a CW-complex homotopy equivalent to IG which

can be covered by n + 1 contractible subcomplexes. By [27, Theorem 2], there is a sim-
plicial complex R ≃ IG which can can be covered by n + 1 contractible subcomplexes
R0, R1, . . . , Rn. We do not need R to be finite.

Let ϕ : α(K̃) → R be a simplicial homotopy equivalence where α(K̃) denotes a sub-

division of K̃ which is simplicial. The map ϕ can be obtained by taking any simplicial

approximation of a homotopy equivalence (K̃)′ → R, where (K̃)′ is the barycentric sub-

division of the regular CW-complex K̃.

The subdivision α(K̃) induces a subdivision α(K̃ ∩ L̃) in K̃ ∩ L̃. Since the map ψ =

ϕ|
α(K̃∩L̃)

: α(K̃ ∩ L̃) → R is simplicial, ψ−1(Ri) is a subcomplex of α(K̃ ∩ L̃) for every

0 ≤ i ≤ n. The mapping cylinders Mψi
of the restrictions ψi = ψ|ψ−1(Ri) : ψ

−1(Ri) → Ri
constitute a cover of Mψ by contractible subcomplexes. This idea of the construction of
the mapping cylinder Mψ and its cover is essentially contained in Ganea’s proof of [22,

Proposition 2.1]. If R was just a CW-complex and ϕ : K̃ ∩ L̃ → R a cellular map, then

ψ−1(Ri) would not be a subcomplex of K̃ ∩ L̃ in general. This is why we need to work in
the simplicial setting.

Let g : R → α(K̃) be a homotopy inverse of ϕ and let H : α(K̃ ∩ L̃) × I → α(K̃) be

a homotopy such that Hi0 = gϕi and Hi1 = i, where i : α(K̃ ∩ L̃) →֒ α(K̃) denotes the
canonical inclusion. By the universal property of the pushout

α(K̃ ∩ L̃)
i0
//

ψ

��

α(K̃ ∩ L̃)× I

ψ

�� H

��

R
j0

//

g
--

Mψ

F

%%

α(K̃)

there exists a map F :Mψ → α(K̃) such that Fψ = H and Fj0 = g. We will identify the

space α(K̃ ∩ L̃) with ψi1(α(K̃ ∩ L̃)) ⊆ Mψ. Therefore F |α(K̃∩L̃)
= 1

α(K̃∩L̃)
. Moreover, F
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is a homotopy equivalence since Fj0 = g where j0 and g are homotopy equivalences. Since

the inclusions of α(K̃ ∩ L̃) in both Mψ and α(K̃) are cofibrations, we obtain by [12, 7.2.8]

that F is a homotopy equivalence relative to α(K̃ ∩ L̃).

Since L̃ ∪ st(v) ≃ st(v) is contractible, the inclusion α(K̃ ∩ L̃) →֒ L̃ ∪ st(v) extends to

a map f : C(α(K̃ ∩ L̃)) → L̃ ∪ st(v) from the cone of α(K̃ ∩ L̃), and again, since the

inclusions of α(K̃∩ L̃) in both L̃∪st(v) and C(α(K̃∩ L̃)) are cofibrations, f is a homotopy

equivalence relative to α(K̃ ∩ L̃). We conclude that F and f together give a homotopy
equivalence

Mψ

⋃

α(K̃∩L̃)

C(α(K̃ ∩ L̃)) → α(K̃)
⋃

α(K̃∩L̃)

L̃ ∪ st(v) = IH .

Since the simplicial complex Mψ

⋃

α(K̃∩L̃)

C(α(K̃ ∩ L̃)) is covered by n + 2 contractible

subcomplexes Mψ0 ,Mψ1 , . . . ,Mψn
and C(α(K̃ ∩ L̃)), Cat(IH) ≤ n+ 1.

�

We conclude this section with two questions. An affirmative answer would say that the
bounds given in Theorems 6.2 and 6.3 are sharp in some sense.

Question 1. Is it true that for any finite simplicial complex K there exists a graph G
such that IG is homotopy equivalent to K and χ(G) = Cat(K) + 1?

Question 2. Is it true that for any finite simplicial complex K there exists a graph G
with a vertex v such that IG is homotopy equivalent to K and χ(NG(v)) = Cat(K)?

Of course, a positive answer to the first question gives an affirmative answer to the
second. If χ(G) = Cat(K)+1, then for any vertex v ∈ G, χ(NG(v)) ≤ χ(G)−1 = Cat(K),
and by Theorem 6.3 the equality holds. Question 1 has a positive answer if Cat(K) ≤ 1
in view of Theorem 3.7.

7. Suspensions of graphs

We introduce a construction that will allow us to generalize some results mentioned
in the previous sections and a new result of Skwarski [30] on independence complexes
of planar graphs. We will also use this to prove some results on graphs with bounded
maximum degree.

Definition 7.1. Let G be a graph and H ⊆ G a subgraph. The suspension of G over H
is a graph S(G,H) whose vertices are those of G, a new vertex v, and a new vertex vM for
each maximal independent set of vertices M in the graph H. The edges of S(G,H) are
those edges of G which are not edges of H, the pairs (v, vM ) and the pairs (w, vM ) with
w a vertex of H which is not contained in M .

Proposition 7.2. Let H be a subgraph of a graph G. Then the independence complex of
S(G,H) is homotopy equivalent to Σ(IG).

Proof. Since v is contained in no triangle, by Theorem 3.5 it is enough to prove that
stIS(G,H)

(v) ∩ SC(NS(G,H)(v)) = IG. Let σ ∈ st(v) ∩ SC(N(v)) and let w,w′ ∈ σ. It

is clear that w,w′ ∈ G. Suppose that w,w′ ∈ H. The fact that {w,w′} ∈ SC(N(v))
says that there exists a maximal independent set M of H such that {w,w′} ⊆M and, in
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particular, (w,w′) is not an edge of H. Since σ is independent in S(G,H), (w,w′) is not an
edge of G either. Since this is true for any pair of vertices w,w′ ∈ σ, σ ∈ IG. Conversely, if
σ 6= ∅ is an independent set of vertices of G, it is also independent in S(G,H). Moreover
σ ∩ H is independent in H and then there exists a maximal independent set M of H
containing σ ∩H. Thus, σ can be extended to vM . Therefore σ ∈ st(v) ∩ SC(N(v)). �

If the subgraph H is discrete, then S(G,H) is just the disjoint union of G and an
edge. If H is an edge, then S(G,H) is the subdivision described in Proposition 4.9, which
consists of replacing the edge by a path of length 4. If H = G then S(G,H) is a bipartite
graph. Taking a graph G such that IG is the barycentric subdivision of a complex K, this
provides an alternative proof of Theorem 3.7 which says that for any complex K there
exists a bipartite graph whose independence complex is homotopy equivalent to Σ(K).
An interesting application of Proposition 7.2 is the following alternative proof of a result
recently proved by Skwarski [30].

Theorem 7.3 (Skwarski). Let K be a complex. Then there exists a planar graph whose
independence complex is homotopy equivalent to an iterated suspension of K.

Proof. By Proposition 7.2 it is enough to show that for any graph G there is a sequence
G = G0, G1, . . . , Gn of graphs in which Gi+1 is the suspension of Gi over some subgraph
Hi, and such that Gn is planar. We will show that this is possible taking the subgraphs
Hi ⊆ Gi as just one edge or two non-adjacent edges.

We consider the graph G drawn in the plane, in such a way that the vertices are in
general position, all the edges are straight lines and no three of them are concurrent.

Suppose that only two edges (w0, w1), (z0, z1) of G intersect. In this case we take the
subgraph H as the union of these edges. The suspension S(G,H) is a planar graph.
Indeed, it is possible to find an embedding of S(G,H) in the plane keeping all the vertices
of G fixed, choosing v as the intersection of (w0, w1) and (z0, z1), and each of the other
four new vertices v{wi,zj} (i, j ∈ Z2) in the triangle wi+1vzj+1 closely enough to v (see

Figure 10).
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z

1

1

0

0w
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1

1

0

0w

Figure 10. In the graph at the left two edges intersect. At the right, a
suspension of the graph embedded in the plane.

Now suppose that in the general case G has an arbitrary number of intersecting edges.
First we subdivide the edges, making suspensions over one edge at the time, in such a
way that the resulting graph is drawn in the plane with each edge intersecting at most
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one other edge. Then we take suspensions one at the time over each pair of intersecting
edges, following the idea of the basic case described above. In each step the number of
intersecting edges is reduced by one, and finally a planar graph is obtained. �

This result says that the homology groups of planar graphs can be arbitrarily compli-
cated. On the other hand Corollary 6.6 asserts that not any homotopy type is realized as
the independence complex of a planar graph. It remains as an open problem the descrip-
tion of the homotopy types of independence complexes of planar graphs.

Recall once again that the maximum degree of a graph G is the maximum number m
among all the degrees of the vertices of G. If m = 1, IG is homotopy equivalent to a
sphere or it is contractible. If m ≤ 2, G is a disjoint union of cycles and paths, and by the
results of Section 4, IG is contractible or homotopy equivalent to a join of discrete spaces
of cardinalities 2 or 3. Since for complexes K,L, we have that K ∗ L ≃ Σ(K ∧ L), where
K ∧L denotes the smash product between K and L, it is easy to see that the join between
r∨
i=1

Sn and the discrete space of k points is homotopy equivalent to
r(k−1)∨
i=1

Sn+1. Therefore

by an inductive argument it is possible to prove the following

Proposition 7.4. A complex K is homotopy equivalent to the independence complex of a
graph with maximum degree m ≤ 2 if and only if K is contractible or homotopy equivalent

to
2r∨
i=1

Sn for some n ≥ r − 1.

The next case, for graphs with maximum degree less than or equal to 3 is already much
more complex. We will use suspensions of graphs to prove a result similar to Theorem 7.3
for that class.

Theorem 7.5. Let K be a complex. Then there exists a graph of maximum degree not
greater than 3 whose independence complex is homotopy equivalent to an iterated suspen-
sion Σr(K) of K.

Proof. As in the proof of Theorem 7.3, we will see that for any graph G there exists a
sequence of graphs, each of which is the suspension of the previous one over some subgraph,
that starts in G and ends in a graph with maximum degree less than or equal to 3. We
make the proof by induction (in the sum of the degrees of the vertices v ∈ G such that
deg(v) > 3).

Suppose that G contains a vertex w of degree greater than 3. Let w1 and w2 be two
different neighbors of w. Consider the subgraph H which consists of the vertices w,w1, w2

and the edges (w,w1), (w,w2). The suspension S(G,H) contains the vertices of G and
three new vertices v, v{w} and v{w1,w2}. The degrees in S(G,H) of the vertices different
from w, v, v{w} and v{w1,w2} are the same as in G. But degS(G,H)(w) = degG(w) − 1,
deg(v) = 2, deg(v{w}) = 3 and deg(v{w1,w2}) = 2. By induction there exists a sequence as
we want starting in S(G,H), and therefore there is one starting in G. �

As we mentioned in Section 5, the independence complex of a graph with n vertices
and maximum degree m is [n−1

2m − 1]-connected. The ideas used in that section lead us
to a similar result but involving the dimension of the complex instead of the number of
vertices.
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Proposition 7.6. Let G be a graph of maximum degree m. Then IG is [dim(IG)
m

− 1]-
connected.

Proof. Let σ be an independent set of G of maximum cardinality d+ 1 = dim(IG) + 1. If
another independent set τ has at most [ d

m
] vertices, it can be extended to some vertex of

σ. The result follows then from Proposition 5.13. �

We can deduce then that if G has maximum degree m, the support of the homology
of IG lies in an interval of the form {[ n

m
], . . . , n}. Therefore, the independence complexes

of graphs with maximum degree 3 do not cover all the homotopy types of complexes.
Moreover, the previous remark gives a lower bound for the number r in the statement of

Theorem 7.5. If H̃i(K) 6= 0 6= H̃j(K) for some i < j, then r has to be greater than j−3i−3
2 .

If Σr(K) ≃ IG for G of maximum degree at most 3, then {i+r, j+r} ⊆ supp(H̃(Σr(K))) ⊆
{[n3 ], . . . , n} for some n. In particular i+r ≥ [n3 ] >

n
3 −1, j+r ≤ n, and hence r > j−3i−3

2 ,
as we claimed.

Given a class C of graphs with bounded maximum degree, the homotopy types of the
independence complexes of elements of C is a proper subset of the set of homotopy types
of complexes. In other words, we have the following

Corollary 7.7. Given a positive integer n, there exists a complex K such that for any
graph G with IG ≃ K, the maximum degree of G is strictly greater than n.

Example 7.8. If G is such that IG ≃ S1 ∨S10, then there exists a vertex v ∈ G of degree
at least 6. Since H10(S

1 ∨ S10) = Z 6= 0, dim(IG) ≥ 10 and then IG is [10
m

− 1]-connected,

where m is the maximum degree of G. Since S1 ∨ S10 is not simply connected, then
[10
m

− 1] < 1 and therefore m ≥ 6.
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