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Abstract. By a result of Babai, with finitely many exceptions, every group G admits a
semi-regular poset representation with three orbits, that is, a poset P with automorphism
group Aut(P ) ≃ G such that the action of Aut(P ) on the underlying set is free and with
three orbits. Among finite groups, only the trivial group and Z2 have a regular poset
representation (i.e. semi-regular with one orbit), however many infinite groups admit
such a representation. In this paper we study non-necessarily finite groups which have a
regular representation or a semi-regular representation with two orbits. We prove that if
G admits a Cayley graph which is locally the Cayley graph of a free group, then it has a
semi-regular representation of height 1 with two orbits. In this case we will see that any
extension of the integers by G admits a regular representation. Applications are given
to finite simple groups, hyperbolic groups, random groups and indicable groups.

1. Introduction

A representation of a group G by a poset is a poset P whose automorphism group
Aut(P ) is isomorphic to G, together with an isomorphism G → Aut(P ). In other words,
it is a faithful action of G on P such that every automorphism of P is induced by the action.
A representation of G by P is called semi-regular if the action of G on the underlying set
of P is semi-regular (free), that is the stabilizer of each point x ∈ P is trivial. In this
case, the orbit of each point is in bijection with G. A representation is regular if it is
semi-regular with a unique orbit (i.e. transitive).

Birkhoff proved that every finite group G has a semi-regular poset representation with
|G| + 1 orbits [11], and Frucht then proved that d + 2 orbits suffice, where d is the car-
dinality of any generator set of G [15]. Babai proved in [5, Corollary 0.14], [6, Corollary
4.3], the surprising result that with finitely many exceptions every group (non-necessarily
finite) admits a semi-regular poset representation with three orbits. Babai’s proof uses his
characterization of groups admitting a digraphical regular representation (defined below),
which in turn analyzes properties of generator sets of different classes of groups. In [8] we
gave a short self-contained proof that every finitely generated group admits a semi-regular
poset representation with four orbits.

Note that if a group G admits a regular representation by a poset P , then P is homo-
geneous (i.e. given two points in P , there is an automorphism of P mapping one to the
other). If G is finite, this means that P is discrete (different points are not comparable),
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so G is a symmetric group. Since the action is free, G must be trivial or Z2. The classifi-
cation of infinite groups admitting a regular poset representation, however, is a non-trivial
problem. Regular representations of groups by totally ordered sets have been studied in
[36, 17]. If a group admits one such representation, it is isomorphic to a subgroup of R.

Problem. Classify those (finite, infinite) groups G which admit a semi-regular poset
representation with exactly two orbits and those (infinite) groups that admit a regular
poset representation.

Similar classification problems for finite or infinite groups have been addressed and
solved in the context of graphs. Finitely generated groups admitting a graphical regular
representation have been characterized after a long series of articles of different authors
[18, 21, 23, 24, 25, 31, 34, 35, 40]. A graphical regular representation of a group G is a
graph Γ with Aut(Γ) ≃ G and such that Aut(Γ) acts regularly on the vertex set. On the
other hand the proof of the main result in [4] shows that with finitely many exceptions
every finitely generated group admits a graphical semi-regular representation with two
orbits. Other classification problems studied include digraphical regular representations
[5, 6], graphical and digraphical semi-regular representations with more orbits [13], regular
and semi-regular representations by tournaments with two orbits [7, 19], oriented regular
representations [33].

Among semi-regular poset representations with two orbits, there are some which are
perhaps easier to describe: those which are given by posets of height 1 (i.e. the longest
chain has two elements). Because of their relevance in this work and their resemblance
to Cayley graphs, they will receive the name of Cayley (poset) representations. For finite
groups every semi-regular representation with two orbits is of this type.

Recall that the girth g(Γ) of a graph Γ is the length of its shortest cycle (infinite if the
graph is a forest). When S = {sx}x∈X is a generator set of a group G, the girth g(Γ(G,S))
of the Cayley graph can be interpreted as the shortest non-trivial word in the free group
F (X) generated by X which is trivial in G when evaluated in the sx. We will prove the
following

Theorem 8. Let G be a group generated by two elements x, y. Suppose that for every
non-trivial word w in the free group of rank 2, with length smaller than or equal to 21,
w(x, y) 6= e ∈ G, that is g(Γ(G, {x, y})) > 21. Then G admits a Cayley representation.

Using ideas from Weigel, Dixon, Pyber, Seress and Shalev we will prove that, with
finitely many exceptions, every finite simple group admits a Cayley representation (Corol-
lary 13). A second application of Theorem 8 concerns random groups (in Gromov’s density
model, and in the Arzhantseva and Ol’shanskii few relators model). Using results by Ol-
livier, and by Arzhantseva and Ol’shanskii regarding Dehn presentations and sixth groups
we will show that for two generators a random group has a Cayley representation (Corol-
laries 19 and 21). In the density model we require d < 1

5 .
Cayley representations turn out to be important when studying regular representations.

Theorem 22. Let G 6= Z2 be a group which admits a Cayley representation. Then every
extension of the integers by G has a regular poset representation.

With similar ideas to those used in the proof of Theorem 22 we will prove that with
finitely many exceptions every indicable group admits a semi-regular representation with
two orbits, though not neccesarily a Cayley representation.
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2. Cayley, Haar and digraphical regular representations

We begin with the study of semi-regular representations with two orbits. Note first
that for a group G, the fact that there exists a poset P with Aut(P ) ≃ G and the action
of Aut(P ) on P having two orbits, does not imply that G admits a semi-regular poset
representation with two orbits. For example Z2

2 is the automorphism group of the poset
with underlying set {0, 1, 0′, 1′} where 0, 1 < 0′, 1′, but Z2

2 does not admit a semi-regular
representation with two orbits.

We turn to the special case of representations of height 1. Let G be a group and let
S ⊆ G be a non-empty subset. We define the Cayley poset P (G,S) as follows. The
underlying set is a union of two copies G, G′ = {g′| g ∈ G} of G. If g ∈ G and h ∈ gS,
then g < h′. No other pair of different points are comparable. The regular action of G
on each copy of G, by left multiplication, gives an action L : G → Aut(P (G,S)) of G on
P (G,S). If there are no other automorphisms in P than those induced by (in the image
of) L, P (G,S) is a semi-regular representation of G with two orbits. In this case P (G,S),
or more precisely L : G→ Aut(P (G,S)), is called a Cayley representation of G.

Note that if a finite group is represented semi-regularly with two orbits by a poset P ,
then P has height equal to 1, as points in the same orbit cannot be comparable (x < gx
would lead to an infinite chain). Let G be a non-necessarily finite group and let P be a
semi-regular representation with two orbits and of height 1. Then the orbits are the set
of minimal points and the set of maximal points. Thus, the set of minimal points can be
identified with G, the set of maximal points with G′, and the action of G on P can be
assumed to be the left regular action on each copy of G. If we denote by S the set of
elements h ∈ G such that e < h′, then S 6= ∅ and P = P (G,S). Indeed, given g, h ∈ G,
we have that g < h′ if and only if e < (g−1h)′, which is equivalent to g−1h being in S, i.e.
h ∈ gS.

In conclusion the semi-regular representations with two orbits and of heght 1 of a group
G are the Cayley representations of G, and for G finite, every semi-regular representa-
tion with two orbits is of this form. Our problem, in the finite case, is then to classify
those finite groups G for which there is a subset S with Aut(P (G,S)) being equal to the
automorphisms induced by L. An infinite group G, however, could admit a semi-regular
representation with two orbits of a different kind. Let P be constructed from two copies
Z,Z′ of Z in which i, i′ are smaller than j every time i < j, where < is the usual order
of the integers. This is a semi-regular representation of Z with two orbits. The difference
between Cayley representations and general semi-regular representations with two orbits,
and the relevance of the first when studying regular representations will be clear in Section
6.

Let G be a non-necessarily finite group and ∅ 6= S ⊆ G. Then P (G,S) is a Cayley
representation of G if and only if every automorphism fixing the minimal point e ∈ G ⊆
P (G,S) is the identity. Indeed if ϕ ∈ Aut(P (G,S)), then ϕ(e) must be a minimal point,
say g ∈ G ∈ P (G,S). Let L(g) be the corresponding automorphism induced by L : G →
P (G,S). Thus, L(g)−1ϕ fixes e, and if this implies that L(g)−1ϕ = 1P (G,S), then ϕ = L(g).

The following result is easy to prove and details are left to the reader.

Proposition 1. Let G be a group, ∅ 6= S ( G. Then
(i) For every h ∈ G, P (G,S) is a Cayley representation of G if and only if P (G,Sh) is.
(ii) For every automorphism ψ of G, P (G,S) is a Cayley representation of G if and only
if P (G,ψ(S)) is.



4 J.A. BARMAK

(iii) P (G,S) is a Cayley representation of G if and only if the complement P (G,G r S)
is.

Remark 2. If P is a semi-regular poset representation of a group G different from the trivial
group 1 and Z2, then P is connected. Indeed if P is not connected, by semi-regularity
each component must have trivial automorphism group. If the components are pairwise
non-isomorphic, then Aut(P ) is trivial, a contradiction. Let C,C ′ be two isomorphic
components of P . If there is no other component, then Aut(P ) = Z2, a contradiction. If
there is another component, there is a non-trivial automorphism of P fixing every point
in that component, contradicting semi-regularity again.

In the case of Cayley posets P (G,S), the fact that P (G,S) is connected is equivalent
to SS−1 = {st−1| s, t ∈ S} being a generating set of G, which in particular implies that S
generates G.

A Haar graphical representation of a group G is a semi-regular representation by a
bipartite graph with the orbits being the parts of the bipartition. In other words, it
is a bipartite graph B with parts V1, V2 together with an isomorphism between G and
Aut(B), such that the action of G on the vertex set of B is semi-regular with the two
orbits being V1 and V2. Every representation of this kind is isomorphic to a graph B(G,S)
for some S ⊆ G. This is the bipartite graph with parts G,G′ and edges (g, (gs)′) for
g ∈ G, s ∈ S. The characterization of graphs admitting a Haar graphical representation
is an open problem [13].

The comparability graph C(P (G,S)) of P (G,S) (in this case this is the underlying
undirected graph of the Hasse diagram) is a bipartite graph, and every automorphism
of the poset induces an automorphism of the graph. Thus, if G admits a Haar graph-
ical representation, it admits a Cayley representation. The converse is not true as no
abelian group admits a Haar graphical representation [13], but they can have a Cayley
representation (see Example 7 below).

Recall that a digraphical regular representation of a group G is a digraph Γ such that
Aut(Γ) ≃ G and the action of Aut(Γ) on the vertex set of Γ is regular. Babai proved the
following characterization [5, 6].

Theorem 3. (Babai) A non-necessarily finite group G admits a digraphical regular rep-
resentation if and only if G is different from Z2

2,Z
3
2,Z

4
2,Z

2
3 and the quaternion group Q8.

Babai observes that every digraphical regular representation induces a semi-regular
poset representation with three orbits [5, Proposition 7.3]. This representation is con-
structed by taking three copies G,G′, G′′ of G and setting g < g′ < g′′ for every g ∈ G
and g < h′′ if (g, h) is an edge in the digraphical regular representation. For Q8 Babai
provides a separate construction of a semi-regular poset representation with three orbits.
Thus, every group different from Z2

2,Z
3
2,Z

4
2,Z

2
3 admits a semi-regular poset representation

with three orbits. The converse of this statement is not analyzed in [5, 6].

Proposition 4. The group Z2
2 does not admit a semi-regular poset representation with

three orbits.

The proof we give essentially analyzes all possible candidates of representations, and it
is included at the end of this article. We do not inspect here the cases Z3

2,Z
4
2 and Z2

3.
The idea for proving that the five groups in Theorem 3 have no digraphical regular

representation is to show that in each of those cases for every subset S ⊆ G there exists
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an automorphism ϕ 6= 1G of G such that ϕ(S) = S. Instead of applying this idea to our
problem directly, we observe the following.

Remark 5. If a group G admits a Cayley representation P (G,S), then it admits a digraph-
ical regular representation. Define the digraph Γ with vertex set G and edges (g, gs) for
every g ∈ G, s ∈ S. Let ϕ ∈ Aut(Γ). Define ϕ : P (G,S) → P (G,S) by ϕ(g) = ϕ(g) and
ϕ(g′) = ϕ(g)′ for every g ∈ G. It is easy to see that ϕ is an automorphism of P (G,S), so
by assumption it coincides with L(g) for some g ∈ G. This implies that ϕ corresponds to
the left multiplication by g. Thus, Γ is a digraphical regular representation of G.

The converse of this statement does not hold. Moreover, we have the following result.

Proposition 6. The groups G = Z3,Z4,Z5,Z6,Z7,Z
2
2,Z

3
2,Z

4
2,Z

2
3, S3 and Q8 do not admit

a semi-regular poset representation with two orbits.

Proof. The cases Z3,Z4,Z5 and Z7 are covered by Corollary 12 of [9]. For Z2
2,Z

3
2,Z

4
2,Z

2
3, Q8

the result follows from Theorem 3 and Remark 5. Suppose then thatG = Z6 = {0, 1, 2, 3, 4,
5}. Assume there exists ∅ 6= S ⊆ Z6 such that Aut(P (G,S)) is a Cayley representation of
Z6. Then S 6= Z6 and by Proposition 1, we may assume that |S| ≤ 3 and that 0 ∈ S. By
Remark 2, P (G,S) is connected. If |S| = 2, P (G,S) is a crown, and there is an involution
fixing 0. Therefore we may assume |S| = 3, and by Proposition 1 there are only two
representatives to analyze: S = {5, 0, 1}, {0, 1, 3}. In the first case the involution k → −k,
k′ → (−k)′ fixes 0. In the second case there is an involution which transposes 2 with 5
and 0′ with 3′, and fixes any other point.

Finally, suppose ∅ 6= S ( S3 is such that P (S3, S) is a Cayley representation of S3 =
{e, (12), (13), (23), (123), (132)}. Again by Proposition 1 we may assume that |S| ≤ 3 and
that e ∈ S. Since S3 is not cyclic, by Remark 2, |S| = 3. By applying an automorphism
of S3 there are only two cases to analyze S = {e, (12), (13)}, {e, (12), (123)}. In the first
case there is an involution which transposes (12) with (13), (123) with (132), (12)′ with
(13)′ and (123)′ with (132)′. In the second, there is an involution transposing (12) with
(23), (123) with (132), e′ with (123)′ and (13)′ with (23)′. �

3. Girth of Cayley graphs and representations with two orbits

Let G be a group and let ∅ 6= S ⊆ G be a subset. For g ∈ G we define the S-neighborhood
of g by NS(g) = gSS−1 = {gst−1| s, t ∈ S} ⊆ G. Note that two minimal elements g, h ∈ G
of the Cayley poset P = P (G,S) have a common upper bound if and only if h ∈ NS(g).
Thus, if ϕ ∈ Aut(P ), ϕ(NS(g)) = NS(ϕ(g)) for every g ∈ G. Given g, h ∈ G, their affinity
is α(g, h) = #(NS(g)∩NS(h)) (this could be infinite if S is). Then α(ϕ(g), ϕ(h)) = α(g, h)
for every automorphism ϕ.

Example 7. We claim that if n ≥ 9 and S = {0, 1, 3} ⊆ Zn, then P = P (Zn, S) is a
Cayley representation of Zn. Let ϕ ∈ Aut(P ) be an automorphim which fixes 0 ∈ P . We
only need to prove that ϕ is the identity 1P .

It is easy to see that for i ∈ Zn, NS(i) = {i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3}. Since
n ≥ 7, #NS(i) = 7 for every i. Since n ≥ 8, α(i, i + 1) = 6 for every i. Since n ≥ 9,
α(i, j) = 6 only when j ∈ {i − 1, i + 1}. Since ϕ preserves affinity, and 0 is fixed, then
ϕ(1) ∈ {−1, 1}. However, if ϕ(1) = −1, by induction ϕ(i) = −i for every i. This is a
contradiction as {0, 2, 3} has an upper bound, while {0,−2,−3} does not. Thus ϕ(1) = 1
and by induction ϕ(i) = i for every i. Each maximal element i′ is uniquely determined by
its smaller elements i, i− 1, i− 3. Thus ϕ(i′) = i′ for every i.
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Note that 9 is three times the diameter of S = {0, 1, 3} in the Cayley graph Γ(Zn, {1}).
Also note that the argument in Example 7 can be used with no changes to prove that Z
admits a Cayley representation.

In [9] it is proved that Z8 also admits a Cayley representation. A similar argument is
used with S = {0, 1, 2, 4} and a different version of the notion of S-neigborhood. In our
next result both choices of S will be used simultaneously to represent groups generated
by two elements.

Suppose {x, y} is a set of generators of a group G, and let Γ = Γ(G, {x, y}) be the
corresponding Cayley graph, i.e. the undirected graph with vertex set G and an edge
with vertices g, gx and another with vertices g, gy for each g ∈ G (in particular Γ has
loops if any generator is the identity and it has multiple edges if one generator has order
two or if it equals the other or its inverse). Once again, recall that the girth of a graph
is the smallest length of a cycle (infinite if the graph is a forest), so the girth g(Γ) of
Γ is r if and only if there is a non-trivial word w of length r in the letters x, y which
is trivial in G, and every non-trivial word of length smaller than r is non-trivial in G.
The girth of Γ measures how similar the Cayley graphs Γ and Γ(F2, {X,Y }) are locally,
where F2 = F (X,Y ) denotes the free group freely generated by X and Y . Namely, if
g(Γ) ≥ 2r+2, then the balls Br(Γ), Br(Γ(F2, {X,Y })) of radius r with center in e in these
two graphs (i.e. the subgraphs induced by the vertices whose distance to e is at most r)
are isomorphic.

Theorem 8. Let G be a non-necessarily finite group generated by two elements x, y.
Suppose that for every non-trivial word w ∈ F2 with length smaller than or equal to 21,
w(x, y) 6= e ∈ G, that is g(Γ(G, {x, y})) > 21. Then G admits a Cayley representation.

Proof. Let S = {e, x, x2, x4, y, y3} and let P = P (G,S). Let ϕ be an automorphism of P
fixing the minimal point e ∈ P . We want to prove that ϕ = 1P . Note that NS(e) = SS−1

consists of the elements x−4, x−3, x−2, x−1, e, x, x2, x3, x4, y−3, y−2, y−1, y, y2, y3, xy−1,
xy−3, x2y−1, x2y−3, x4y−1, x4y−3, yx−1, yx−2, yx−4, y3x−1, y3x−2, y3x−4. These 27 ele-
ments are different since the girth g(Γ) of Γ = Γ(G, {x, y}) is greater than 14. The
ball B7(Γ) with center e and radius 7 in Γ is isomorphic to the ball B7(Γ(F2, {X,Y }))
since g(Γ) ≥ 16. This ball is then a tree. In Figure 1 we have depicted the smallest
connected subgraph of B7(Γ) which contains all the 27 vertices corresponding to elements
in NS(e).

The 27 vertices corresponding to the points in NS(e) are represented with big dots, while
there are 5 vertices in the picture which are not in NS(e), represented with small dots.
In each vertex e 6= g ∈ NS(e) we have indicated the affinity α(e, g) = #(NS(e) ∩NS(g)).
This can be computed in each of the 26 cases algebraically, using that no non-trivial word
of length smaller than or equal to 21 is trivial in G, or graphically, using that g(Γ) > 21.
For the first alternative, note that an element h ∈ NS(e) is represented by a word w ∈ F2

with total exponent smaller than or equal to 7, while an element h′ ∈ NS(g) is represented
by a word w′ of exponent at most 7+7=14. Thus h = h′ ∈ G if and only if w = w′ ∈ F2.
For the second, graphical, alternative, note that if g is represented by a word u ∈ F2 of
exponent at most 7, then the union of B7(Γ(F2, {X,Y })) and the ball uB7(Γ(F2, {X,Y }))
of center u is a subgraph of Γ(F2, {X,Y }) of diameter at most 21. Thus, this graph is
isomorphic to the (non-necessarily induced) subgraph B7(Γ)∪ gB7(Γ) of Γ, so α(e, g) can
be computed in Γ(F2, {X,Y }).
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Figure 1. The smallest connected subgraph of B7(Γ) containing the ver-
tices of NS(e).

Since ϕ(e) = e, ϕ(NS(e)) = NS(e). Among the points in NS(e), there are only two,
x−1, x whose affinity with e is α(e, x−1) = α(e, x) = 12. Thus ϕ(x) ∈ {x−1, x}. If
ϕ(x) = x−1, then ϕ(NS(x)) = NS(x

−1) and α(ϕ(x2), x−1) = α(x2, x) = 12. This implies
that ϕ(x2) ∈ {x−2, e}. Since ϕ is injective, ϕ(x2) = x−2. By induction ϕ(xn) = x−n for
every n ≥ 0. The set {e, x2, x3, x4} of minimal points of P has an upper bound. However,
ϕ({e, x2, x3, x4}) = {e, x−2, x−3, x−4} does not. Indeed, if g′ ∈ P was an upper bound,
then {e, x−2, x−3, x−4} ⊆ P≤g′ = {g, gx−1, gx−2, gx−4, gy−1, gy−3}. In particular e must
be contained in the later, so g ∈ {e, x, x2, x4, y, y3} = S. But for any of these six cases we
see that either x−2 or x−3 is not contained in P≤g′ , using that g(Γ) ≥ 10. We conclude
then that ϕ(x) = x, and by an inductive argument, that ϕ(xn) = xn for every n ≥ 0.
Similarly, ϕ(x−n) = x−n for every n ≥ 0 (when G is infinite, and moreover, x is not of
finite order, this does not follow from the previous claim). Moreover, this argument shows
that if g ∈ P is fixed by ϕ for some g ∈ G, then gxn ∈ P is fixed for every n ∈ Z. Among
the points in NS(e) (we only care about points in NS(e) which are not powers of x, in
fact), only y−1 and y have affinity equal to 9 with e. Thus ϕ(y) ∈ {y−1, y}. As above,
if ϕ(y) = y−1, then ϕ(yn) = y−n for every n ≥ 0, and this yields a contradiction since
{e, y2, y3} ⊆ P has an upper bound, while {e, y−2, y−3} does not. Indeed, either y−2 or
y−3 is not contained in P≤g′ for each g ∈ S, as g(Γ) ≥ 10. Therefore, ϕ(y) = y, and by
induction ϕ(yn) = yn for every n ≥ 0. The same holds for n ≤ 0. Moreover, for every
g ∈ G, if ϕ(g) = g, then ϕ(gyn) = gyn for every n ∈ Z. Now, since {x, y} generates G, all
the minimal points of P are fixed by ϕ. Finally, every maximal point of P is determined
by the set of points it covers. Concretely, e′ is the unique upper bound of {e, y−1} ⊆ P ,
since for any e 6= g ∈ S, y−1 does not belong to P≤g′ , using that g(Γ) ≥ 9. Moreover, for
each g ∈ G, g′ is the unique upper bound of {g, gy−1}. Since the later is invariant, g′ is
also fixed. �

Remark 9. Note than in the proof of Theorem 8 we do not really need all the non-trivial
words w(X,Y ) of length at most 21 to represent non-trivial elements of G, but just a
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concrete list with much fewer words. This could be used to obtain representations of
examples not covered by the theorem. Also, even if some of the words in this list are
trivial in G, a similar proof could work as long as we have some control on the number of
words wich are indeed trivial. For example, the fact that Z2 has a Cayley representation
follows from a variant of this type.

Generalizations of Theorem 8 for groups with d ≥ 3 generators can be obtained with
similar methods by combining d generator sets S, S′, . . . , S(d) of Z as we did for d = 2. In
this article we restrict ourselves to the case of two generators.

As a first example, we can apply Theorem 8 to G = F2.
The construction of regular graphs, and specifically Cayley graphs, with large girth, has

a long history, with application to low density codes, among others. A simple counting
argument due to Moore implies that a regular graph Γ of degree 4 and girth g(Γ) > 21
has at least 311 − 1 vertices. Thus, Theorem 8 can only be applied to groups of order at
least that number.

In [30] Margulis proves that if p is a prime and G = SL2(Zp), then x =
(
1 2
0 1

)
, y =

(
1 0
2 1

)

generate G and g(Γ(G, {x, y})) ≥ 2 log1+
√
2(
p
2) − 1. Thus, for p > 2(1 +

√
2)11, SL2(Zp)

admits a Cayley representation. For PGL2(Zp) and PSL2(Zp) there are similar results

by Lubotzky, Phillips and Sarnak [28], but their Cayley graphs are constructed with q+1
2

generators, where q is a prime congruent to 1 modulo 4.

4. Representability of finite simple groups

In [42] Weigel proved the following result, answering a question originally raised by
Magnus:

Theorem 10. (Weigel) If C is an infinite family of isomorphic types of non-abelian finite
simple groups, then F2 = F (X,Y ) is residually C. That is, the intersection of all the
normal subgroups N E F2 such that F2/N ∈ C, is trivial.

In fact, this result holds for Fd, d ≥ 2. A much stronger result is proved by Dixon,
Pyber, Seress and Shalev in [14] using probabilistic methods. Although our result in
this section (Corollary 13) follows from [14, Theorem 3] (and Theorem 8), we choose an
approach using only Weigel’s result. As explined in [14], Weigel’s Theorem implies

Theorem 11. If S is an infinite family of non-isomorphic non-abelian finite simple groups
and w ∈ F2 = F (X,Y ) is a non-trivial word, then there exists S ∈ S and x, y ∈ S such
that x, y generate S and w(x, y) 6= 1 ∈ S.

Indeed, since w is non-trivial, by Theorem 10 there exists N E F2 such that w /∈ N and
F2/N is isomorphic to some S ∈ S. Let ϕ : F2 → S be an epimorphism with ker(ϕ) = N .
Then x = ϕ(X), y = ϕ(Y ) satisfy the required property.

If P1, P2, . . . , Pk are non-trivial polynomials over some coefficient ring, then their prod-
uct P has the property that every root of some Pi is also a root of P . The following is a
similar construction for equations over groups. Recall that an equation in d variables is
just a word w ∈ Fd = F (X1, X2, . . . , Xd), and a solution of w on a group G is a d-tuple
(x1, x2, . . . , xd) ∈ Gd such that w(x1, x2, . . . , xd) = 1 ∈ G.

Lemma 12. Let w1, w2, . . . , wk ∈ Fd be non-trivial words. Then there exists a non-trivial
word w ∈ Fd with the following property. For every group G and for every 1 ≤ i ≤ k,
every solution of the equation wi on G, is also a solution of w.
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Proof. By induction it suffices to prove the result for k = 2. Let F be the subgroup of
Fd generated by w1, w2. If rk(F ) = 1, F is generated by some non-trivial word u ∈ Fd
and there exist l,m ∈ Z with w1 = ul, w2 = um. By assumption l,m 6= 0. Let w = ulm.
Then w satisfies the required property. If rk(F ) = 2, then {w1, w2} is a basis of F and, in
particular, w1 and w2 do not commute. Take w = [w1, w2] ∈ Fd. Then w is non-trivial,
and every solution of w1 and of w2 on a group G is a solution of w. �

Corollary 13. There are only finitely many finite simple groups which do not admit a
Cayley representation.

Proof. By Example 7 there are only finitely many finite abelian simple groups which
do not admit such representation. Suppose there exists an infinite family S of non-
isomorphic non-abelian finite simple groups which do not admit such representation. Let
w1, w2, . . . , wk be all the non-trivial words in F2 of length smaller than or equal to 21.
Let w ∈ F2 be a non-trivial word as in the statement of Lemma 12. By Theorem 11
there exists S ∈ S and x, y ∈ S which generate S and such that w(x, y) 6= 1 ∈ S. Then
wi(x, y) 6= 1 ∈ S for every 1 ≤ i ≤ k. This is a contradiction by Theorem 8. �

5. Dehn presentations and random groups

In this section we will find a large class of examples satisfying the hypothesis of Theorem
8, and we will see that, in some sense, almost all finitely presented groups admit a Cayley
representation.

We assume the reader is familiar with small cancellation theory. Standard reference
for this is [29, 39]. If a presentation P = 〈X|R〉 satisfies the C ′(16) condition, then by
Greendlinger’s lemma, it is a Dehn presentation (i.e. the Dehn algorithm solves the word
problem). In particular, if the length of every relator in P is greater than or equal to some
number l ≥ 1, then g(Γ(GP , X)) ≥ l.

Corollary 14. Let P = 〈x, y|r1, r2, . . . , rm〉 be a presentation which satisfies C ′(16) and
such that length(rj) ≥ 22 for every 1 ≤ j ≤ m. Then the presented group GP admits a
Cayley representation.

For 1-relator groups with torsion there is a stronger result than Corollary 14 in virtue
of the Newman Spelling Theorem, which implies that when the relator is a proper power,
the presentation is Dehn.

Corollary 15. Let P = 〈x, y|rm〉 be a presentation, were r ∈ F2 is cyclically reduced
and m ≥ 2. If the length of rm is greater than or equal to 22, GP admits a Cayley
representation.

When studying random groups, there are two models which have received more atten-
tion than any other: Gromov’s density model introduced in [20, §9] and Arzhantseva and
Ol’shanskii’s few relators model [3]. We recall basic definitions. Standard reference on this
is [16, 27, 37]. In the density model we fix a number n ≥ 2 of generators x1, x2, . . . , xn and a
density parameter 0 ≤ d ≤ 1. The number of cyclically reduced words of length l is asymp-
totically (2n− 1)l. Given l ≥ 1, we choose (2n− 1)dl cyclically reduced words of length l
uniformly randomly and independently to get a presentation P = 〈x1, x2, . . . , xn|R〉 whose
relators are those words. We say that a random presentation (or a random group) satisfies
a certain property, if the probability that P (or GP) satisfies the property tends to 1 as
l → ∞. We have the following result by Gromov and Ollivier [37].
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Theorem 16. (Gromov, Ollivier) In the density model, if d < 1
2 , a random group is

infinite hyperbolic, while for d > 1
2 , a random group is Z or Z2.

Although hyperbolic groups admit a Dehn presentation, this new presentation could
have relators of different lengths. However the following result holds.

Theorem 17. (Gromov [20]) In the density model, if d < 1
12 , then a random presentation

satisfies C ′(16), so the Dehn algorithm solves the word problem. If d > 1
12 , a random

presentation does not satisfy C ′(16).

The fact that a presentation does not satisfy C ′(16) does not imply it is not a Dehn
presentation. Moreover, Ollivier proved in [38] the following result.

Theorem 18. (Ollivier) In the density model, if d < 1
5 , a random presentation is Dehn’s.

If d > 1
5 , then it is not.

This, together with Theorem 8 imply the following

Corollary 19. In the density model, if d < 1
5 , a random group with n = 2 generators

admits a Cayley representation.

Similar results for every fixed number n ≥ 3 of generators should be true, and a gener-
alization of Theorem 8 could be used in the proof.

We turn now to the few relators model by Arzhantseva and Ol’shanskii. In this model
both the number n of generators and number m of relators are fixed. For each l ≥ 1,
m cyclically reduced words of length at most l are chosen at random independently and
uniformly to form the set R of relators. We say that a random n-generator, m-relator
presentation (or group) satisfies certain property if it does with probability → 1 when
l → ∞.

Theorem 20. (Arzhantseva, Ol’shanskii [3]) For every n ≥ 2, m ≥ 1, λ > 0, a random
n-generator m-relator presentation satisfies C ′(λ).

Corollary 21. For every m ≥ 1, a random 2-generator m-relator group admits a Cayley
representation.

Proof. This follows from Corollary 14, by applying Theorem 20 for n = 2, λ = 1
6 and this

assertion: in a random 2-generator m-relator presentation all the relators have length at
least 22. This follows from a simple counting argument (cf. [2, p. 3208]): the number cl
of cyclically reduced words in X,Y of length l is smaller than or equal to 4.3l−1. Thus,
the number c≤l of cyclically reduced words of length ≤ l is at most 2.(3l − 1) < 2.3l.
The number of m-tuples of cyclically reduced words of length at most l which contain
at least one word of length ≤ 21 is at most m.2.321(2.3l)m−1 = m2m3213lm−l. On the
other hand c≤l ≥ cl ≥ 4.3l−2.2 = 8.3l−2 for each l ≥ 2. Therefore, the number of m-
tuples of cyclically reduced words of length ≤ l is at least (8.3l−2)m = 8m3lm−2m. Since
m2m3213lm−l/8m3lm−2m → 0 as l → ∞, the assertion is proved. �

6. Extensions of the integers by semi-regularly representented groups

Recall that a group G is said to be indicable if there exists an epimorphism G→ Z. In
other words, they are the extensions of Z or, equivalently, the semidirect products N⋊ψZ.
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Theorem 22. Let G 6= Z2 be a group which admits a Cayley representation, and let
ψ : Z → Aut(G) be a group homomorphism. Then G ⋊ψ Z admits a regular poset repre-
sentation.

Proof. Let P (G,S) be a Cayley representation of G. Define P to be the poset obtained
from countable many copies P (G,S) × {n} (n ∈ Z) of P (G,S) with the identifications
(g′, n) ∼ (ψ(1)(g), n+ 1) for every g ∈ G,n ∈ Z. That is, the order on P is the transitive
closure of the union of the orders in each copy. Let H = (Gop ⋊ψ Z)op. In other words,
the underlying set of H is the cartesian product G × Z and the operation is defined by
(g1, n1)(g2, n2) = (ψ(n2)(g1)g2, n1+n2). The groups G⋊ψZ and H are isomorphic via the
map (g, n) 7→ (ψ(−n)(g),−n). Note that H has a well-defined left action on P given by
(g1, n1) · (g2, n2) = (ψ(n2)(g1)g2, n1+n2) and (g1, n1) · (g′2, n2) = ((ψ(n2)(g1)g2)

′, n1+n2).
The action is clearly transitive and free. In order to show that H → Aut(P ) is surjective
it suffices to prove that any automorphism of P fixing (e, 0) is the identity.

Suppose ϕ ∈ Aut(P ) fixes (e, 0). Since P (G,S) is connected by Remark 2, ϕ restricts
to an automorphism of P (G,S) × {0}. Concretely, the set D1 of points covering (e, 0)
is ϕ-invariant, the set D2 of points covered by those in D1 is then also is ϕ-invariant,
then the set D3 of points covering those in D2, and so on. Thus P (G,S) × {0} ⊆ P is
ϕ-invariant. Since it is also ϕ−1-invariant, ϕ(P (G,S)× {0}) = P (G,S)× {0}.

By hypothesis ϕ|P (G,S)×{0} is the identity. In particular (e, 1) = (e′, 0) is fixed. By an
inductive argument ϕ|P (G,S)×{n} is the identity for every n ≥ 0. Also, since (e′,−1) = (e, 0)
is fixed, then P (G,S)×{−1} is invariant, and ϕ|P (G,S)×{−1} is the identity. By induction
we deduce that ϕ is the identity of P . �

Example 23. Let G be the fundamental group of the Klein bottle, that is the group
presented by 〈x, y| xyx−1y〉. Then G admits a regular poset representation. Indeed, there
is a split short exact sequence

1 → Z → G→ Z → 1,

where the map Z → G takes a generator of Z to y, and G→ Z maps a word w to its total
x-exponent. Thus G = Z ⋊ψ Z for some homomorphism ψ : Z → Aut(Z). Since Z admits
a Cayley representation P (Z, S) for S = {0, 1, 3} (see the comments after Example 7),
Theorem 22 applies.

In view of the results in previous sections, many groups with torsion (non-trivial ele-
ments of finite order) admit a regular poset representation. On the other hand if G 6= 1,Z2

is a torsion group, then it admits no regular representation. If P is a non-discrete regular
representation of a torsion group G, there are comparable elements x < y, so there exists
g ∈ G with gx = y. This implies that gnx < gn+1x for every n ≥ 0, and the fact that g has
finite order yields a contradiction. If P is a discrete regular representation of G, then G is
trivial or of order 2. For example, the Burnside groups B(d, n) of exponent n and d ≥ 2
generators are finitely generated groups which do not admit a regular representation, and
they are infinite for n large enough [1, 26].

The posets P constructed in Theorem 22 are regular representations of indicable groups
which are graded in the sense that there exists a (rank) function ρ : P → Z such that 1.
x < y implies ρ(x) < ρ(y) and 2. whenever y covers x, we have ρ(y) = ρ(x) + 1. Not
every regular representation of a group is graded. Let P be the poset with underlying
set Z and the order ⊳ given by a ⊳ b if a = b or b − a ≥ 2. Then it is clear that P is
a regular representation of G = Z. Indeed, if an automorphism ϕ of P fixes 0, the set
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{−1, 1} of points not comparable with 0 must be ϕ-invariant. Since −1 ⊳ 1, ϕ fixes both
−1 and 1, and by an inductive argument ϕ = 1P . On the other hand P is not graded as
0 ⊳ 2 ⊳ 4 ⊳ 6 and 0 ⊳ 3 ⊳ 6 are two maximal chains from 0 to 6 of different length.

Proposition 24. Let G 6= 1,Z2 be a group which admits a graded regular poset represen-
tation. Then G is indicable.

Proof. Let P be a graded regular representation of G with rank function ρ : P → Z. Since
G 6= 1,Z2, by Remark 2, P must be connected. Fix x ∈ P . By adding a constant to ρ we
may assume ρ(x) = 0. Define f : G → Z by f(g) = ρ(gx). We prove that f is a group
homomorphism. Let g, h ∈ G. Condition 1 in the definition of rank function guarantees
that there are no infinite chains between two fixed elements of P . By connectivity there is
a sequence x = x0, x1, . . . , xn = gx in which for every 0 ≤ i < n either xi+1 covers xi or xi
covers xi+1. Then, the number of i for which the first happens minus the number of i for
which the latter happens is ρ(gx). Similarly, there is a sequence x = y0, y1, . . . , ym = hx
in which each yi is covered by or covers yi+1, and the corresponding difference is ρ(hx).
Thus,

x0, x1, . . . , xn, gy1, gy2, . . . ghx

is a sequence of the same kind, and the corresponding difference is ρ(gx)+ρ(hx) = ρ(ghx).
Thus f(gh) = f(g) + f(h). The fact that f is an epimorphism follows directly from the
fact that P is non-discrete. �

Theorem 25. Let G be a group different from Z2
2,Z

3
2,Z

4
2,Z

2
3 and let ψ : Z → Aut(G) be a

group homomorphism. Then G⋊ψ Z admits a semi-regular poset representation with two
orbits.

Proof. The proof is very similar to that of Theorem 22. If G is the trivial group, the exis-
tence of a non-Cayley and a Cayley representation was already discussed in the beginning
of Section 2 and right after Example 7. Assume G is non-trivial. The representation we
construct will not be Cayley. If G 6= Q8, let B be a semi-regular representation of G with
three orbits, as constructed by Babai in [5, 6] and recalled after Theorem 3 above. The
underlying set of B is G ∪ G′ ∪ G′′. The set of minimal points of B is G, and the set of
maximal points is G′′. A point g′ ∈ G′ covers just one element g ∈ G and it is covered
only by g′′ ∈ G′′. If G 6= Z2, B is necessarily connected, and if G = Z2, B can and will
be assumed to be connected. In particular, since G is non-trivial, every minimal point g
is covered by at least one maximal point h′′ (and also by g′).

Consider countable many copies B×{n} (n ∈ Z) of B. Identify (g′′, n) with (ψ(1)(g), n+
1) for every g ∈ G,n ∈ Z, to obtain a poset P . Note that the set B′ of points (g′, n) ∈ P
for g ∈ G,n ∈ Z, is invariant by any automorphism of P (and so is its complement), since
those are the points covered by just one element.

Let H be the group isomorphic to G⋊ψZ defined in the proof of Theorem 22. There is a
left action λ ofH on P given by (g1, n1)·(g2, n2) = (ψ(n2)(g1)g2, n1+n2), (g1, n1)·(g′2, n2) =
((ψ(n2)(g1)g2)

′, n1 + n2), (g1, n1) · (g′′2 , n2) = ((ψ(n2)(g1)g2)
′′, n1 + n2). This action is free

with two orbits: B′ and its complement. Since these are invariant by any automorphism,
to show that λ is the required representation we may prove that every automorphism of
P fixing (e, 0) ∈ G× {0} is the identity.

Let ϕ ∈ Aut(P ) be such that ϕ(e, 0) = (e, 0). Suppose that D is a subset of B × {0}
which is invariant in this strong sense: D ∩ (G×{0}), D ∩ (G′ ×{0}) and D ∩ (G′′ ×{0})
are ϕ-invariant. We claim that the set D of points in B × {0} which are greater than
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some point in D also satisfies this property. Indeed, if (g′, 0) covers some element in
D ∩ (G × {0}), then so does ϕ(g′, 0). This implies that ϕ(g′, 0) ∈ B × {0}, and since B′

is invariant, ϕ(g′, 0) ∈ G′ × {0}. Now, if (h′′, 0) covers an element in D ∩ (G′ × {0}), or
if it covers an element in D ∩ (G × {0}), or if it covers an element (g′, 0) which covers a
point in D∩ (G×{0}) (as before), then so does ϕ(h′′, 0). In particular ϕ(h′′, 0) ∈ B×{0}.
Since the complement of B′ is ϕ-invariant, ϕ(h′′, 0) ∈ G′′ × {0}. Similarly, the set D of
points in B × {0} which are smaller than some point in D is also invariant in the strong
sense. Let D0 = {(e, 0)}. For k ≥ 1 odd define Dk = Dk−1, while for k ≥ 2 even, define
Dk = Dk−1. Then Dk is ϕ-invariant for every k ≥ 0. Since B is connected, B×{0} = ∪Dk

is ϕ-invariant. Since it is also ϕ−1-invariant, ϕ restricts to an automorphism of B × {0}
fixing a point. Therefore this is the identity. By induction ϕ restricts to the identity in
each copy of B, as we wanted to prove.

The case G = Q8 is very similar to the previous. In this case, the semi-regular repre-
sentation B of G with three orbits constructed by Babai in [6] (proof of Corollary 4.3) also
has G ∪ G′ ∪ G′′ as underlying set, with the set of minimal points being G and maximal
points being G′′. Every point in G is covered by three points: two in G′ and one in G′′,
while each point in G′ is covered by two points. With this, essentially the same proof
works as the set B′ of points (g′, n) ∈ P is invariant by any automorphism. �

Since for each exception G = Z2
2,Z

3
2,Z

4
2,Z

2
3 there are only finitely many homomorphisms

ψ : Z → Aut(G), we deduce the following

Corollary 26. With finitely many exceptions, every indicable group admits a semi-regular
representation with two orbits.

In particular every torsion-free indicable group admits a semi-regular representation
with two orbits, and thus every locally indicable group (that is, each non-trivial finitely
generated subgroup is indicable) admits such a representation. This includes knot groups
[22], torsion free one-relator groups [12, 22], amenable left-orderable groups [32].

We finish with the postponed proof that Z2
2 does not admit a semi-regular representation

with three orbits.

Proof of Proposition 4. Assume P is a semi-regular poset representation of G = Z2
2 =

{0, a, b, a+ b} with three orbits. We can identify those orbits with three copies G,G′, G′′

of G, and assume the action of G is the regular left action on each orbit. Since points in
the same orbit are not comparable, the height h(P ) of P is 1 or 2.

Case 2: h(P ) = 2. We may assume by a relabeling that 0 < 0′ < 0′′. If 0′ is only
comparable with 0 and 0′′, then P is the poset associated to a digraphical regular repre-
sentation of G (see the proof of Theorem 7.3 in [5]), which is absurd by Theorem 3. Since
the opposite P op of P is also a semi-regular representation, we may assume 0′ < a′′.

We call an edge (x, y) in the Hasse diagram H(P ) of P long if x ∈ G and y ∈ G′′. If
there are two long edges starting at 0, they must be (0, b′′) and (0, (a+ b)′′). In this case

we claim that the poset P̃ obtained from P by removing from the relation all the pairs
(x, y) such that (x, y) is a long edge, has the same automorphism group as P . Indeed,

x ∈ G and y ∈ G′′ are not comparable in P̃ if and only if (x, y) is a long edge of H(P ).
Thus we may assume there is at most one long edge starting at 0.

Case 2.0: There is no long edge starting at 0. In other words, there are no long edges
at all in H(P ). If 0′ is only covered by 0′′ and a′′ or if it is covered by all the elements in
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G′′, the transposition which permutes 0′′ and a′′ shows that the action of G on P is not
semi-regular. We may assume that 0′ is covered by 0′′, a′′, b′′ and not by (a+ b)′′. In this
case Aut(P ) is isomorphic to the automorphism group of the subposet induced by G∪G′,
so G admits a semi-regular representation with two orbits, a contradiction by Proposition
6.

Case 2.1: There is one long edge starting in 0, which may be assumed to be (0, b′′).
Since b′′ covers 0, 0′ ≮ b′′ and 0 ≮ b′, so b = b · 0 ≮ b · b′ = 0′. Since 0′ < a′′, (a + b)′ =
(a+ b) · 0′ < (a+ b) · a′′ = b′′, and since b′′ covers 0, 0 ≮ (a+ b)′. Then a+ b ≮ 0′. Thus
0′ covers 0 and possibly a, but nothing else. And 0′ is covered by 0′′ and a′′, and possibly
(a+ b)′′, but not b′′. Thus, there are only four cases to analyze. However, we cannot have
a < 0′ and 0′ < (a+ b)′′ simultaneously as (a, (a+ b)′′) is a long edge. The three possible
cases appear in Figure 2.

a

a'

a''

b'

b

b''

a+b

(a+b)'

(a+b)''

0

0'

0''

a

a'

a''

b'

b

b''

a+b

(a+b)'

(a+b)''

0

0'

0''

a

a'

a''

b'

b

b''

a+b

(a+b)'

(a+b)''

0

0'

0''

Figure 2. Three candidates for Case 2.1.

In the first and second cases we have the involution which permutes 0′′ with a′′, b′ with
(a + b)′ and b with a + b. In the third case there is an involution permuting a′′ with
(a+ b)′′, a′ with (a+ b)′, and a with a+ b. These are non-identity automorphisms fixing
0, a contradiction.

Case 1: h(P ) = 1. Since P is connected by Remark 2, by a relabeling we may assume
that 0′ > 0 < 0′′. The dual 0′ < 0 > 0′′ can be ignored as P op is another semi-regular
representation.

Since h(P ) = 1, 0′ covers only points from the orbit G. If 0′ covers four points, the
transposition which permutes 0′ and a′ shows that the action of G on P is not free. If
0′ covers one point or three, Aut(P ) is isomorphic to the automorphism group of the
subposet induced by G∪G′′. Thus, G would admit a semi-regular representation with two
orbits, a contradiction. We may assume that 0′ covers two elements, 0 and a. Then the
transposition which permutes 0′ and a′ is a non-trivial automorphism of P which fixes 0.

�
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Bourbaki 916(2003).

[17] A.M.W. Glass, Y. Gurevich, W.C. Holland, S. Shelah. Rigid homogeneous chains. Math. Proc. Cam-
bridge Philos. Soc., 89(1981), 7-17.

[18] C.D. Godsil. GRRs for non-solvable groups. In Algebraic Methods in Graph Theory, Coll. Math. Soc.
J. Bolyai 25 (eds. Lovász, L., Sós V. T.) Amsterdam: North-Holland, 1981, 243-256.

[19] C.D. Godsil. Tournaments with prescribed regular automorphism group. Aequationes Math. 30(1986),
55-64.

[20] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, ed. G. Niblo, M.
Roller, Cambridge University Press, Cambridge, 1993.
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