Combinatoria

Segundo cuatrimestre - 2025 Práctica 1

- 1. En cuántos anagramas de la palabra AAABBBCCDE
 - a) las letras D y E aparecen juntas?
 - b) la letra D está a la izquierda de (quizá no junto a) la letra E?
 - c) las dos C no están juntas?
 - d) las vocales aparecen todas juntas?
- 2. De cuántas maneras se pueden distribuir 12 bolitas indistinguibles en 5 cajas de modo tal que
 - a) ninguna caja quede vacía?
 - b) exactamente dos cajas queden vacías?
 - c) a lo sumo dos cajas queden vacías?
- 3. Sea $n \in \mathbb{N}$. Cuántas cuaternas (a,b,c,d) de enteros no negativos hay tales que
 - a) a + b + c + d = n.
 - b) a + b + c + d = n y $a, b, c, d \ge 1$.
 - c) $a + b + c + d \le n$.
- 4. Dar demostraciones combinatorias de las siguientes igualdades en donde $n, m, k \in \mathbb{N}_0$

 - $2\binom{2n-1}{n} = \binom{2n}{n} \text{ para } n \in \mathbb{N}.$
 - $\bullet \sum_{k=0}^{n} {m+k \choose k} = {n+m+1 \choose n}.$
- 5. Cuántas matrices de $n \times m$ cuyos coeficientes son todos 0 y 1 hay tales que cada fila y cada columna tenga una cantidad impar de unos.
- 6. Dar una demostración combinatoria de lo siguiente: si $n \in \mathbb{N}$, entonces $\binom{3n}{n,n,n}$ es múltiplo de 6.
- 7. Dar una demostración combinatoria del Pequeño Teorema de Fermat: si $p \in \mathbb{N}$ es primo y $a \in \mathbb{N}$, entonces $a^p \equiv a(p)$. Es decir, hallar un conjunto de cardinal $a^p a$ y probar que es unión disjunta de subconjuntos de cardinal p.
- 8. Dar una demostración combinatoria del Teorema de Wilson: si $p \in \mathbb{N}$ es primo entonces p|(p-1)!-(p-1) (alternativamente puede buscarse demostraciones combinatorias de resultados equivalentes, como por ejemplo $p^2|p!-p(p-1)$).
- 9. Probar que $\sum\limits_{n\geqslant 0}a_nX^n\in\mathbb{C}[[X]]$ es inversible si y sólo si $a_0\neq 0$. Y si cambiamos \mathbb{C} por otro anillo?

1

Práctica 1

- 10. Probar que la composición de series de potencias formales es una operación asociativa cuando está bien definida.
- 11. Probar que si $f \in \mathbb{C}[[X]]$ tiene coeficiente independiente nulo y coeficiente lineal no nulo, entonces existe $g \in \mathbb{C}[[X]]$ con las mismas características tal que $g \circ f = f \circ g = X$.
- 12. Se definen las series de potencias $cos(X) = \sum\limits_{n\geqslant 0} \frac{(-1)^n}{(2n)!} X^{2n}$ y $sin(X) = \sum\limits_{n\geqslant 0} \frac{(-1)^n}{(2n+1)!} X^{2n+1}$. Probar que $cos(X)^2 + sin(X)^2 = 1$ en $\mathbb{C}[[X]]$.
- 13. Dar una fórmula cerrada para el término general de la sucesión $(a_n)_{n\in\mathbb{N}_0}$ de números enteros definida por la recurrencia $a_{n+3}=6a_{n+2}-12a_{n+1}+8a_n$, donde $a_0=-1, a_1=-4, a_2=-4$.
- 14. Sea $(a_n)_{n\in\mathbb{N}_0}\in\mathbb{C}^{\mathbb{N}_0}$ una sucesión cuya función generatriz es una función racional $\frac{P(X)}{Q(X)}$ con $Q(0)\neq 0$. Probar que $(a_n)_{n\in\mathbb{N}_0}$ satisface una recursión lineal.
- 15. Cuál es la probabilidad de que al arrojar cinco dados, la suma de los cinco números sea veinte?
- 16. Sea a_n la cantidad de cuaternas (a,b,c,d) de enteros no negativos tales que $a\leqslant b\leqslant c\leqslant d$ y a+b+c+d=n. Sea f la función generatriz de la sucesión $(a_n)_{n\in\mathbb{N}_0}$. Probar que $(1-X)(1-X^2)(1-X^3)(1-X^4)f=1$.

2 Práctica 1