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Abstract. We present a new approach to simple homotopy theory of polyhedra using
finite topological spaces. We define the concept of collapse of a finite space and prove
that this new notion corresponds exactly to the concept of a simplicial collapse. More
precisely, we show that a collapse X ց Y of finite spaces induces a simplicial collapse
K(X) ց K(Y ) of their associated simplicial complexes. Moreover, a simplicial collapse
K ց L induces a collapse X (K) ց X (L) of the associated finite spaces. This estab-
lishes a one-to-one correspondence between simple homotopy types of finite simplicial
complexes and simple equivalence classes of finite spaces. We also prove a similar re-
sult for maps: We give a complete characterization of the class of maps between finite
spaces which induce simple homotopy equivalences between the associated polyhedra.
This class describes all maps coming from simple homotopy equivalences at the level of
complexes. The advantage of this theory is that the elementary move of finite spaces is
much simpler than the elementary move of simplicial complexes: It consists of removing
(or adding) just a single point of the space.

1. Introduction

J.H.C. Whitehead’s theory of simple homotopy types is inspired by Tietze’s theorem in
combinatorial group theory, which states that any finite presentation of a group could be
deformed into any other by a finite sequence of elementary moves, which are now called
Tietze transformations. Whitehead translated these algebraic moves into the well-known
geometric moves of elementary collapses and expansions of finite simplicial complexes.
His beautiful theory turned out to be fundamental for the development of piecewise-linear
topology: The s-cobordism theorem, Zeeman’s conjecture [18], the applications of the
theory in surgery, Milnor’s classical paper on Whitehead Torsion [10] and the topological
invariance of torsion are some of its major uses and advances.

In this paper we show how to use finite topological spaces to study simple homotopy
types. There is a strong relationship between finite spaces and finite simplicial complexes,
which was discovered by McCord [9]. Explicitly, given a finite simplicial complex K, one
can associate to K a finite T0-space X (K) which corresponds to the poset of simplices of
K ordered by inclusion. Moreover, a simplicial map ϕ : K → L gives rise to a continuous
map X (ϕ) between the associated finite spaces. Conversely, one can associate to a finite
T0-space X a simplicial complex K(X), whose simplices are the non-empty chains of X,
and a weak homotopy equivalence K(X) → X. This construction is also functorial.

In [2] we showed that finite spaces are very useful for studying homotopy invariants of
(general) spaces. In fact, in that article we were looking for minimal finite models of some
spaces, i.e. the smallest finite spaces which are weak (homotopy) equivalent to a given
space. Finite spaces are closely related to finite posets, which have become an important
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tool in algebraic and geometric topology (see for example Quillen’s paper [12], Björner’s
paper [3] and Björner, Wachs and Welker’s [4]). The finite space point of view adds a
new dimension to finite posets and allows the development of new and more appropriate
techniques based on the combinatorics and the topology of these objects.

It is easy to prove that if two finite T0-spaces X,Y are homotopy equivalent, their
associated simplicial complexes K(X),K(Y ) are also homotopy equivalent. Furthermore,
Osaki [11] showed that in this case, the latter have the same simple homotopy type.
Nevertheless, we noticed that the converse of this result is not true in general: There are
finite spaces with different homotopy types whose associated simplicial complexes have the
same simple homotopy type. Starting from this point, we were looking for the relation that
X and Y should satisfy for their associated complexes to be simple homotopy equivalent.
More specifically, we wanted to find an elementary move in the setting of finite spaces (if
it existed) which corresponds exactly to a simplicial collapse of the associated polyhedra.

We discovered this elementary move when we were looking for a homotopically trivial
finite space (i.e. weak equivalent to a point) which was non-contractible. In order to
construct such a space, we developed a method of reduction, i.e. a method that allows
us to reduce a finite space to a smaller weak equivalent space. This method of reduction
together with the homotopically trivial and non-contractible space (of 11 points) that we
found are exhibited in section 3. Suprisingly, this method, which consists of removing a
weak point of the space (see Definition 3.2), turned out to be the key to solve the problem
of translating simplicial collapses into this setting.

We will say that two finite spaces are simply equivalent if we can obtain one of them
from the other by adding and removing weak points. If Y is obtained from X by only
removing weak points, we say that X collapses to Y and write X ց Y . The first main
result of this article is the following

Theorem 3.10.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simply equivalent if and only
if K(X) and K(Y ) have the same simple homotopy type. Moreover, if X ց Y then
K(X) ց K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy
equivalent if and only if X (K) and X (L) are simply equivalent. Moreover, if
K ց L then X (K) ց X (L).

In particular, the functors K and X induce a one-to-one correspondence between simple
equivalence classes of finite spaces and simple homotopy types:

{Finite T0 − Spaces}/�ց

K //
{Finite Simplicial Complexes}/�ցX

oo

We are now able to study finite spaces using all the machinery of Whitehead’s simple
homotopy theory for CW-complexes. But also, what is more important, we can use finite
spaces to strengthen the classical theory. The elementary move in this setting is much
simpler to handle and describe because it consists of adding or removing just one single
point.

As an example or application of this theorem, we study collapsible finite spaces and
their relationship with collapsible complexes. We also relate simple types of finite spaces
with the notion of minimal finite model introduced in [2].
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In the last section of this article we investigate the class of maps between finite spaces
which induce simple homotopy equivalences between their associated simplicial complexes.
To this end, we introduce the notion of a distinguished map. Similarly to the classical case,
the class of simple equivalences between finite spaces can be generated, in a certain way,
by expansions and a kind of formal homotopy inverses of expansions. Remarkably this
class, denoted by S, is also generated by the distinguished maps. The second main result
of the article is the following

Theorem 4.13.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple equivalence
if and only if K(f) : K(X) → K(Y ) is a simple homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes. Then ϕ is
a simple homotopy equivalence if and only if X (ϕ) is a simple equivalence.

2. Preliminaries

In this section we recall various results on finite spaces which are needed in sections 3
and 4. For more details on finite spaces we refer the reader to [9, 14] and P. May’s notes
[7, 8].

The correspondence between finite spaces and finite posets

There is a natural relationship between topologies and preorders defined on a finite
set X. This correspondence, which was studied in first place by Alexandroff [1], can
be described as follows. Given a topology τ on X, consider for each point x in X, the
intersection Ux of all open sets containing x. This is clearly an open set for each x and the
family B = {Ux, x ∈ X} is a basis for the topology τ . This basis is called the minimal
basis of X for obvious reasons. Associated to τ , there is a preorder structure on X (i.e. a
reflexive and transitive relation), defined by x ≤ y if x ∈ Uy. Conversely, if a preorder ≤
on the finite set X is given, we define for each x ∈ X the subset Ux = {y ∈ X | y ≤ x}.
It is not hard to see that these subsets form a basis for a topology on X, which is the
topology associated to the preorder ≤.

The applications described above define a one-to-one correspondence between topologi-
cal structures and preorders on X. Moreover, the T0 separation axiom is equivalent to the
antisymmetry of the associated preorder and therefore, T0-topologies on X correspond to
order relations. Having this equivalence in mind, we will regard finite T0-spaces as finite
posets and viceversa. We will use both structures according to convenience.

It is very useful to represent finite spaces using Hasse diagrams. The Hasse diagram of
a finite T0-space X is a digraph whose vertex set is X and whose edges are the ordered
pairs (x, y) such that x < y and there exists no z ∈ X with x < z < y.

Example 2.1. Consider the space X = {a, b, c, d} whose proper open sets are {a, c, d},
{b, c, d}, {c, d} and {d}. Its Hasse diagram is

a•

;;
;;

;;
; •b

��
��

��
�

•c

•d
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Instead of representing an edge (x, y) with an arrow, one simply writes y over x.
Sometimes it is convenient to consider the opposite preorder of a finite space X. The

space associated to this preorder will be denoted by Xop. Concretely, the open sets of Xop

are the closed sets of X.
Note that a map f : X → Y between finite spaces is continuous if and only if it is

order preserving. There is also a nice way to describe homotopies. Given two functions
f, g : X → Y , we will say that f ≤ g if f(x) ≤ g(x) for every x ∈ X. It is not difficult to
prove that if f and g are continuous and f ≤ g, then f is homotopic to g (see [7, 14] for
more details). In particular, any finite space with maximum or minimum is contractible.

Homotopy types

In 1966 R.E. Stong [14] found a combinatorial way to describe conclusively the homotopy
types of finite spaces. He introduced the notions of linear and colinear points and proved
that these two kinds of points generate all homotopy equivalences between finite spaces.
Essentially, two finite T0-spaces X and Y have the same homotopy type if and only if
there exists a sequence X = X0,X1, . . . ,Xn = Y such that each space is obtained from
the previous one by adding or removing a linear or colinear point. Afterwards, Peter May
called these points beat points [7].

Following Peter May’s language, we will say that a point x of a finite T0-space X is an
up beat point if the set of points which are greater than x has a minimum. On the other
hand, x ∈ X is said to be a down beat point if the set of points below it has a maximum.
This is equivalent to say that x is an up beat point of Xop. When there is no need to
precise if x is an up or a down beat point, we simply say that x is a beat point.

The next obvious remark plays an important role in Theorem 3.10.

Remark 2.2. If x ∈ X is a beat point, there exists y ∈ X, y 6= x, such that any point
which is comparable with x is also comparable with y.

It is not difficult to see that if x ∈ X is a beat point, the inclusion of X r {x} in X is
a strong deformation retract. Therefore, given a finite T0-space X, one can remove beat
points, one at the time, to obtain a strong deformation retract of X with no beat points.
Such a subspace is called a core of X. A finite T0-space with no beat points is called a
minimal finite space.

In [14] Stong proves that every homotopy equivalence between minimal finite spaces is
a homeomorphism and therefore, the core of any finite space X is unique up to home-
omorphism. It can be described as the smallest space which is homotopy equivalent to
X. Note that a finite T0-space X is contractible if and only if there exists a sequence
X = X0 ) X1 ) . . . ) Xn = ∗, where Xi+1 is obtained from Xi by removing a beat
point. Note also that a point x ∈ X is a beat point if and only if x is a beat point of Xop.
Therefore, X is contractible if and only if Xop is contractible.

Finite spaces and simplicial complexes

In contrast to Stong’s combinatorial approach to homotopy theory of finite spaces, M.C.
McCord [9] investigated their relationship with polyhedra. Finite spaces are not in general
subspaces of Euclidean spaces. Moreover, they do not have in general the homotopy type
of any T1 topological space [2]. Nevertheless, their weak homotopy types describe all weak
homotopy types of compact polyhedra.
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Following McCord [9] (cf. also [8]) one can associate to any finite T0-space X a simplicial
complex K(X), whose simplices are the non-empty chains of X.

a•

b•

BB
BB

BB
BB

•c

||
||

||
||

d• •e

Fig. 1: A finite space and its associated simplicial complex.

There exists a weak homotopy equivalence from the geometric realization |K(X)| to X,
i.e. a continuous map |K(X)| → X which induces isomorphisms in all homotopy groups.
The application K is in fact functorial. A continuous map f : X → Y between finite T0-
spaces induces a simplicial map K(f) : K(X) → K(Y ) which coincides with f on vertices.
Besides, it is easy to see that this construction makes the following diagram commutative

|K(X)|

��

|K(f)|
// |K(Y )|

��
X

f // Y.

If two maps f, g : X → Y between finite T0-spaces are homotopic, it can be proved
that the simplicial maps K(f),K(g) : K(X) → K(Y ) lie in the same contiguity class. In
particular |K(f)| ≃ |K(g)|.

The functor K can be used to find a simplicial complex with the same weak homotopy
type of a given finite space. Recall that two spaces X and Y (non-necessarily finite) are
said to be weak (homotopy) equivalent (or to have the same weak homotopy type) if there
exists a sequence of spaces X = X1,X2, . . . ,Xn = Y such that for each 1 ≤ i < n there is

a weak homotopy equivalence Xi → Xi+1 or Xi+1 → Xi. We will denote this by X
we
≈ Y .

Conversely, given a finite simplicial complex K, one would like to find a finite model of
|K|, i.e. a finite space which is weak equivalent to |K|. With this aim, McCord defined
another functor, denoted by X , that associates to each finite simplicial complex K a finite
T0-space X (K), which is the poset of simplices of K ordered by inclusion. Note that
K(X (K)) = K ′ is the barycentric subdivision of K, which implies that there exists a weak
homotopy equivalence |K| → X (K). The functor X on maps is defined as follows. Given
a simplicial map ϕ : K → L, we define X (ϕ) : X (K) → X (L) by X (ϕ)(S) = ϕ(S) for
every simplex S of K. In this case one does not have a commutative diagram as before,
but a diagram that commutes up to homotopy

|K|

��

|ϕ|
// |L|

��
X (K)

X (ϕ)
// X (L).
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By Whitehead Theorem, if X,Y are finite T0-spaces, X
we
≈ Y if and only if |K(X)| and

|K(Y )| have the same homotopy type. On the other hand, if K and L are finite simplicial

complexes, |K| and |L| are homotopy equivalent if and only if X (K)
we
≈ X (L).

Simplicial collapses and expansions

We finish this introductory section by recalling the basic notions on simple homotopy
theory for simplicial complexes. Mainly, we want to fix the notations that we will use in
sections 3 and 4. The standard references for this are Whitehead’s papers [15, 16, 17],
Milnor’s article [10] and M.M.Cohen’s book [5].

Let L be a subcomplex of a finite simplicial complex K. There is an elementary simpli-
cial collapse from K to L if there is a simplex S of K and a vertex a of K not in S such
that K = L ∪ aS and L ∩ aS = aṠ. Here aS denotes the join of a and S and Ṡ denotes
the boundary of S. This is equivalent to say that there are only two simplices S, S′ of
K which are not in L and such that S is a free face of S′. Elementary collapses will be
denoted, as usual, Kցe L.

We say that K (simplicially) collapses to L (or that L expands to K) if there exists a
sequence K = K1,K2, . . . ,Kn = L of finite simplicial complexes such that Kiց

e Ki+1 for
all i. This is denoted by K ց L or Lր K. Two complexes K and L have the same simple
homotopy type if there is a sequence K = K1,K2, . . . ,Kn = L such that Ki ց Ki+1 or
Ki ր Ki+1 for all i. Following M.M. Cohen’s notation, we denote this by K�ցL. It is
well known that K�ցL if and only if |K| and |L| are simple homotopy equivalent [17].

3. Simple homotopy types: The first main Theorem

The first mathematician who investigated the relationship between finite spaces and
simple homotopy types of polyhedra was T. Osaki [11]. He showed that if x ∈ X is
a beat point, K(X) collapses to K(X r {x}). In particular, if two finite T0-spaces, X
and Y are homotopy equivalent, their associated simplicial complexes, K(X) and K(Y ),
have the same simple homotopy type. However, there exist finite spaces which are not
homotopy equivalent but whose associated complexes have the same simple homotopy
type. Consider, for instance, the spaces with the following Hasse diagrams.

•
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~

• • •

They are not homotopy equivalent because they are non-homeomorphic minimal finite
spaces. However their associated complexes are triangulations of S1 and therefore, have
the same simple homotopy type.

A more interesting example is the following.
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Example 3.1 (The Wallet). Let W be a finite T0-space, whose Hasse diagram is
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Fig. 2: W

This finite space is not contractible since it does not have beat points, but it is not hard
to see that |K(W )| is contractible and therefore, it has the same simple homotopy type
as a point. In fact we will deduce from Proposition 3.3 that W is a homotopically trivial
space, i.e. all its homotopy groups are trivial. This example also shows that Whitehead
Theorem does not hold in the context of finite spaces, not even for homotopically trivial
spaces.

We introduce now the notion of a weak beat point which generalizes Stong’s definition
of beat points. The following notations will be used in the rest of the paper. Given a point
x ∈ X, we denote by Fx the closure of x in X, i.e. the set of points which are greater than
or equal to x. We let Ûx = Ux r {x} and F̂x = Fx r {x}. In case we need to specify the

ambient space X, we will write FX
x , ÛX

x and F̂X
x respectively.

Definition 3.2. Let X be a finite T0-space. We will say that x ∈ X is a weak beat point
of X (or a weak point, for short) if either Ûx is contractible or F̂x is contractible. In the
first case we say that x is a down weak point and in the second, that x is an up weak point.

Note that beat points are in particular weak points, for if x ∈ X is a down beat point,
Ûx has a maximum and if x is an up beat point, F̂x has a minimum. When x is a beat
point of X, we have seen in the previous section that the inclusion i : X r {x} →֒ X is a
homotopy equivalence. This is not the case if x is just a weak point. However, a slightly
weaker result holds.

Proposition 3.3. Let x be a weak point of a finite T0-space X. Then the inclusion map
i : X r {x} →֒ X is a weak homotopy equivalence.

Proof. We may suppose that x is a down weak point since the other case follows immedi-
ately from this one, considering Xop instead of X. Note that K(Xop) = K(X).

Given y ∈ X, the set i−1(Uy) = Uy r {x} has a maximum if y 6= x and is contractible
if y = x. Therefore i|i−1(Uy) : i−1(Uy) → Uy is a weak homotopy equivalence for every

y ∈ X. Now the result follows from Theorem 6 of [9] applied to the basis-like cover given
by the minimal basis of X. �

As an application of the last proposition, we verify that the space W defined above, is
a non-contractible homotopically trivial space. As we pointed out in Example 3.1, W is
not contractible since it is a minimal finite space with more than one point. However, it
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contains a weak point x (see Fig. 2), since Ûx is contractible (see Fig. 3).
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Fig. 3: Ûx

Therefore W is weak homotopy equivalent to W r {x}.
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Fig. 4: W r {x}

Now it is easy to see that this subspace is contractible, because it does have beat points,
and one can get rid of them one by one.

Definition 3.4. Let X be a finite T0-space and let Y ( X. We say that X collapses
to Y by an elementary collapse (or that Y expands to X by an elementary expansion)
if Y is obtained from X by removing a weak point. We denote Xցe Y or Yրe X. In
general, given two finite T0-spaces X and Y , we say that X collapses to Y (or Y expands
to X) if there is a sequence X = X1,X2, . . . ,Xn = Y of finite T0-spaces such that for each
1 ≤ i < n, Xiց

e Xi+1. In this case we write X ց Y or Y ր X. Two finite T0-spaces
X and Y are simply equivalent if there is a sequence X = X1,X2, . . . ,Xn = Y of finite
T0-spaces such that for each 1 ≤ i < n, Xi ց Xi+1 or Xi ր Xi+1. We denote in this case
X�ցY , following the same notation that we adopted for simplicial complexes.

In contrast with the classical situation, where a simple homotopy equivalence is a special
kind of homotopy equivalence, homotopy equivalent finite spaces are simply equivalent. It
follows from Proposition 3.3 that simply equivalent finite spaces are weak equivalent.

In order to prove Theorem 3.10, we need some previous results. The first one concerns
the homotopy type of the associated finite space X (K) of a simplicial cone K. Suppose
K = aL is a cone, i.e. K is the join of a simplicial complex L with a vertex a /∈ L. Since
|K| is contractible, it is clear that X (K) is homotopically trivial. The following lemma
shows that X (K) is in fact contractible (compare with [12]).

Lemma 3.5. Let K = aL be a finite cone. Then X (K) is contractible.

Proof. Define f : X (K) → X (K) by f(S) = S ∪ {a}. This function is order-preserving
and therefore continuous.

If we consider the constant map g : X (K) → X (K) that takes all X (K) into {a},
we have that 1X (K) ≤ f ≥ g. This proves that the identity is homotopic to a constant
map. �

The following construction is the analogue to the mapping cylinder of general spaces
and the simplicial mapping cylinder of simplicial complexes.
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Definition 3.6. Let f : X → Y be a map between finite T0-spaces. We define the non-
Hausdorff mapping cylinder B(f) as the following finite T0-space. The underlying set is
the disjoint union X ⊔ Y . We keep the given ordering within X and Y and for x ∈ X,
y ∈ Y we set x ≤ y in B(f) if f(x) ≤ y in Y .

Lemma 3.7. Let f : X → Y be a map between finite T0-spaces such that f−1(Uy) is
contractible for every y ∈ Y . Then B(f) ց i(X) and B(f) ց j(Y ), where i : X →֒ B(f)
and j : Y →֒ B(f) are the cannonical inclusions.

Proof. Label all the elements x1, x2, . . . , xn of X in such a way that xr ≤ xs implies r ≤ s
and define Yr = j(Y ) ∪ {i(x1), i(x2), . . . , i(xr)} ⊆ B(f) for each 0 ≤ r ≤ n. Then

F̂ Yr

i(xr) = {j(y) | y ≥ f(xr)}

is homeomorphic to the contractible space F Y
f(xr). It follows that Yrց

e Yr−1 for 1 ≤ r ≤ n,

and then B(f) = Yn collapses to j(Y ) = Y0. Notice that we have not yet used the fact
that f is distinguished.

Now order the elements y1, y2, . . . , ym of Y in such a way that yr ≤ ys implies r ≤ s
and define Xr = i(X) ∪ {j(yr+1), j(yr+2), . . . , j(ym)} ⊆ B(f) for every 0 ≤ r ≤ m. Then

Û
Xr−1

j(yr) = {i(x) | f(x) ≤ yr}

is homeomorphic to f−1(Uyr), which is contractible by hypothesis. Thus Xr−1ց
e Xr for

1 ≤ r ≤ m and therefore B(f) = X0 collapses to i(X) = Xm. �

It is well known that any finite simplicial complex K has the same simple homotopy type
of its barycentric subdivision K ′. We prove next an analogous result for finite spaces. Fol-
lowing [6], the barycentric subdivision of a finite T0-space X is defined by X ′ = X (K(X)).
Explicitly, X ′ consists of the non-empty chains of X ordered by inclusion. It is shown in
[6] that there is a weak homotopy equivalence h : X ′ → X which takes each chain C to
its maximum max(C).

Proposition 3.8. Let X be a finite T0-space. Then X and X ′ are simply equivalent.

Proof. It suffices to show that the map h : X ′ → X satisfies the hypothesis of Lemma 3.7.
This is clear since h−1(Ux) = {C |max(C) ≤ x} = X (K(Ux)) = X (xK(Ûx)) is contractible
by Lemma 3.5. �

Lemma 3.9. Let L be a subcomplex of a finite simplicial complex K. Let T be a set of
simplices of K which are not in L, and let a be a vertex of K which is contained in no
simplex of T , but such that aS is a simplex of K for every S ∈ T . Finally, suppose that
K = L ∪

⋃
S∈T

{S, aS} (i.e. the simplices of K are those of L together with the simplices S

and aS for every S in T ). Then Lր K.

Proof. Number the elements S1, S2, . . . , Sn of T in such a way that for every i, j with i ≤ j,

#Si ≤ #Sj. Here #Sk denotes the cardinality of Sk. Define Ki = L ∪
i⋃

j=1
{Sj, aSj} for

0 ≤ i ≤ n. Let S ( Si. If S ∈ T , then S, aS ∈ Ki−1, since #S < #Si. If S /∈ T , then
S, aS ∈ L ⊆ Ki−1. This proves that aSi ∩Ki−1 = aṠi.

By induction, Ki is a simplicial complex for every i, and Ki−1ր
e Ki. Therefore L =

K0 ր Kn = K. �
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Now we are ready to prove the first main result of this article.

Theorem 3.10.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simply equivalent if and only
if K(X) and K(Y ) have the same simple homotopy type. Moreover, if X ց Y then
K(X) ց K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy
equivalent if and only if X (K) and X (L) are simply equivalent. Moreover, if
K ց L then X (K) ց X (L).

Proof. Let X be a finite T0-space and let x ∈ X be a weak point. We will show first that
K(X r {x}) ր K(X). We may suppose that x is a down weak point since the other case

follows immediately from this one replacingX byXop. Since Ûx is contractible, there exists
a sequence of spaces Ûx = Xn ) Xn−1 ) . . . ) X1 = {x1}, with Xi = {x1, x2, . . . , xi} and
such that xi is a beat point of Xi for each i ≥ 2. By Remark 2.2, it follows that there
exists yi ∈ Xi−1 for each 2 ≤ i ≤ n with the following property: if z ∈ Xi is comparable
with xi, then it is comparable with yi.

Let Ki ⊆ K(X) be the subcomplex whose simplices are the chains of X r {x} together
with the chains of Fx ∪Xi ⊆ X. In other words, Ki = K(X r {x}) ∪K(Fx ∪Xi). We will
prove that K(X r {x}) ր K1 ր K2 ր . . .ր Kn = K(X).

In order to prove that K(X r {x}) ր K1, we apply Lemma 3.9 with L = K(X r {x}),
K = K1, T = {S ∈ K1 | x ∈ S, x1 /∈ S} and a = x1. Note that x1S ∈ K1 for every S ∈ T
since any element of S is greater than or equal to x and therefore, comparable with x1.
In order to see that Ki−1 ր Ki for i ≥ 2, note that the simplices of Ki which are not in
Ki−1 are the chains of Fx ∪ Xi that contain both x and xi. We apply again Lemma 3.9
with L = Ki−1, K = Ki, T = {S ∈ Ki | x, xi ∈ S, yi /∈ S} and a = yi. Note that if S ∈ T
and y ∈ S, then either y ∈ Xi and it is comparable with xi or y ≥ x. In any of these
cases y is comparable with yi, and therefore yiS ∈ Ki. We have then proved that X ց Y
implies K(X) ց K(Y ). In particular, X�ցY implies K(X)�ցK(Y ).

Suppose now that K and L are finite simplicial complexes such that Kցe L. Then,
there exist S ∈ K and a vertex a of K not in S such that aS ∈ K, K = L ∪ {S, aS} and

aS∩L = aṠ. It follows that S is an up beat point of X (K), and since Û
X (K)r{S}
aS = X (aṠ),

by Lemma 3.5, aS is a down weak point of X (K)r{S}. Therefore X (K)ցe X (K) r {S}ցe

X (K) r {S, aS} = X (L). This proves the first part of (b) and the “moreover” part.
Let X, Y be finite T0-spaces such that K(X)�ցK(Y ). Then X ′ = X (K(X))�ց

X (K(Y )) = Y ′ and by Proposition 3.8, X�ցY . Finally, if K, L are finite simplicial
complexes such that X (K)�ցX (L), K ′ = K(X (K))�ցK(X (L)) = L′ and therefore
K�ցL. This completes the proof. �

Corollary 3.11. The functors K, X induce a one-to-one correspondence between simple
equivalence classes of finite spaces and simple homotopy types of finite simplicial complexes

{Finite T0 − Spaces}/�ց

K //
{Finite Simplicial Complexes}/�ցX

oo

The following diagrams illustrate the whole situation. Here
he
≃ denotes the homotopy

equivalence relation.
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X
he
≃ Y +3 X �ց Y +3

KS

��

X
we
≈ Y
KS

��

K(X)�ցK(Y ) +3 |K(X)|
we
≈ |K(Y )| ks +3 |K(X)|

he
≃ |K(Y )|

X (K)
he
≃ X (L) +3 X (K)�ցX (L) +3

KS

��

X (K)
we
≈ X (L)
KS

��

K�ցL +3 |K|
we
≈ |L| ks +3 |K|

he
≃ |L|

The Wallet W satisfies W ց ∗, however W
he

≃/ ∗. Therefore X�ցY ⇒/ X
he
≃ Y . Since

|K|
he
≃ |L| ⇒/ K�ցL, X

we
≈ Y ⇒/ X�ցY . Note that, if X

we
≈ Y and their Whitehead

group Wh(π1(X)) is trivial, then |K(X)| and |K(Y )| are simple homotopy equivalent
CW-complexes. It follows from Theorem 3.10 that X�ցY . Thus, we have proved

Corollary 3.12. Let X, Y be weak equivalent finite T0-spaces such that Wh(π1(X)) = 0.
Then X�ցY .

Another immediate consequence of the theorem is the following

Corollary 3.13. Let X, Y be finite T0-spaces. If X ց Y , then X ′ ց Y ′.

Note that from Theorem 3.10 one also deduces the following well-known fact: If K and
L are finite simplicial complexes such that K ց L, then K ′ ց L′.

One of the most important open results concerning collapsible complexes is Zeeman’s
Conjecture [18], which states that if K is a contractible polyhedron of dimension 2, K × I
is collapsible. This conjecture implies the 3-dimensional Poincaré Conjecture (see [18]).
The notion of collapsibility for finite spaces is closely related with the analogous notion
for simplicial complexes: We say that a finite T0-space is collapsible if it collapses to a
point. Observe that every contractible finite T0-space is collapsible, however the converse
is not true. The Wallet W introduced in Example 3.1 is collapsible and non-contractible.
Note that if a finite T0-space X is collapsible, its associated simplicial complex K(X) is
also collapsible. Moreover, if K is a collapsible complex, then X (K) is a collapsible finite
space. Therefore, if X is a collapsible finite space, its subdivision X ′ is also collapsible.

Let us consider now a compact contractible polyhedron X with the property that any
triangulation of X is non-collapsible, for instance the Dunce Hat [18]. Let K be any
triangulation of X. The associated finite space X (K) is homotopically trivial because X
is contractible. However, X (K) is not collapsible since K ′ is not collapsible.

We have therefore the following strict implications in the context of finite spaces:

contractible ⇒ collapsible ⇒ homotopically trivial.

As we pointed out in the previous section, the beat points defined by Stong provide an
effective way of deciding whether two finite spaces are homotopy equivalent. The problem
becomes much harder when one deals with weak homotopy types instead. In [2] we have
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studied the minimal finite models of a given space X, which are the smallest spaces weak
equivalent to X. In that article we characterized the minimal finite models of spheres and
finite graphs (finite CW-complexes of dimension one). We proved that, in general, the

minimal finite models of a space are not unique. For example
3∨

i=1
S1 has three minimal

finite models up to homeomorphism. It makes sense to formulate the following definition.

Definition 3.14. A minimal simple model of a finite T0-space X is a finite T0-space
simply equivalent to X of minimum cardinality. We will say that a space is a minimal
simple model if it is a minimal simple model of itself.

Clearly, one has the following implications:

minimal finite model ⇒ minimal simple model ⇒ minimal finite space.

Note that if the Whitehead groupWh(π1(X)) is trivial, the converse of the first implication
holds. Therefore, given a finite T0-space X such that Wh(π1(X)) = 0, one could reach any
minimal finite model of X just by adding and removing weak points from X. Elementary
collapses and expansions provide a tool of reduction when the space has trivial Whitehead
group. Unfortunately it is not always possible to obtain a minimal simple model by only
removing weak points. For example, take any homotopically trivial non-collapsible finite
space.

Of course there is not uniqueness of minimal simple models. Consider for instance the
space SD3

•

��
��
��

//
//

//

JJJ
JJJ

JJJ
JJ •

tt
tt

ttt
tt

tt

��
��
��

//
//

//

• • •

and its opposite, which are minimal simple models because they are minimal finite models.
Notice that SD3�ց(SD3)

op and they are not homeomorphic.

4. Simple homotopy equivalences: The second main Theorem

In this section we prove the second main result of the article, which relates simple
homotopy equivalences of complexes with simple equivalences between finite spaces. Like
in the classical setting, the class of simple equivalences is generated by the elementary
expansions. However, in the context of finite spaces this class is also generated by the
distinguished maps, which play a key role in this theory.

Recall that a homotopy equivalence f : |K| → |L| between compact polyhedra is a
simple homotopy equivalence if it is homotopic to a composition of a finite sequence of
maps |K| → |K1| → . . . → |Kn| → |L|, each of them an expansion or a homotopy inverse
of one [5, 13].

We prove first that homotopy equivalences between finite spaces induce simple homotopy
equivalences between the associated polyhedra.

Theorem 4.1. If f : X → Y is a homotopy equivalence between finite T0-spaces, then
|K(f)| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

Proof. Let Xc and Yc be cores of X and Y . Let iX : Xc → X and iY : Yc → Y be the
inclusions and rX : X → Xc, rY : Y → Yc retractions of iX and iY such that iXrX ≃ 1X

and iY rY ≃ 1Y .
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Since rY fiX : Xc → Yc is a homotopy equivalence between minimal finite spaces, it is
a homeomorphism. Therefore K(rY fiX) : K(Xc) → K(Yc) is an isomorphism and then
|K(rY fiX)| is a simple homotopy equivalence. Since K(X) ց K(Xc), |K(iX )| is a simple
homotopy equivalence, and then the homotopy inverse |K(rX )| is also a simple homotopy
equivalence. Analogously |K(iY )| is a simple homotopy equivalence.

Finally, since f ≃ iY rY fiXrX , it follows that |K(f)| ≃ |K(iY )||K(rY fiX)||K(rX )| is a
simple homotopy equivalence. �

In order to describe the class of simple equivalences, we will use a kind of maps that
was already studied in Lemma 3.7.

Definition 4.2. A map f : X → Y between finite T0-spaces is distinguished if f−1(Uy) is
contractible for each y ∈ Y . We denote by D the class of distinguished maps.

Note that by the theorem of McCord ([9]; Theorem 6), every distinguished map is a
weak homotopy equivalence and therefore induces a homotopy equivalence between the
associated complexes. We will prove in Theorem 4.4 that in fact the induced map is a
simple homotopy equivalence. ¿From the proof of Proposition 3.3, it is clear that if x ∈ X
is a down weak point, the inclusion X r {x} →֒ X is distinguished.

Remark 4.3. The map h : X ′ → X defined by h(C) = max(C), is distinguished by the
proof of Proposition 3.8.

Clearly, homeomorphisms are distinguished. However it is not difficult to show that
homotopy equivalences are not distinguished in general.

Theorem 4.4. Every distinguished map induces a simple homotopy equivalence.

Proof. Suppose f : X → Y is distinguished. Consider the non-Hausdorff mapping cylinder
B(f) and the cannonical inclusions i : X →֒ B(f), j : Y →֒ B(f).

The following diagram

B(f)

X
- 

i
;;wwwwwwwww f // Y

1 Q

j
ccGGGGGGGGG

does not commute, but i ≤ jf and then i ≃ jf . Therefore |K(i)| ≃ |K(j)||K(f)|. By
Lemma 3.7 and Theorem 3.10, |K(i)| and |K(j)| are expansions (composed with isomor-
phisms) and then, |K(f)| is a simple homotopy equivalence. �

We have already shown that expansions, homotopy equivalences and distinguished maps
induce simple homotopy equivalences at the level of complexes. Note that if f, g, h are
three maps between finite T0-spaces such that fg ≃ h and two of them induce simple
homotopy equivalences, then so does the third.

Definition 4.5. Let C be a class of continuous maps between topological spaces. We say
that C is closed if it satisfies the following homotopy 2-out-of-3 property: For any f, g, h
with fg ≃ h, if two of the three maps are in C, then so is the third.

Definition 4.6. Let C be a class of continuous maps. The class C generated by C is the
smallest closed class containing C.
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It is clear that C is always closed under composition and homotopy. The class of
simple homotopy equivalences between CW-complexes is closed and it is generated by
the elementary expansions. Note that every map in the class E of elementary expansions
between finite spaces induces a simple homotopy equivalence at the level of complexes and
therefore the same holds for the maps of E . Contrary to the case of CW-complexes, a
map between finite spaces which induces a simple homotopy equivalence, need not have
a homotopy inverse. This is the reason why the definition of E is not as simple as in the
setting of complexes. We will prove that E = D, the class generated by the distinguished
maps.

A map f : X → Y such that f−1(Fy) is contractible for every y, need not be distin-

guished. However we will show that f ∈ D. We denote by f op : Xop → Y op the map that
coincides with f in the underlying sets, and let Dop = {f | f op ∈ D}.

Lemma 4.7. Dop = D.

Proof. Suppose that f : X → Y lies in Dop. Consider the following commutative diagram

X oo hX

f

��

X ′ = (Xop)′
hXop

//

f ′

��

Xop

fop

��
Y oo hY

Y ′ = (Y op)′
hY op

// Y op.

Here, f ′ denotes the map X (K(f)). Since D satisfies the 2-out-of-3 property and hXop ,
hY op , f op are distinguished by Remark 4.3, f ′ ∈ D. And since hX , hY are distinguished,
f ∈ D. This proves that Dop ⊆ D. The other inclusion follows analogously from the
opposite diagram. �

Proposition 4.8. E = D, and this class contains all homotopy equivalences between finite
T0-spaces.

Proof. Every expansion of finite spaces is in E because it is a composition of maps in E .
Let f : X → Y be distinguished. By the proof of Theorem 4.4 there exist expansions

(eventually composed with homeomorphisms) i, j, such that i ≃ jf . Therefore f ∈ E .
If x ∈ X is a down weak point, the inclusion X r {x} →֒ X is distinguished. If x is an

up weak point, X r {x} →֒ X lies in D by the previous lemma and therefore E ⊆ D.
Suppose now that f : X → Y is a homotopy equivalence. From the proof of Theorem

4.1, fiX ≃ iY rY fiX where iX , iY are expansions and rY fiX is a homeomorphism. This
implies that f ∈ E = D. �

We denote by S = E = D the class of simple equivalences between finite spaces. In the
rest of the paper we study the relationship between simple equivalences of finite spaces
and simple homotopy equivalences of polyhedra.

Lemma 4.9. Let ϕ,ψ : K → L be simplicial maps which lie in the same contiguity class.
Then X (ϕ) ≃ X (ψ).

Proof. Assume that ϕ and ψ are contiguous. Then the map f : X (K) → X (L), defined
by f(S) = ϕ(S) ∪ ψ(S) is well-defined and continuous. Moreover X (ϕ) ≤ f ≥ X (ψ), and
then X (ϕ) ≃ X (ψ). �

Given n ∈ N we denote by Kn the n-th barycentric subdivision of K.
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Lemma 4.10. Let λ : Kn → K be a simplicial approximation to the identity. Then
X (λ) ∈ S.

Proof. It suffices to prove the case n = 1. Suppose λ : K ′ → K is a simplicial approxima-
tion of 1|K|. Then X (λ) : X (K)′ → X (K) is homotopic to hX (K), for if S1 ( S2 ( . . . ( Sm

is a chain of simplices of K, then X (λ)({S1, S2, . . . , Sm}) = {λ(S1), λ(S2), . . . , λ(Sm)} ⊆
Sm = hX (K)({S1, S2, . . . , Sm}). By Remark 4.3, it follows that X (λ) ∈ S. �

Lemma 4.11. Let ϕ,ψ : K → L be simplicial maps such that |ϕ| ≃ |ψ|. If X (ϕ) ∈ S,
then X (ψ) also lies in S.

Proof. There exists an approximation to the identity λ : Kn → K for some n ≥ 1, such
that ϕλ and ψλ lie in the same contiguity class. By Lemma 4.9, X (ϕ)X (λ) = X (ϕλ) ≃
X (ψλ) = X (ψ)X (λ). By Lemma 4.10, X (λ) ∈ S and since X (ϕ) ∈ S, it follows that
X (ψ) ∈ S. �

Theorem 4.12. Let K0,K1, . . . ,Kn be finite simplicial complexes and let

|K0|
f0 // |K1|

f1 // . . .
fn−1// |Kn|

be a sequence of continuous maps such that for each 0 ≤ i < n either

(1) fi = |ϕi| where ϕi : Ki → Ki+1 is a simplicial map such that X (ϕi) ∈ S or
(2) fi is a homotopy inverse of a map |ϕi| with ϕi : Ki+1 → Ki a simplicial map such

that X (ϕi) ∈ S.

If ϕ : K0 → Kn is a simplicial map such that |ϕ| ≃ fn−1fn−2 . . . f0, then X (ϕ) ∈ S.

Proof. We may assume that f0 satisfies condition (1). Otherwise we define K̃0 = K0,

f̃0 = |1K0
| : |K̃0| → |K0| and then |ϕ| ≃ fn−1fn−2 . . . f0f̃0.

We proceed by induction on n. If n = 1, |ϕ| ≃ |ϕ0| where X (ϕ0) ∈ S and the result
follows from Lemma 4.11. Suppose now that n ≥ 1 and let K0,K1, . . . ,Kn,Kn+1 be
finite simplicial complexes and fi : |Ki| → |Ki+1| maps satisfying conditions (1) or (2),
f0 satisfying condition (1). Let ϕ : K0 → Kn+1 be a simplicial map such that |ϕ| ≃
fnfn−1 . . . f0. We consider two cases: fn satisfies condition (1) or fn satisfies condition
(2).

In the first case we define g : |K0| → |Kn| by g = fn−1fn−2 . . . f0. Let g̃ : Km
0 → Kn

be a simplicial approximation to g and let λ : Km
0 → K0 be a simplicial approximation to

the identity. Then |g̃| ≃ g|λ| = fn−1fn−2 . . . f1(f0|λ|) where f0|λ| = |ϕ0λ| and X (ϕ0λ) =
X (ϕ0)X (λ) ∈ S by Lemma 4.10. By induction, X (g̃) ∈ S, and then X (ϕng̃) ∈ S. Since
|ϕλ| ≃ fng|λ| ≃ fn|g̃| = |ϕng̃|, by Lemma 4.11, X (ϕλ) lies in S. Therefore X (ϕ) ∈ S.

In the other case, |ϕnϕ| ≃ fn−1fn−2 . . . f0 and by induction, X (ϕnϕ) ∈ S. Therefore
X (ϕ) also lies in S. �

Theorem 4.13.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple equivalence
if and only if |K(f)| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes. Then |ϕ|
is a simple homotopy equivalence if and only if X (ϕ) is a simple equivalence.

Proof. By definition, if f ∈ S, |K(f)| is a simple homotopy equivalence.
Let ϕ : K → L be a simplicial map such that |ϕ| is a simple homotopy equivalence.

Then there exist finite complexes K = K0,K1, . . . ,Kn = L and maps fi : |Ki| → |Ki+1|,
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which are simplicial expansions or homotopy inverses of simplicial expansions, and such
that |ϕ| ≃ fn−1fn−2 . . . f0. By Theorem 3.10, simplicial expansions between complexes
induce expansions between the associated finite spaces and therefore, by Theorem 4.12,
X (ϕ) ∈ S.

Suppose now that f : X → Y is a map such that |K(f)| is a simple homotopy equiva-
lence. Then, f ′ = X (K(f)) : X ′ → Y ′ lies in S. Since fhX = hY f

′, f ∈ S.
Finally, if ϕ : K → L is a simplicial map such that X (ϕ) ∈ S, |ϕ′| : |K ′| → |L′| is

a simple homotopy equivalence. Here ϕ′ = K(X (ϕ)) is the barycentric subdivision of ϕ.
Let λK : K ′ → K and λL : L′ → L be simplicial approximations to the identities. Then
λLϕ

′ and ϕλK are contiguous. In particular |λL||ϕ
′| ≃ |ϕ||λK | and then |ϕ| is a simple

homotopy equivalence. �

In the setting of finite spaces one has the following strict inclusions

{homotopy equivalences} ( S ( {weak equivalences}.

Clearly, if f : X → Y is a weak homotopy equivalence between finite T0-spaces with
trivial Whitehead group, f ∈ S.
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Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Ar-

gentina

E-mail address: jbarmak@dm.uba.ar

E-mail address: gminian@dm.uba.ar


