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Abstract. A cop tries to capture a robber in a topological space X being unable to
see him. For which spaces X does the cop have a strategy which allows him to capture
the robber independently of his efforts to escape? In other words, when is there a curve
γ : R≥0 → X which has a coincidence with any other curve in X. We analyze in
particular the case of finite topological spaces and discover general results and exotic
examples about paths in these spaces.

1. Introduction

Let X be a topological space. By a curve in X we mean a continuous map γ : R≥0 → X.
We say that the cop has a strategy in X if there exists a curve γ in X which has a
coincidence with any other curve ρ in X, that is a point t ∈ R≥0, which depends on ρ,
such that γ(t) = ρ(t). Otherwise we say that the robber has a strategy in X. For instance,
it is easy to see that the cop has a strategy in the interval [0, 1] ⊆ R. He just moves from 0
to 1, and then stays still. Also, the existence of a strategy for the cop requires the space to
be path-connected and to have the fixed point property: if f : X → X is fixed point free,
then fγ is a curve for the robber without coincidences with γ. Note also that a strategy
for the cop is necessarily surjective.

Different variants of this problem have been studied: (a) If the cop can see the robber at
any time, he can change his path depending on the robber moves (perfect information). (b)
There could be more than one pursuer or evader. (c) If the players move in a metric space,
restrictions can be put on their maximum speeds and also a positive radius of capture can
be allowed, or a radius of visibility [2, 3, 14, 15, 18, 21, 26]. In this context the problem is
many times referred as to the lion and man problem. The topological non-metric problem
with perfect information has been analyzed in [7]. (d) There are discrete analogues of the
problem. The players could move in discrete time, by turns, in a metric space, and even
the space can be discrete (and finite). This is the case of the game played in a graph G,
in which the players move from a vertex to a neighbor in each turn. When there is perfect
information, the minimum number c(G) of cops needed to capture the robber, is called the
cop number, and is one of the most studied invariants in this area [5, 11], [13, Subsection
9.5.3]. See [17, 19] for a discrete variant with an invisible evader in which the pursuer can
jump to any vertex in each turn.

Applications of pursuit-evasion games have been found in the study of Brownian mo-
tions, CAT(k) spaces and in a variety of fields such as Robotics, Control theory and
Biology.
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When the cop has no information about the robber position, the continuous version
has been extensively studied for graphs, considered as 1-dimensional complexes [5, 12, 18],
[13, Subsection 9.5.1]. In this context the problem is known as graph searching. In few
graphs the cop has a strategy (this was proved in [27], and we will see that the same is
true for arbitrary CW-complexes), so again the minimum number of pursuers (the search
or sweeping number) is the relevant invariant. Graphs are natural for speleological reasons
[16, 27] (searchers looking for a lost man in a dark cave), and they are useful to model
other situations, like clearing a system of pipes which is contaminated by a noxious gas.
On the other hand, the particular case of finite topological spaces is interesting for several
reasons. Recently, classical dynamical systems have been studied using finite spaces [9].
A real dynamical system can be investigated from a sampled point cloud by taking a cube
grid and a multivalued map from the face poset of the grid, considered as a finite space.
Although continuous time dynamical systems φ : X × R≥0 → X on finite spaces are not
interesting (contrary to discrete multivalued), some of the curves that we construct here
share many properties with the trajectories φx : R≥0 → X of a general dynamical system.
Secondly, our problem when posed for finite spaces, is analogous to a different pursuit-
evasion problem involving regular CW-complexes. Namely, suppose that a watcher and
a thief move continuously in an art gallery, whose rooms are some of the open cells of a
regular cell complex K. The watcher cannot see the thief until they are in the same room,
moment in which the watcher wins. We will show that the watcher has a strategy if and
only if the cop has a strategy in the finite space of rooms ordered by the coface relation.
Finally, the description of those finite spaces in which the cop has a strategy is a much
more complex problem than the analogous for graphs, and requires a development of a
whole bunch of new ideas.

Path-components of finite spaces are well understood since Stong’s paper [28]. A T0

topology in a finite set is equivalent to a partial order in the same set, and two points x, y
in a finite T0 space X are in the same path-component if and only if there is a sequence
(called fence) x = x0 ≤ x1 ≥ x2 ≤ . . . xk = y. However, this does not mean that we
understand what a path γ : [0, 1] → X in a finite space looks like. It is a key part of this
work to study properties of paths and curves in finite spaces and to exhibit examples of wild
nature. Many articles about finite spaces deal only with the combinatorial interpretation
they have as posets, or even less, with the simplicial complex associated to that poset
(order complex). The results in this paper go in a very different direction and the essence
of finite spaces is crucial in every proof.

We have attempted to characterize those finite spaces in which the cop has a strategy.
In a first stage it seemed plausible that the existence of such a strategy in a finite T0 space
depended only on the subspace of extrema, which consists of minimal and maximal points
(Corollary 14). Although we managed to describe the spaces of height 1 in which there is a
strategy (Theorem 20), this does not give a direct answer to the general question (Example
22 and Corollary 25). Some examples (Section 8) which lie between the necessary and
sufficient conditions obtained (Corollary 25 and Theorem 28), show that further analysis
is needed.

2. General results

We know already that the cop has a strategy in the 1-dimensional disk. The 2-
dimensional case is relevant being the space in which Rado formulated his original problem
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of the lion and man in 1925, in which players can see each other and have equal maximum
speeds [22]. We will understand this example and much more in this section.

Remark 1. If the cop has a strategy in a space X, so does he in any retract. Indeed, if
A ⊆ X is a retract, with r : X → A a retraction, and γ : R≥0 → X is a strategy for the
cop in X, then rγ is a strategy in A, for if ρ : R≥0 → A is another curve, then there exists
t ∈ R≥0 such that γ(t) = iρ(t) (i : A → X the inclusion) and then rγ(t) = ρ(t).

A subdivision of R≥0 is a collection of closed intervals of R≥0 such that: no member
of the collection is a singleton, the collection covers R≥0, the intersection of two different
members of the collection is empty or a singleton, and the collection is locally finite (for
every t ∈ R≥0 there is a neighborhood intersecting only finitely many members). This last
condition is equivalent to requiring that each t ∈ R≥0 is either in the interior of one interval
or in the boundary of exactly two intervals. Note that a subdivision of R≥0 contains a
unique unbounded interval of the form [a,∞) or otherwise all its members are bounded. A
subdivision of a compact real interval [a, b] is defined in the same way. The last condition
implies that the collection in this case is finite. In this second case our definition is the
standard definition of subdivision.

Let X be a topological space, U an open cover of X, and γ : R≥0 → X a curve (or
γ : [a, b] → X a path). A subdivision of R≥0 (or [a, b]) is said to be γ-admissible if
each interval is contained in the preimage γ−1(U) of some U ∈ U . Every time we have
a γ-admissible subdivision of R≥0 (or [a, b]) we will choose for each interval I an open
set U ∈ U containing γ(I) (this may be done in more than one way). A γ-admissible
subdivision is minimal if there are no adjacent intervals which are contained in the same
γ−1(U).

By a Lebesgue number argument it is easy to prove that for any space X, any open cover
U and any path γ : [a, b] → X, there exists a γ-admissible subdivision of [a, b]. By gluing
adjacent intervals, this can be turned into a minimal γ-admissible subdivision. If we now
consider a curve γ′ : R≥0 → X, then there exists a minimal γ′-admissible subdivision of
R≥0, but this requires a more delicate argument. The details can be found in Theorem 29
in the appendix. In most of the results in this article we will only need the path version.

Lemma 2. Let X be a topological space and let U = {A0, A1, A2, B} be an open cover of
X such that A0, A1, A2 are pairwise disjoint. Moreover, suppose there exist ai ∈ Ai r B
for each i = 0, 1, 2, b ∈ B and a path ωi in X from b to ai whose image does not intersect
Aj for j 6= i. Then the robber has a strategy in X.

Proof. Let γ : R≥0 → X be a curve. We must show there is another curve ρ having no
coincidence with γ. By Theorem 29 there is a minimal γ-admissible subdivision of R≥0.
Since the subdivision is locally finite, a function R≥0 → X is continuous if and only if it is
continuous in each interval. Assume [t0, t1], [t1, t2], [t2, t3] are three adjacent intervals in
the subdivision and suppose γ maps [t0, t1] to some Ai. Since the Aj are pairwise disjoint,
by minimality of the subdivision γ([t1, t2]) ⊆ B and γ([t2, t3]) ⊆ Aj for some j which could
be equal to i or not. Let k ∈ {0, 1, 2} be different from i, j. Let s0 = t0+t1

2 be the center
of the first interval, and s2 the center of the third one. We define ρ in [s0, s2] as follows:
ρ|[s0,t1] is (a reparametrization of) ωk, ρ|[t1,t2] is the constant path at ak and ρ|[t2,s2] is (a
reparametrization of) ωk, the inverse of ωk. See Figure 1.

Thus ρ|[s0,s2] is a continuous loop at b. By hypothesis ρ|[s0,s2] and γ|[s0,s2] are coincidence-
free. We define ρ in this way for each triple of intervals as above. If the subdivision of



4 J.A. BARMAK

t t t t0 1 2 30 2ss

A ABi j

�

�
� �k ka bb k

Figure 1. A curve avoiding γ in Lemma 2.

R≥0 contains no unbounded interval and the first interval I1 = [0, t1] is mapped by γ into
Ai, then ρ can be defined in the first half of I1 as the inverse of the path already defined
in the second half (or just as a constant path). This map is well-defined, continuous, and
has no coincidence with γ. If there are no unbounded intervals, but the first interval I1 is
mapped to B, while the second I2 is mapped to Ai, then we define ρ in the first half of
I2 as the inverse of the path defined in the second half, and we define ρ to be constant in
I1. In the case that there is an unbounded interval [t,∞) in the subdivision (in particular
when the subdivision has just one or two members), ρ can be defined with similar ideas,
and details are left to the reader. �

Example 3. Let Y be a union of three compact real intervals [a0, b0], [a1, b1], [a2, b2]
identifying b0, b1, b2 (see Figure 2).

a

a

a 01

2

b

Figure 2. The space Y .

Define for each i = 0, 1, 2, Ai = [ai, bi), and B = Y r{a0, a1, a2}. Let ωi be a path from
bi to ai in [ai, bi]. Then Lemma 2 applies, so the robber has a strategy in Y . This fact
also follows from a general result for trees given by Parsons [27, Lemma 4].

In particular the robber has a strategy in the 2-dimensional disk D2, since the space Y
is a retract. If we impose a bound for the maximum speed of the robber, and not for the
cop, then even when the robber is invisible, the cop has a strategy in D2 [1, Problema 7].
We have the following classification.

Theorem 4. Let K be a CW-complex. Then the cop has a strategy in K if and only if K
is homeomorphic to the interval [0, 1] or it is the singleton.

Proof. If dim(K) ≥ 2, the space Y in Example 3 is a retract of K, so the robber has a
strategy by Remark 1. If dim(K) ≤ 1 and K has a cycle, then S1 is a retract, and since it
lacks the fixed point property, the robber has a strategy in K. If K is disconnected, the
robber has a strategy. If K is a tree with a vertex of degree greater than or equal to 3,
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then Y is a retract. If K is a tree with every vertex of degree smaller than or equal to 2,
it is homeomorphic to (0, 1), [0, 1), [0, 1] or the singleton. In the first two cases there is a
fixed point free map, and in the latter two the cop has a strategy. �

Recall that a space X satisfies the separation axiom T0 if for any pair of different points
there exists an open set containing exactly one of them.

Proposition 5. If a topological space is not T0, then the robber has a strategy.

Proof. Let X be a space with two different points x, y such that any open set containing
one of them also contains the other. Then the map X → X which maps x to y and all
the remaining points to x, is continuous and fixed point free. �

The cop can have a strategy in non-compact spaces as the next example shows.

Example 6. Let X = Z≥0 with the topology generated by the basis {{0}} ∪ {{0, n} :
n ≥ 1}. Then X is non-compact as the basis defined admits no finite subcover. Define
γ : R≥0 → X by γ(n) = n for every n ∈ Z≥0 and γ(t) = 0 if t /∈ Z≥0. Then γ is
continuous and it is a strategy for the cop. If ρ is a curve in X which passes through
0, then ρ−1(0) ⊆ R≥0 is open and non-empty. Since γ−1(0) is dense, ρ and γ have a
coincidence point. If ρ does not go through 0, then it is constant as Z≥1 is a discrete
subspace of X. Thus ρ and γ have a coincidence also in this case.

We say that the cop has a strong strategy in a space X if there exists a path γ : [0, 1] →
X which has a coincidence with every other path in X. The path γ (and any linear
reparametrization [t, t′] → X) is then called a strong strategy in X. In this case the curve
R≥0 → X which coincides with γ in [0, 1] and is constant in R≥1 is a (regular) strategy
for the cop. On the other hand, the cop may have a strategy in a space X and not a
strong strategy. Indeed, a necessary condition for the existence of a strong strategy is
compactness, so we can take as X the space in Example 6.

Note that if the cop has a strong strategy in a Hausdorff space X, then X is necessarily
metrizable by the Hahn-Mazurkiewicz Theorem.

Example 6 can be better understood in the language of finite (or more generally, Alexan-
droff) spaces. Finite spaces are rarely Hausdorff. In fact, a finite T1 space is always dis-
crete. Finite T0 spaces are relevant in Homotopy Theory and Dynamical Systems. The
rest of the paper will be focused on the cop and robber problem for finite spaces. Our first
result is very elementary and does not require any previous knowledge about these spaces
(cf. [27, Lemma 2]).

Proposition 7. Let X be a finite topological space. If the cop has a strategy in X, then
it also has a strong strategy in X.

Proof. Assume there is no strong strategy. Let γ : R≥0 → X be a curve in X. We prove
that there exists another curve in X having no coincidence with γ.

For every n ≥ 1, let γn be the restriction of γ to [0, n]. By assumption, for every n
there exists a path ρn : [0, n] → X having no coincidence with γn. Since X is finite, there
exists a subsequence (ρnk1

(1))k1∈N of (ρn(1))n≥1 which is constant. There is a subsequence

(ρnk1k2

(2))k2∈N of (ρnk1
(2))k1≥2 which is constant, and so on. We define ρ : R≥0 → X to

be equal to ρnk1k2···km1

in the interval [m,m+1] for each m ≥ 0. Clearly ρ is well-defined,

continuous and has no coincidence with γ. �
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3. Finite spaces, the lifting Theorem and the art gallery

If X is a finite poset, there is a topology in X given by the down-sets, i.e. subsets U ⊆ X
which satisfy that x ≤ y and y ∈ U implies x ∈ U . This topology is T0. Conversely, if
X is a finite T0 space, then for every x ∈ X we define the minimal open set Ux as the
intersection of all the open sets containing x. The minimal open sets are open and in fact
they are a basis for the topology. We define an order in X by x ≤ y if x ∈ Uy. These
two maps which associate a topology to every order and an order to each topology are
mutually inverse [4]. In view of this correspondence we consider finite T0 spaces and finite
posets as the same thing. A map f : X → Y between finite T0 spaces is continuous if
and only if it is order-preserving, that is x ≤ x′ implies f(x) ≤ f(x′). In finite spaces
connected and path-connected components coincide. Two points x, y in a finite T0 space
are in the same component if and only if there exists a fence x = x0 ≤ x1 ≥ . . . xn = y
from x to y.

Finite T0 spaces will be represented by their Hasse diagram, a digraph whose vertices
are the points of the space and with an arrow from x to y if x is covered by y, i.e. x < y
and there is no x < z < y. In the graphical representation of Hasse diagrams all arrows
are assumed to point upwards.

Since for a point x in a finite space X, Ux = {y ∈ X| y ≤ x} is the smallest open set
containing x, a sequence (xn)n∈N converges to a x if and only if for some n0 ∈ N, xn ≤ x
for every n ≥ n0.

Given a finite T0 space X, we denote by K(X) its order complex. This is the simplicial
complex whose simplices are the non-empty chains of X. Let µ : K(X) → X be the map
which maps every point in the interior of the simplex x0 < x1 < . . . < xn to x0. Then
µ is continuous and moreover it is a weak homotopy equivalence ([24, Theorem 2] and
[29, Corollary 3.7]). If K is a finite simplicial complex, we denote by X (K) the poset of
simplices of K ordered by inclusion (face poset). Since K(X (K)) is the first barycentric
subdivision of K, there is also a weak homotopy equivalence K → X (K).

If X is a finite T0 space, we denote by Xop the space with the same underlying set and
whose open sets are the closed sets of X. The order of the poset Xop is the opposite of
the order in X.

Recall that a space X is said to be perfectly normal if for any disjoint closed sets
F,H ⊆ X, there exists a map f : X → [0, 1] such that f−1(0) = F and f−1(1) = H. For
instance all metric spaces satisfy this axiom. In [29, Theorem 3.5] Wofsey proved a result
which has the following particular case.

Theorem 8 (Wofsey’s lifting theorem). Let X be a finie T0 space, Y a perfectly normal

topological space and f : Y → X a continuous map. Then there exists f̃ : Y → K(X) such

that µf̃ = f .

We have the following immediate consequence.

Corollary 9. Let X be a finite T0 space such that K(X) is a space in which the cop has
a strategy. Then the cop has a strategy in X as well.

Proof. Let γ : R≥0 → K(X) be a strategy for the cop. We claim that µγ is a strategy for
the cop inX. Indeed, if ρ : R≥0 → X is a curve, by Theorem 8 there exists ρ̃ : R≥0 → K(X)
such that µρ̃ = ρ. Thus, there exists t ∈ R≥0 such that γ(t) = ρ̃(t), and so µγ(t) = ρ(t). �
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Remark 10. Unfortunately Theorem 4 says that not in many CW-complexes the cop has
a strategy. Still, this corollary will be useful for the cases when K(X) is homeomorphic to
[0, 1], as in Figure 3.

...

...

...

Figure 3. Spaces with associated complex homeomorphic to [0, 1], in
which the cop has a strategy.

In fact in these spaces any path γ from one leaf in the Hasse diagram to the other leaf
is a strong strategy for the cop. A lift γ̃ : [0, 1] → K(X) has a coincidence with any other
path in K(X) by Bolzano’s Theorem, so γ = µγ̃ has a coincidence with any path in X.

There is a relationship between the cop and robber game in finite spaces with another
problem, already described in the introduction, played in polyhedra and some subspaces.

There is a thief hidden in an art gallery. When the doors of the gallery close, the thief
starts walking around the different rooms. At the same time a watcher begins his route.
If at some point both persons are in the same room, then the watcher automatically sees
the thief, turns the alarm on, and the thief is caught. The watcher has no idea where the
thief is until they are in the same room. If the thief manages to stay in a different room
during the whole night, then the doors of the gallery open and he is free. Is there a route
the watcher can make every night, so he can find the thief before morning, regardless the
thief starting position and the way he moves? Or the thief can always remain unseen
during the whole night? We will assume the gallery S is a collection of open cells of a
regular CW-complex (with the subspace topology), each cell being a room. So there are
rooms of different dimension, and the thief can get caught in any of them. A strategy for
the watcher is a path γ : [0, 1] → S such that for any other path ρ : [0, 1] → S there exists
t with γ(t) and ρ(t) being in the same open cell.

We extend the definition of face poset to S, so X (S) is the poset of open cells ordered
by the face relation.

Proposition 11. Let S be a collection of open cells of a finite regular CW-complex K.
Then the watcher has a strategy in S if and only if the cop has a strategy in the finite
space X (S)op.

Proof. Let ς : S → X (S)op be the map which maps every point in the open cell e ⊆ S
to e ∈ X (S)op. It is easy to see that ς is continuous (see [6, Theorem 11.3.2]). The
polyhedron K(X (S)) is a subspace of S via the restriction ι : K(X (S)) → S of the usual
homeomorphism K ′ → K. If e0 < e1 < . . . < en is a chain in X (S), the map ι maps
the open simplex {ei}0≤i≤n to the open cell en (see [23, Ch. III, Theorem 1.7]). In other
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words, ςι = µ : K(X (S)op) → X (S)op. The rest of the proof is a direct application of the
lifting Theorem.

Assume first that γ : [0, 1] → S is a strategy for the watcher. We claim that ςγ is a strong
strategy for the cop. Let ρ : [0, 1] → X (S)op be any path. By Theorem 8, there exists
ρ̃ : [0, 1] → K(X (S)) such that µρ̃ = ρ. Then ιρ̃ is a path in S and there exists t ∈ [0, 1]
such that ιρ̃(t) and γ(t) are in the same open cell. Thus ρ(t) = µρ̃(t) = ςιρ̃(t) = ςγ(t).

Conversely, suppose now that the cop has a strategy in X (S)op, so there exists a strong
strategy γ : [0, 1] → X (S)op by Proposition 7. There exists γ̃ : [0, 1] → K(X (S)) such that
µγ̃ = γ. We show that ιγ̃ is a strategy for the watcher. Let ρ : [0, 1] → S be any path. Then
ςρ must have a coincidence with γ, say at t ∈ [0, 1]. Thus, ςρ(t) = γ(t) = µγ̃(t) = ςιγ̃(t).
This means that ρ(t) and ιγ̃(t) lie in the same open cell. �

Example 12. In Figure 4 we see three art galleries. The 0-dimensional rooms are colored
with red, the 1-dimensional with blue and the 2-dimensional with yellow. In the first one
there are two rooms of dimension 2, three of dimension 1 and one of dimension 0. Here
the watcher has a strategy (see Section 8). In the second gallery there are seven rooms of
dimension 2, two of dimension 1 and two of dimension 0. Here the watcher has a strategy
as well (see Theorem 20). In the third gallery there is one room of dimension 2, one of
dimension 1 and two of dimension 0. Here the watcher does not have a strategy (see
Example 22).

Figure 4. Two galleries in which the watcher has a strategy and another
in which the thief has a strategy.

4. The subspace of extrema

Let X be a finite T0 space. We denote by E(X) the subspace of extrema of X, formed
by its maximal and its minimal points. The aim of this section is to prove that if the cop
has a strategy in X, so does he in E(X) (Corollary 14). An alternative proof is discussed
in Remark 24. In general E(X) is not a retract of X. However we have the following

Proposition 13. Let X be a finite T0 space and let γ : R≥0 → X be a curve. Then
there exists a curve E(γ) : R≥0 → E(X) such that for every t ∈ R≥0, γ(t) ∈ E(X) implies
E(γ)(t) = γ(t).

Proof. The proof will be by induction in the cardinality of X r E(X). Assume a ∈ X is
a point which is not maximal nor minimal and it is covered only by maximal points. We
are going to define a curve γ̃ : R≥0 → X r {a} which coincides with γ at every t ∈ R≥0

such that γ(t) 6= a. Then the proof concludes by the induction assumption. In order to
define γ̃, we consider the connected components of γ−1(a). They are intervals of type O:
(t, t′) (with t′ ∈ R>0 ∪ {∞}), and intervals of type not O: [t, t′] (possibly just one point),
[t, t′) (t′ ∈ R>0 ∪ {∞}), (t, t′]. The new map γ̃ will be constant in each of these intervals.
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Let F̂a be the set of (maximal) elements in X which are greater than a. Let b be a
minimal point of X which is smaller than a. In each interval of type O, γ̃ is defined to
be constant with value b. The definition of γ̃ in the intervals of type not O will be given
later.

Let t < t′ ∈ R≥0 be such that γ(t) = x and γ(t′) = y are two different elements in F̂a

and that (t, t′) ∩ γ−1(F̂a) = ∅. Then [t, t′] is called a change-interval and we will choose
a point t′′ in (t, t′) as follows. If γ|(t,t′) is not the constant map to a, we take t′′ so that
γ(t′′) 6= a. Otherwise we take t′′ to be any point in (t, t′). Note that in this second case
(t, t′) is an interval of type O. The point t′′ is called a right margin for x and a left margin
for y (see Figure 5). Note that if t0 < t1 < t2 are margins (left and right), then there exists

t ∈ (t0, t1) and t′ ∈ (t1, t2) with γ(t), γ(t′) different elements of F̂a. Since F̂a is discrete
and a closed subspace of X, the set of margins is discrete and closed.

If γ(t) = x ∈ F̂a for some t ∈ R≥0 then either there is no margin smaller than t or
the greatest margin smaller than t is a left margin for x. Symmetrically, either there is
no margin greater than t or the smallest margin greater than t is a right margin for x.
Suppose first that the image of the curve γ contains at least two different elements of F̂a.
Then for each x ∈ F̂a let Gx be the union of the following open intervals: 1. All the
intervals (t0, t1) such that t0 is a left margin for x, t1 is a right margin for x, and there is
no margin in the interval. 2. If the smallest margin t in R≥0 is a right margin for x, then
we also add the interval [0, t) to Gx. 3. If there is a greatest margin t′ in R≥0, which is a
left margin for x, then we add (t′,∞) to Gx.

If there is only one element x ∈ F̂a in the image of γ, then there are no margins and
we define Gx = R≥0 while Gy = ∅ for all x 6= y ∈ F̂a. If Im(γ) ∩ F̂a = ∅, we choose an

element x ∈ F̂a and set Gx = R≥0, Gy = ∅ for all y 6= x.

Note that the open sets Gx for x ∈ F̂a, are pairwise disjoint and that γ−1(x) ⊆ Gx for

every x ∈ F̂a. Also, each interval of type not O is contained in a Gx. Indeed, none of these
intervals contains a margin, the intervals are connected, and the Gx cover all of R≥0 with
exception of the margins.

We are now ready to define γ̃ in the intervals of type not O. If I is an interval of type
not O, then it is contained in Gx for a unique x ∈ F̂a. We define γ̃|I to be the constant
map to x.

We claim that the function γ̃ : R≥0 → X r {a} ⊆ X is continuous. Let (tn)n∈N be a
sequence in R≥0 which converges to some t. We want to prove that γ̃(tn) → γ̃(t).

Case 1i: γ(t) 6= a and eventually γ(tn) 6= a (that is for some n0 ∈ N this happens for
every n ≥ n0). In this case γ̃(t) = γ(t) and eventually γ̃(tn) = γ(tn), so by the continuity
of γ, γ̃(tn) → γ̃(t).

Case 1ii: γ(t) 6= a and γ(tn) = a for infinitely many values of n. By assumption

a → γ(t), so γ(t) ≥ a, and then γ(t) = x for some x ∈ F̂a. Then t ∈ Gx and since Gx

is open, tn lies eventually in Gx. Therefore eventually γ̃(tn) is equal to x (if tn is in an
interval of type not O) or smaller than or equal to γ(tn) (if tn is in an interval of type O
or if γ(tn) 6= a). Therefore γ̃(tn) → x = γ̃(t).

Case 2: γ(t) = a. If t is in an interval of type O, then tn lies in the same interval
eventually, so γ̃(tn) = γ̃(t) eventually and the convergence is trivial. Otherwise, t lies in an

interval of type not O. Thus, there exists x ∈ F̂a such that t ∈ Gx and γ̃(t) = x > a = γ(t).
Just as in Case 1ii, tn lies eventually in Gx, so eventually γ̃(tn) is equal to x or smaller
than or equal to γ(tn). Thus γ̃(tn) → γ̃(t).
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0
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...

...

Figure 5. A space X of five points, a curve γ in X, the margins t0, t1, t2,
the sets Gx, Gy, and the curve γ̃ constructed in the proof of Proposition
13.

�

Of course, the curve E(γ) is not uniquely determined by γ in general. Proposition 13
can be compared with [27, Lemma 1], which is an analogue for graphs.

Corollary 14. Let X be a finite T0 space. If the robber has a strategy in E(X), then so
does he in X.

Proof. Let γ : R≥0 → X be a curve in X. By Proposition 13 there is a curve E(γ) :
R≥0 → E(X) which coincides with γ in γ−1(E(X)). By hypothesis there exists a curve
ρ : R≥0 → E(X) ⊆ X having no coincidences with E(γ). Then ρ is a curve in X which
has no coincidences with γ. �

5. Strategies and obstructions to their existence

Motivated by Corollary 14 we study those finite T0 spaces of height 1 (i.e. the longest
chain has two elements) in which the robber has a strategy. We begin with examples
which turn out to be crucial in the classification.

Example 15. Let m ∈ N and let X be the non-Hausdorff cone over the discrete space
of m points. In other words, it is the space X of Figure 6. We claim that the cop has a
(strong) strategy in X. Let γ : [0, 1] → X be the path defined by γ(0) = a, γ( 1

n
) = a for

every n ∈ N, and in the interval ( 1
n+1 ,

1
n
), γ is constant with value cn for every n ∈ N,

where n denotes class modulo m.
It is easy to see that γ is indeed continuous. Let ρ : [0, 1] → X be a path. If ρ(0) = a,

then ρ(0) = γ(0). Otherwise ρ(0) = ck for some 0 ≤ k ≤ m − 1. Since {ck} is open in
X, ρ−1(ck) is an open neighborhood of 0 and then it intersects an interval of the form
( 1
n+1 ,

1
n
) for some n ∈ N with n = k. Thus ρ and γ also have a coincidence point in this

case. This proves that γ is a strong strategy for the cop. Note that if U ⊆ [0, 1] is any
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...
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a

0 1 2 m�2 m�1

Figure 6. The space in Example 15.

neighborhood of 0 and ρ : U → X is a map, then ρ has a coincidence with γ|U . This
property will be used later and it will be generalized in Theorem 26.

Example 16. Let X = S2,1 be the space depicted in Figure 7. We claim that the robber
has a strategy in X.

23

0

1

Figure 7. The scorpion S2,1.

Let γ : [0, 1] → X be a path. By Proposition 7 it suffices to show that there is a path
ρ : [0, 1] → X which has no coincidence with γ (alternativelly we can work with curves
R≥0 → X and use Theorem 29). Consider the open cover U = {U0, U1′ , U2′}. There exists
a minimal γ-admissible subdivision of [0, 1]. As always we choose for each interval in the
subdivision an element of U whose preimage contains the interval. If [t0, t1] and [t1, t2] are
adjacent intervals of the subdivision, then by minimality and the fact that U1′ ∩ U2′ = ∅,
U0 must have been chosen for one and only one of the intervals.

In the intervals of the subdivision for which U0 was not chosen, we define ρ to be the
constant map to 3. Since 3 /∈ Ui′ for i = 1, 2, ρ has no coincidences with γ in those
intervals.

Let [t1, t2] be an interval of the subdivision for which U0 has been chosen. Suppose
[t0, t1] and [t2, t3] are intervals of the subdivision adjacent to the first one. Let Ui′ be the
member of U chosen for the first interval and Uj′ for the second. Since Ui′ ∩ U0 = {i},
γ(t1) = i and similarly γ(t2) = j. We will define ρ|[t1,t2] : [t1, t2] → X. If 3 /∈ γ([t1, t2]), we
define ρ|[t1,t2] to be the constant map to 3. Otherwise, since {3} ∈ X is open, there exist
t1 < s1 < s2 < t2 such that γ((s1, s2)) = {3}. Also, since {i} and {j} are open, there exist
s0 > t1 and s3 < t2 such that γ([t1, s0)) = {i} and γ((s3, t2]) = {j}. Note that s0 < s1
and s2 < s3 (see Figure 8).

Let r0, r1, . . . , r6 ∈ [0, 1] be such that t1 < r0 < r1 < s0 < s1 < r2 < r3 < r4 < s2 <
s3 < r5 < r6 < t2. Let i be the element of {1, 2} different from i, and define j similarly.

Define ρ to be 3 in [t1, r0) ∪ (r6, t2], 0 in {r0, r3, r6}, i in (r0, r1) ∪ (r2, r3), i
′
in [r1, r2],

j in (r3, r4) ∪ (r5, r6) and j
′
in [r4, r5]. It is clear then that ρ|[t1,t2] is continuous and

has no coincidence with γ|[t1,t2]. There are two cases that we have not contemplated yet.
When the interval for which U0 has been chosen is the first or when it is the last in the
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Figure 8. The robber has a strategy in S2,1.

subdivision. In these cases the definition of ρ is simpler and left to the reader. The path
ρ : [0, 1] → X is well-defined, continuous and has no coincidence with γ.

Example 17. Let X be the opposite of the non-Hausdorff cone of the discrete space in
m + 1 points (see Figure 9). We claim that the cop has a (strong) strategy in X. This
is very similar to Example 6. We define γ : [0, 1] → X by γ( k

m
) = bk for 0 ≤ k ≤ m,

and the value of γ is a in all the other points. Let ρ : [0, 1] → X be another path. If a
is in the image of ρ, then since {a} ⊆ X is open and γ−1(a) is dense in [0, 1], ρ and γ
have a coincidence point. Otherwise, ρ is constant, and since γ is surjective, there is also
a coincidence. Note that γ−1(bk) consists of just one point.

...b b bb b

a

0 1 2 m-1 m

Figure 9. The space X in Example 17.

Example 18. Let X = Sop
3,0 be the space in Figure 10. Then the robber has a strategy in

X.

2 3

0

1

1' 2' 3'

Figure 10. The scorpion Sop
3,0.

Let U = {U1, U2, U3} and let γ : R≥0 → X be a curve (alternatively we could work with
a path). There is a minimal γ-admissible subdivision of R≥0, and for each interval I we
choose a member of U containing γ(I). An interval I of the subdivision is called special if
γ(I) ∩ {1′, 2′, 3′} 6= ∅. If I = [t0, t1] (or I = [t0,∞)) is a special interval and i′ ∈ γ(I) for
some i = 1, 2, 3, then there is an open interval (s0, s1) contained in I ∩ γ−1(i′). We choose
one such interval for each special interval.
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Suppose now [t0, t1] and [t2, t3] are two special intervals with t1 < t2. Moreover, suppose
there is no special interval contained in [t1, t2]. Let (s0, s1) ⊆ γ−1(i′) be the interval
chosen inside [t0, t1]. Similarly (s2, s3) ⊆ γ−1(j′) is the interval chosen for [t2, t3]. Here
i, j ∈ {1, 2, 3} could be equal or not. Let k ∈ {1, 2, 3} be different from i, j. We define
ρ|[s1,s2] to be the constant function k′. Note that ρ|[s1,s2] has no coincidence with γ|[s1,s2]
since there are no special intervals in [t1, t2]. We do this for every pair of consecutive
special intervals as above.

Let [t0, t1] be a special interval. Suppose (s0, s1) is the interval chosen inside [t0, t1] ∩
γ−1(i′), and that ρ(s0) = k′, ρ(s1) = l′ have already been defined for k, l 6= i. We define
ρ|[s0,s1] to be a path from k′ to l′ not touching i′ (in fact there is a path going through
k′, k, 0, l, l′). Thus, ρ|[s0,s1] and γ|[s0,s1] are coincidence-free. This defines a curve ρ avoiding
γ. We only have to pay attention to the first special interval and all the intervals at its
left, and the last special interval if any. Also, there could be no special intervals at all.
All these cases are simple and details are left to the reader.

6. The classification in height 1 and an open question in the general case

If K is a compact polyhedron with nontrivial b1(K) = H1(K;Q), then by a result of
Borsuk, S1 is a retract, and in particular K lacks the fixed point property. For finite
spaces this is not true: a finite space X with the fixed point property may have b1(X) 6= 0
[8]. For finite spaces of height 1, though, an analogue of Borsuk’s result holds.

Proposition 19. Let X be a finite T0 space of height 1 which contains a cycle x0 < x1 >
x2 < . . . < xn−1 > xn = x0 (n ≥ 4, xi 6= xj if 0 ≤ i < j ≤ n− 1). Then the robber has a
strategy in X.

Proof. We can assume X is connected and the length n of the cycle is minimal. We claim
that this cycle C is a retract of X. This follows almost directly from a well-known result
in graph theory [20, Proposition 2.51]. Concretely, let G be the underlying undirected
graph of the directed graph obtained from the Hasse diagram of X by removing the edge
(x0, xn−1). Define the map r : X → X by r(x) = xi, where i is the minimum between
n − 1 and the distance between x and x0 in G. Then r is a continuous retraction from
X to C. Since C admits a fixed point free map, then so does X. Thus the robber has a
strategy in X. �

Note that for a connected finite T0 space of height 1, having a cycle is equivalent to not
being simply connected and also to having nontrivial first Betti number.

If a finite T0 space X of height 1 has no cycle, then any non-empty connected subspace is
a retract: just map every point inX (in the component of the subspace if not connected) to
the closest point in the subspace in the Hasse diagram. In particular, if X has a subspace
A homeomorphic to S2,1 or Sop

3,0, then the robber has a strategy. Conversely, if X is of

height 1 with no cycles and S2,1 and Sop
3,0 are not subspaces, then the cop has a strategy.

Theorem 20. Let X be a connected finite T0 space of height 1. Then the cop has a
strategy (equivalently a strong strategy) in X if and only if the following conditions are
satisfied simultaneously:

• X contains no cycle.
• No subspace of X is homeomorphic to S2,1 nor Sop

3,0.
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Proof. We have already established the necessity of the conditions. Conversely, suppose
the conditions are satisfied. Let a0, a1, . . . , al be a fence of maximal length in X. That is,
these l+1 points are pairwise different, ai and ai+1 are comparable in X for 0 ≤ i ≤ l− 1
and there is no longer fence in X. We can assume l ≥ 2. Since X contains no cycle, ai
and aj are not comparable for |i − j| > 1. Suppose ai is minimal in X. If i = 0, the
unique point of X comparable with ai is a1, by maximality of the fence. If i = l, ai is
only comparable with ai−1. If 0 < i < l, let {ai−1, ai+1, bi,1, bi,2, . . . , bi,mi

} be the set of
points in X comparable with (=greater than) ai. Since Sop

3,0 is not a subspace of X, X
contains no cycle, and the length of the fence is maximal, then the points bi,j are only
comparable with ai. Conversely, suppose 0 ≤ i ≤ l is such that ai is maximal. Again,
if i = 0 or i = l, ai is only comparable with one point in X. If 2 ≤ i ≤ l − 2, since
S2,1 is not a subspace of X, the unique points comparable with (=smaller than) ai in
X are ai−1 and ai+1. Let {a0, a2, c1, c2, . . . , cm1

} be the set of points comparable with
a1. Let {al−2, al, d1, d2, . . . , dml−1

} be the set of points which are smaller than al−1. By
maximality of the length of the fence, the points cj are only comparable with a1 and the
points dj only comparable with al−1. Since X is connected, there are no other points in
X than the ai, the bi,j , the cj and the dj .

If a0 is maximal, we can define a new space by adding a point a−1 smaller than a0 and
incomparable with any other point in X. Similarly, if al is maximal, we can add a point
al+1 smaller than al and incomparable with any other point. The new space satisfies the
hypothesis of the statement and contains X as a retract. Thus, we can assume a0 and al
are both minimal (so l is even), and X looks as the diagram in Figure 11. The case l = 2
follows directly from Example 15, so we will assume l ≥ 4.

...

... ... ...

...
...

a

a

a a a

aaa

b bb b bb

0

1

2

3

4

5 l��

l1 �1 �

��� ���

m m1 ���

� 	��
 4�
4�� 4��

Figure 11. The space X in Theorem 20.

Essentially we glue the strategies in Examples 15 and 17 (see Remark 21 for comments in
this direction). Let γ : [0, l] → X be the path defined as in Figure 12. Namely γ(2i+1) =
a2i+1 for 0 ≤ i ≤ l

2 − 1. The interval [2i − 1, 2i + 1] (for 1 ≤ i ≤ l
2 − 1) is subdivided in

m2i + 1 intervals by considering points 2i − 1 < t2i,1 < t2i,2 < . . . < t2i,m2i
< 2i + 1. We

define γ(t2i,j) = b2i,j , while γ(t) = a2i for the remaining points in (2i − 1, 2i + 1). In the
interval [0, 1), γ is defined as follows. The value of γ in tk = 1− 1

k
is a1 for every k, while

γ in (tk, tk+1) is the constant map to ck, where k is the class of k modulo m1 + 2 and
c0 = a0, cm1+1 = a2. In the interval (l− 1, l], γ is defined with a symmetric idea by taking
the value al−1 in sk = l− 1+ 1

k
for every k, while γ in (sk+1, sk) is constant with value dk,

being k the class modulo ml−1 + 2 and d0 = al, dml−1+1 = al−2. Clearly γ is continuous.
We claim γ is a strong strategy for the cop. Let ρ : [0, l] → X be another path.

We want to prove that γ and ρ have a coincidence point. Let Y be the subspace of X
which consists of the points a1, a2, . . . , al−1 and let r : X → Y be the retraction that maps
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Figure 12. The strong strategy γ.

a0, c1, c2, . . . , cm1
to a1, it maps al, d1, d2, . . . , dml−1

to al−1, and for each even 2 ≤ i ≤ l−2,
it maps bi,1, bi,2, . . . , bi,mi

to ai.

Let ω : [1, l− 1] → Y be the map defined by ω(2i+1) = a2i+1 for 0 ≤ i ≤ l
2 − 1 while ω

in (2i−1, 2i+1) is constant with value a2i for 1 ≤ i ≤ l
2−1. Note that ω has a coincidence

with any other path [1, l − 1] → Y by Remark 10. In particular, there exists t ∈ [1, l − 1]
such that ω(t) = rρ|[1,l−1](t).

Case 1: t = 1. In this case rρ(1) = ω(1) = a1. This implies that ρ(1) ∈ {a1, a0, c1, c2, . . . ,
cm1

} ⊆ Ua1 . Thus, there is a neighborhood U of 1 in [0, 1] such that ρ(U) ⊆ Ua1 . By
Example 15, ρ and γ have a coincidence in U .

Case 2: t = l − 1 is symmetric to case 1.
Case 3: t = 2i+ 1 for some 1 ≤ i ≤ l

2 − 2. In this case rρ(2i+ 1) = ω(2i+ 1) = a2i+1,
so ρ(2i+ 1) = a2i+1 = γ(2i+ 1).

Case 4: t ∈ (2i − 1, 2i + 1) for some 1 ≤ i ≤ l
2 − 1. In this case rρ(t) = ω(t) = a2i, so

ρ(t) ∈ {a2i, b2i,1, b2i,2, . . . , b2i,m2i
}. If ρ(t) = a2i, since {a2i} is open and γ|

−1
[2i−1,2i+1](a2i) is

dense in [2i−1, 2i+1], ρ and γ have a coincidence point. Suppose then that ρ(t) = b2i,j for
some 1 ≤ j ≤ m2i. If ρ|(2i−1,2i+1) is constant, then ρ(t2i,j) = b2i,j = γ(t2i,j). If ρ|(2i−1,2i+1)

is not constant, necessarily a2i is in its image. And by the reasoning at the beginning of
this case, ρ and γ have a coincidence. �

Remark 21. A slightly different proof of Theorem 20 may be given using a “horizontal”
retraction instead of a “vertical” one. The proof would be by induction on l and would
use the following result, whose proof is an easy exercise:

Let Z be a topological space and let X,Y be two subspaces of Z such that Z = X ∪ Y .
Let z0 ∈ X ∩Y , and suppose there exists a retraction rX : Z → X such that rX(Y rX) =
{z0}. Suppose γX : [0, 1] → X and γY : [0, 1] → Y are strong strategies for the cop in X
and Y respectively and that γ−1

X (z0) = {1} while γY (0) = z0. Furthermore, suppose one
of the following holds:
i) There exists a retraction rY : Z → Y such that rY (X r Y ) = {z0} and γ−1

Y (z0) = {0},
or
ii) Y is an open subspace of Z and for any neighborhood U ⊆ [0, 1] of 0 and any map
ρ : U → Y , ρ and γY |U have a coincidence point.

Then γ = γX ∗ γY : [0, 1] → Z is a strong strategy for the cop in Z.

Note that the property of having a strategy is not invariant under reversal of the order.
Concretely the cop has a strategy in Sop

2,1 while the robber has a strategy in S2,1.
Theorem 20 completes the classification of the finite T0 spaces of height 1 in which the

cop has a strategy. On the other hand, by Corollary 14 if X is any finite T0 space and the
robber has a strategy in E(X), so does he in X. What if the cop has a strategy in E(X)?
This does not mean that he has a strategy in X as we will see.

Example 22. The robber has a strategy in the space X = Y in Figure 13.
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a b

c

Figure 13. The space Y.

Let γ : [0, 1] → X be a path. Let U = {Ua, Ub}. We consider a minimal γ-admissible sub-
division of [0, 1]. Suppose [t0, t1], [t1, t2] are adjacent intervals in the subdivision. Without
loss of generality we assume Ua has been chosen for [t0, t1] (so in particular γ([t0, t1]) ⊆ Ua)
and Ub has been chosen for [t1, t2]. Since Ua∩Ub = {c, d} is open, there exist s0, s1 ∈ [0, 1]
with t0+t1

2 < s0 < t1 < s1 < t1+t2
2 and γ((s0, s1)) ⊆ {c, d}. We will define ρ|[ t0+t1

2
,
t1+t2

2
]
.

If d /∈ γ((s0, s1)), we define ρ to be d in (s0, s1), a in [s1,
t1+t2

2 ], b in [ t0+t1
2 , s0]. On the

other hand, if d ∈ γ((s0, s1)), since {d} is open in X, there exist s0 < r0 < r1 < s1 such
that γ is identically d in (r0, r1). Then we define ρ to be c in (r0, r1), a in [r1,

t1+t2
2 ], b in

[ t0+t1
2 , r0]. In any case, ρ|[ t0+t1

2
,
t1+t2

2
]
is continuous. We do this for every pair of adjacent

intervals in the subdivision of [0, 1]. As always, the definition of ρ in the first interval
of the subdivision and the last one is simpler and left to the reader. The resulting map
ρ : [0, 1] → X is continuous and has no coincidences with γ.

Corollary 23. Let X be a finite T0 space which contains a subspace homeomorphic to Y,
which we identify with Y. Suppose {a, b} ⊆ Y has no upper bound in X. Then Y is a
retract of X, and in particular the robber has a strategy in X.

Proof. Define r : X → Y as follows. Let x ∈ X. If x ≥ a, r(x) = a. If x ≥ b, r(x) = b. If
x ≤ d, r(x) = d. In any other case, r(x) = c. Note that r is well defined by hypothesis. We
check that r is continuous. Let x ≤ y be two points in X. If x ≤ d, then r(x) = d ≤ r(y).
If x ≥ a, then r(x) = a = r(y). Similarly, if x ≥ b, r(x) = r(y). In any other case r(x) = c
and r(y) 6= d, so r(x) ≤ r(y). Since r fixes Y pointwise, it is a retraction. �

Remark 24. In Corollary 14 we proved that if the cop has a strategy in a finite T0 space
X, then so does he in E(X). We used Proposition 13. Corollary 23 can be used to give an
alternative proof. If the cop has a strategy in X, then any non-minimal point is smaller
than or equal to a unique maximal element. Otherwise, the hypotheses of Corollary 23
would be fulfilled. In this case E(X) is a retract of X, with a retraction which maps every
non-minimal point to the unique greater maximal point. Thus, the cop has a strategy in
E(X).

From Corollary 14, Theorem 20 and Corollary 23, we deduce the following result.

Corollary 25. If X is a finite T0 space in which the cop has a strategy, then

• E(X) is simply-connected,
• S2,1 and Sop

3,0 are not subspaces of E(X),

• There is no subspace A of X homeomorphic to Y with E(A) ⊆ E(X).
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We do not know if the converse of Corollary 25 holds. In the remaining of the paper we
prove a converse in a particular case and analyze a delicate example.

7. The max strategy

Theorem 26. Let X be a finite T0 space with maximum x. Then the cop has a strategy
in X. Moreover, there exists a loop ζX : [0, 1] → X at x which has a coincidence with
any other path in X and, furthermore, for every neighborhood U of 0 in [0, 1] and every
continuous map ρ : U → X, there is a coincidence between ζX |U and ρ. The map ζX has

the following property: if X has a minimum y, then ζ−1
X (y) is dense in [0, 1].

Proof. The proof is by induction on n = #X. If n = 1, the unique path ζX : [0, 1] →
X satisfies all the requirements. Let X be any finite T0 space with maximum x. Let
x0, x1, . . . , xm−1 be the points covered by x. By induction there exist paths ζUxi

: [0, 1] →
Uxi

satisfying the conditions in the statement for every 0 ≤ i ≤ m − 1. We define
ζ = ζX : [0, 1] → X as follows. As required ζ(0) = ζ(1) = x. For each k ≥ 2, ζ( 1

k
) = xk,

where k is the class of k modulo m. Moreover ζ restricted to the interval [ 1
k
, 12(

1
k
+ 1

k−1)] is

(the linear reparametrization of) ζUx
k
for k ≥ 2. Finally, ζ restricted to [12(

1
k
+ 1

k−1),
1

k−1 ]

is a path in X from xk to xk−1 if k ≥ 3, and a path from x2 to x if k = 2. If X has a

minimum y, we take this path to be constant with value y in (12(
1
k
+ 1

k−1),
1

k−1) (see Figure

14). Note that ζ is continuous in 0 since x is the maximum of X. Note also that if X has
minimum y, then y is the minimum of every Uxi

, so by induction ζ−1(y) is dense in [0, 1].

Figure 14. The path ζ in the case that the maximum covers m = 4 points.

Let U be a neighborhood of 0 in [0, 1] and let ρ : U → X be a continuous map. We want
to prove that ζ|U and ρ have a coincidence point. If ρ(0) = x, then ρ(0) = ζ(0). Suppose
then that ρ(0) 6= x. Then ρ(0) ∈ Uxi

for some 0 ≤ i ≤ m− 1. Since Uxi
is open, there is a

neighborhood V of 0 in U mapped into Uxi
by ρ. There exists k ∈ N such that k = i and

I = [ 1
k
, 12(

1
k
+ 1

k−1)] ⊆ V . Thus the restriction of ζ to I is (the linear reparametrization

of) ζUxi
and therefore it has a coincidence with ρ|I . �

Definition 27. Let X be a finite T0 space with maximum. Any path ζX : [0, 1] → X as
constructed in the proof of Theorem 26 will be called the max strategy in X, even though
it is not uniquely determined by X. Any linear reparametrization [t0, t1] → X of ζX will
also be called the max strategy in X.

Theorem 28. Let X be a finite T0 space such that the following conditions are satisfied
simultaneously:

(1) E(X) is simply-connected,
(2) S2,1 and Sop

3,0 are not subspaces of E(X),

(3) There is no subspace A of X homeomorphic to Y with E(A) ⊆ E(X).
(4) There is no subspace A of X homeomorphic to Yop with E(A) ⊆ E(X)



18 J.A. BARMAK

Then the cop has a strategy in X.

Proof. The fact of E(X) being simply-connected is equivalent to E(X) containing no cycles.
Just as in the proof of Theorem 20, we can assume E(X) looks as in Figure 11. We

may assume a0 and al are minimal as well: adding points a−1 and al+1 to X if needed, as
described in the proof of Theorem 20, comparable with just one point of X each, produces
a new space satisfying all four conditions and having X as a retract.

We define a path γ : [0, l] → X. The first part of the definition looks very similar to the
one of the strategy constructed in Theorem 20, but then, in some intervals we will use the
max strategy of certain subspaces of X. We define γ(2i + 1) = a2i+1 for 0 ≤ i ≤ l

2 − 1.

The interval [2i− 1, 2i+1] (for 1 ≤ i ≤ l
2 − 1) is subdivided in m2i +2 intervals by taking

points 2i − 1 < t2i,1 < t2i,2 < . . . < t2i,m2i
< t2i,m2i+1 < 2i + 1. We define γ(t2i,j) = b2i,j

for 1 ≤ j ≤ m2i.
The intervals [2i− 1, t2i,1] for 1 ≤ i ≤ l

2 − 1 are divided in two parts by taking a point
2i − 1 < r2i−1 < t2i,1. The intervals [t2i,j , t2i,j+1] for 1 ≤ j ≤ m2i are divided in two by
taking t2i,j < r2i,j < t2i,j+1.

In the interval [0, 1], γ is the inverse path of the max strategy of Ua1 . In [l−1, l], γ is the
max strategy of Ual−1

. In the intervals [t2i,j , r2i,j ] for 1 ≤ j ≤ m2i, γ is the max strategy of
Ub2i,j . In (r2i,j , t2i,j+1) for 1 ≤ j ≤ m2i, it is constant with value a2i. In [t2i,m2i+1, 2i+ 1]
it is the inverse path of the max strategy for Ua2i+1

∩ Fa2i . Here Fx denotes the closure
of {x}, i.e. the set of points which are greater than x. Finally, in [2i − 1, r2i−1] it is the
max strategy of Ua2i−1

∩ Fa2i while in (r2i−1, t2i,1) it is the constant function a2i. Clearly
γ : [0, l] → X is continuous. We will prove that any other path ρ : [0, l] → X has a
coincidence with γ.

Let ρ : [0, l] → X be a continuous map.
Let Y be the subspace of X formed by points a1, a2, . . . , al−1. We define a retraction

r : X → Y as follows. For 0 ≤ i ≤ l
2 − 1, all the points of Ua2i+1

not in Y are mapped to

a2i+1. For 1 ≤ i ≤ l
2 − 1 and 1 ≤ j ≤ m2i, all the points of Ub2i,j are mapped to a2i. The

map r is well-defined thanks to condition 3. It is clearly continuous.
Let ω : [1, l − 1] → Y be the map defined in the proof of Theorem 20. By Remark 10

there exists t ∈ [1, l − 1] such that ω(t) = rρ|[1,l−1](t).

Case 1: t = 1. In this case rρ(1) = ω(1) = a1, so ρ(1) ∈ Ua1 . Let U = ρ−1(Ua1) ∩ [0, 1].
Then U is a neighborhood of 1 in [0, 1]. By Theorem 26, ρ and the inverse of ζUa1

have a
coincidence in U . Then so do ρ and γ.

Case 2: t = l − 1. This case is symmetric to case 1.
Case 3: t = 2i − 1 for some 2 ≤ i ≤ l

2 − 1. In this case rρ(t) = ω(t) = a2i−1, so
ρ(t) ∈ Ua2i−1

. If ρ(t) = a2i−1, then ρ(t) = γ(t). Otherwise ρ(t) < a2i−1. Then either
a2i−2 ≤ ρ(t) or a2i ≤ ρ(t). In the first case Uρ(t) ⊆ Ua2i−1

∩ Fa2i−2
by condition 4.

Therefore ρ and the inverse of ζUa2i−1
∩Fa2i−2

have a coincidence in [t2i−2,m2i−2+1, 2i − 1].

In the second case Uρ(t) ⊆ Ua2i−1
∩ Fa2i , and ρ and γ have a coincidence in [2i− 1, r2i−1].

Case 4: t ∈ (2i − 1, 2i + 1) for some 1 ≤ i ≤ l
2 − 1. In this case rρ(t) = ω(t) = a2i, so

ρ(t) = a2i or ρ(t) ∈ Ub2i,j for some j. Note that by Theorem 26, γ−1(a2i) ∩ [2i− 1, 2i+ 1]
is dense in [2i− 1, 2i− 1], so in the first case ρ and γ have a coincidence in [2i− 1, 2i+1].
We can assume then that ρ(t) ∈ Ub2i,j for some j and that ρ(t′) 6= a2i for every t′ ∈
(2i− 1, 2i+ 1). By condition 3, Ub2i,j r {a2i} is a connected component of X r {a2i}, so
ρ((2i− 1, 2i+ 1)) ⊆ Ub2i,j r {a2i}. In particular ρ and γ have a coincidence in [t2i,j , r2i,j ].

�
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8. Self-similarity

The fourth condition in the statement of Theorem 20 is not needed for the cop to have
a strategy. This can be seen directly from the fact that the cop has a strategy in any space
with maximum. In this section we describe an example in which the cop has a strategy,
but any such strategy has to be more sophisticated than any we have constructed so far.

Self-similarity is a feature present in fractals, in which proper parts of an object look
like the global object. This is a property our example will have.

Let X be the space in Figure 15. We describe a strong strategy (in fact a path γ :
[−1, 2] → X) for the cop in X. First we define σ = γ|[0,1] : [0, 1] → X. We divide [0, 1]

in four intervals of equal length. In the first interval I1 = [0, 14 ], σ is defined as d in the

extremes and as f in the interior. In the third interval I3 = [12 ,
3
4 ], σ is defined as b in the

left extreme, as d in the right extreme and as e in the interior. We also define σ(1) = b.
This is stage 1 in the definition of σ. In the second and fourth intervals I2 = [14 ,

1
2 ],

I4 = [34 , 1], σ|I2 and σ|I4 are the linear reparametrizations of σ : [0, 1] → X. Concretely,
to define σ in I2 we repeat the construction above: we divide I2 in four intervals of equal
length and define σ in the first and third exactly as before. We do the same for I4. Note
that σ(14), σ(

1
2), σ(

3
4) and σ(1) are well-defined. Now, σ has been defined in all of [0, 1] with

exception of four (open) intervals of length 1
16 . This is the end of stage 2. In general, in

stage n we define σ in 2n closed intervals of length 1
4n . We repeat this process indefinitely.

Now σ has been defined in all of [0, 1] with exception of a Gδ set C of Lebesgue measure
0. We will not need to know much about C. It is easy to see that in stage n of the
construction, σ has been defined in the complement of a union of 2n open intervals, and
t = 1

3 always lies in the first of these. Thus 1
3 ∈ C, and in fact it is the minimum of C.

The supremum of C is 1 /∈ C. Note also that σ−1(f) ∩ [0, 13 ] is dense in [0, 13 ]. We define
σ|C to be the constant function b. We claim that σ : [0, 1] → X is continuous.

a b c

b b
f e

1-1

��f e

Figure 15. The space X and its fractal strategy γ.

Indeed, let t ∈ [0, 1]. We note that in each case there is a neighborhood of t which is
mapped inside Uσ(t). If σ(t) = b, we can take the neighborhood as all [0, 1]. If σ(t) is
equal to e or f , then there is an open interval containing t which is also mapped to σ(t).
If σ(t) = d, there is an open interval I containing t with σ(I r {t}) ⊆ {e, f} ⊆ Ud.

Before we complete the definition of the strategy for the cop, we discuss some properties
of σ.
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Property (i): if t ∈ σ−1(b), then any neighborhood U of t contains an interval [s, s′],
which in turn contains a point s′′ ∈ (s, s′), such that σ([s, s′′)) = {e}, σ(s′′) = d and
σ((s′′, s′]) = {f}. Indeed, by definition there is some n ≥ 1 such that in stage n one of
the open intervals, say J , in which σ has not been defined yet lies inside U . Thus, in
stage n + 1, the closure J of J is divided in four closed intervals J1, J2, J3, J4 and σ is
defined in J1 and J3. Then, in stage n + 2, J4 is divided in four intervals J ′

1, J
′
2, J

′
3, J

′
4

and σ is defined in the first and the third one. If J3 = [r, r′] and J ′
1 = [r′, r′′], the points

s = r+r′

2 , s′ = r′+r′′

2 , s′′ = r′ satisfy the required condition. Note in particular that for any
neighborhood U of t, σ(U) = Ub.

Property (ii): If r0 < r1 ∈ [0, 1] and σ(r0) = f, σ(r1) = e, then there exists r0 < r < r1
such that σ(r) = b. This is easy to prove by considering the stages n,m in which σ(r0)
and σ(r1) have been defined and analyzing the cases n = m, n < m and n > m.

Property (iii): σ−1({e, f}) is dense in [0, 1]. For t ∈ [0, 1) it is easy to see that if σ(t)
was defined in stage n, then any neighborhood of t already contains a point s such that
σ(s) was also defined in stage n and it is equal to e or f . For t = 1, σ(t) = b so the
assertion follows directly from Property (i).

We define now the strong strategy γ : [−1, 2] → X for the cop: γ(−1) = c, γ|(−1,0) is
constant with value f , γ|[0,1] = σ, γ|(1,2) is constant with value e, and γ(2) = a. Clearly γ
is continuous. Let ρ : [−1, 2] → X. We want to prove that there exists a point in which γ
and ρ coincide. Assume there is no such coincidence.

Let t ∈ [0, 1] be such that σ(t) = b. We claim then that ρ(t) ∈ {a, c}. If ρ(t) ∈ {e, f},
there is a neighborhood U of t mapped to ρ(t) by ρ. But since σ(t) = b, by Property (i),
σ(U ∩ [0, 1]) = Ub ∋ ρ(t). Thus, γ and ρ have a coincidence in U ∩ [0, 1]. If ρ(t) = d, there
is a neighborhood U of t mapped to Ud by ρ. By Property (i), there exists an interval
[s, s′] ⊆ U and a point s′′ ∈ (s, s′) such that σ|[s,s′′) is e, σ(s

′′) = d, and σ|(s′′,s′] is f . But
then σ|[s,s′] is a strong strategy in the space Ud, so it must have a coincidence with ρ|[s,s′].
Thus, ρ(t) is equal to a or c.

In particular, when t = 1, we deduce ρ(1) = c, since if ρ(1) = a, there would be a
coincidence in (1, 2]. Let t1 = min{t ∈ [0, 1] : ρ(t) = c}. We claim that t1 >

1
3 . Otherwise,

since γ−1(f) ∩ [−1, 13 ] is dense in [−1, 13 ], ρ|[−1,t1] could not go through f , so it should

be constant, and we would have γ(−1) = c = ρ(−1). Since 1
3 < t1 and σ(13) = b, then

ρ(13) = a. Let t0 = max{t ∈ [0, t1] : ρ(t) = a}.
Since Ua = {a, e} and Uc = {c, f} are open, by definition of t0 and t1 there exist

t0 < s0 < s1 < t1 such that σ|(t0,s0) is constant with value e and σ|(s1,t1) is constant with

value f . Since σ−1({e, f}) is dense in [0, 1] by Property (iii), and γ and ρ are coincidence-
free, there exist r0 ∈ (t0, s0) and r1 ∈ (s1, t1) such that σ(r0) = f and σ(r1) = e. By
Property (ii) there exists r ∈ (r0, r1) such that σ(r) = b. By Property (i), ρ(r) ∈ {a, c},
which contradicts the definition of t0 or t1.

Appendix

Theorem 29. Let X be a topological space, U a finite open cover of X and γ : R≥0 → X
a curve. Then there exists a minimal γ-admissible subdivision of R≥0.

Proof. By a Lebesgue number argument, each interval [n, n+ 1] ⊆ R≥0 (n ∈ Z≥0) can be
subdivided into finitely many closed intervals, each of which is mapped by γ into one of the
members of U . This is a γ-admissible subdivision which could be non-minimal. The poset
of γ-admissible subdivisions of R≥0 is ordered by refinement. If {Sα}α∈Λ is a non-empty
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chain of γ-admissible subdivisions, then there is a lower bound defined as follows. Fix

α0 ∈ Λ. For each interval I in Sα0
let Ĩ be the union of the intervals containing I from

among all the Sα with α ∈ Λ. It is clear that Ĩ is an interval and that it is not a singleton.

Let t′ /∈ Ĩ. Then t′ is in the interior of an interval in Sα0
or in the boundary of two

intervals in Sα0
. In the first case, suppose t′ ∈ (a, b), with [a, b] a member of Sα0

(or t′ = 0

and a = 0). Then we claim that (a, b) ∩ Ĩ = ∅. Otherwise, there would be an interval J
in some Sα containing I and intersecting (a, b). Since Sα0

and Sα are comparable, either

[a, b] ⊆ J or J ⊆ [a, b]. In either case, [a, b] ⊆ Ĩ, so t′ ∈ Ĩ, a contradiction. Similarly, if t′

is in the boundary of two intervals of Sα0
, say [a, t′] and [t′, b], we claim that (a, b)∩ Ĩ = ∅.

Otherwise, there is an interval J in some Sα containing I and intersecting (a, t′) without

loss of generality. As before this implies that [a, t′] ⊆ Ĩ, a contradiction. This proves that

there is a neighborhood of t′ disjoint with Ĩ, so Ĩ is closed. It is clear that the collection

S of all the Ĩ with I ∈ Sα0
covers R≥0. Suppose Ĩ and J̃ have at least two points in

common, say a, b, for some I, J ∈ Sα0
. Using that the family of subdivisions is a chain,

there is an interval in some Sα containing both I and J , so Ĩ = J̃ . This proves that the
intersection of two different members of S is empty or one point. Since Sα0

refines S, the

later is locally finite. Finally, we show that S is γ-admissible. Suppose Ĩ is not contained
in γ−1(U) for any U ∈ U . Then for every U ∈ U there exists αU ∈ Λ and JU ∈ SαU

such that I ⊆ JU ( γ−1(U). Let V ∈ U be such that SαV
is the minimum among the

(finitely many) SαU
. Then JV contains all the JU , so JV ( γ−1(U) for every U ∈ U . This

contradicts the fact that SαV
is γ-admissible. It is clear that S ≤ Sα for every α ∈ Λ.

Indeed, if J ∈ Sα, there is I ∈ Sα0
intersecting J in at least two points, so either I ⊆ J

or J ⊆ I. In any case J ⊆ Ĩ, so Sα is a refinement of S. By Zorn’s Lemma there is a
minimal element in the poset of γ-admissible subdivisions of R≥0, which is then a minimal
subdivision. �
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