Combinatoria

Primer cuatrimestre - 2023 Práctica 4

- 1. Sea S un conjunto de 100 elementos y sean A_1, A_2, \ldots, A_{50} subconjuntos de S con 40 elementos cada uno. Probar que existe $x \in S$ tal que x está en por lo menos 20 de los A_i .
- 2. En una cuadrícula de 2×6 se pinta cada vértice de rojo o azul. Probar que existen cuatro vértices del mismo color que son los vértices de un rectángulo con sus lados paralelos a los de la cuadrícula.
- 3. Sean a_1, a_2, \ldots, a_n números enteros. Probar que existen $1 \le k \le l \le n$ tales que $a_k + a_{k+1} + \ldots + a_l$ es múltiplo de n.
- 4. Probar que al considerar 101 números enteros entre 1 y 200, hay siempre dos de ellos tales que uno divide al otro.
- 5. Se tienen dos discos, cada uno dividido en 200 sectores congruentes. En un disco se pintan 100 sectores de rojo y 100 de azul. En el otro se pintan algunos de rojo y otros de azul. Probar que es posible poner un disco sobre el otro de modo que los sectores de uno coincidan con los del otro y que haya al menos 100 sectores de uno con el mismo color que los correspondientes del otro.
- 6. Probar que R(3,4) = R(3,4;2) = 9.
- 7. Sea $m \in \mathbb{N}$. Probar que existe $n \in \mathbb{N}$ con la siguiente propiedad: toda matriz $M \in \{0,1\}^{n \times n}$ de $n \times n$ de ceros y unos contiene una submatriz principal de $m \times m$ (es decir, una submatriz que se obtiene eliminando n-m filas de M y las mismas columnas) que tiene todos los números bajo la diagonal iguales y todos los números sobre la diagonal iguales.
- 8. (i) Probar que $R(3,3,3;2) \leq 17$.
 - (ii) Si notamos $R_n = R(3, 3, \dots, 3; 2)$ (donde hay n números 3), probar que $R_n \leq 3n!$.
- 9. Probar que el n-ésimo número de Schur cumple $S(n)\geqslant \frac{3^n+1}{2}$. Para esto pruebe primero que si los elementos de [k] pueden pintarse con n colores de modo que no haya soluciones monocromáticas de x+y=z, entonces [3k+1] puede pintarse con n+1 colores, pintando [k] y $[2k+2,\ldots,3k+1]$ como antes y los demás elementos con el nuevo color.
- 10. Sea $m \in \mathbb{N}$. Probar que existe $k \in \mathbb{N}$ tal que toda coloración de los elementos de [k] con m colores tiene una solución monocromática a la ecuación x+y+z=w.
- 11. Sean $k,l \in \mathbb{N}$. Queremos calcular el máximo n=n(k,l) que cumple la siguiente propiedad: existen conjuntos $A_1,A_2,\ldots,A_n,B_1,B_2,\ldots,B_n$ tales que
 - (i) Cada A_i tiene cardinal k y cada B_i tiene cardinal l.
 - (ii) $A_i \cap B_i = \emptyset$ para cada i.
 - (iii) $A_i \cap B_j \neq \emptyset$ si $i \neq j$.

Usaremos el método probabilístico para calcular n.

- (a) Probar que $n\geqslant {k+l\choose k}$ exhibiendo un ejemplo.
- (b) Probar que si existen A_i, B_i como arriba entonces $n \leqslant \binom{k+l}{k}$. Para esto, definir $X = \bigcup A_i \cup \bigcup B_i$. Elegir un orden total en los elementos de X equiprobablemente. Sea E_i el evento "en el orden total elegido todos los elementos de A_i están antes que todos los elementos de B_i ". Calcular la probabilidad del evento $\bigcup E_i$.

1 Práctica 4