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Abstract. We introduce the notion of a coloring of a poset, which consists of a labeling
of the edges in its Hasse diagram by elements in a given group G. We use G-colorings
to describe the covering maps of posets and present a new method based on colorings to
obtain concrete and simple presentations of the fundamental group of polyhedra.

1. Introduction

The classical edge-path group E(K, v0) of a simplicial complex K describes combinato-
rially the fundamental group of K in terms of paths in its 1-skeleton. This concept can
be translated into the context of posets resulting in a description of π1(X,x0) by edge-
paths in the Hasse diagram of the poset X [3]. In this article we use such a description
just as a starting point. We introduce the notion of a coloring of a poset, which is a
labeling E(X)→ G of the edges in the Hasse diagram of X by elements in a given group
G, and use G-colorings to study covering maps. As a consequence we obtain a concrete
presentation of the fundamental group of X, more suitable than the description given by
edge-paths. Our classification of coverings in terms of G-colorings provides a new insight
into the theory of coverings of polyhedra and it is the key point in this theory.

There is a well-known and close relationship between the homotopy theory of polyhedra
and partially ordered sets. To each simplicial complex K one can associate the face poset
X (K) and for each poset X one can construct the order complex K(X). The combinatorics
of posets can be used to study topological properties of complexes by means of these two
functors. Examples of this interaction are Quillen’s work on the poset of p-subgroups of a
finite group [16] and Chari’s approach to Forman’s discrete Morse theory [7, 8] (see also
[11, 14]). In the same direction, the interplay between the combinatorics of posets and
the topology of polyhedra has been used in [4] to investigate simple homotopy types of
complexes and in [2] to give an alternative proof and applications of Quillen’s Theorem A
for posets. Any poset can be seen as a topological space, more precisely as an Alexandroff
space (or A-space for short), without necessity of using the functors X and K: the open
sets of X are its order ideals. McCord proved that the topology of such spaces is closely
related to the topology of their associated complexes K(X). Concretely, there is weak
homotopy equivalence K(X) → X and in particular these two spaces have the same
homology and homotopy groups [12]. A poset can also be regarded as a category with
at most one morphism between any two objects (the order complex K(X) is just the
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classifying space of the category X). This provides an alternative way to understand the
connection between topological and combinatorial properties.

In section 3 we characterize regular coverings of posets in terms of colorings. The class
of admissible and connected G-colorings plays an important role in this theory. These
colorings classify the normal subgroups of the fundamental group of the poset whose
quotients are isomorphic to G. Concretely, we prove the following result.

Theorem 3.3. Let X be a connected locally finite poset, x0 ∈ X and G a group. There
exists a correspondence between the set of equivalence classes of admissible connected G-
colorings of X and the set of normal subgroups N / π1(X,x0) such that π1(X,x0)/N is
isomorphic to G.

In particular there is a direct connection between G-colorings of X and equivalence
classes of regular coverings of X with deck transformation group isomorphic to G. In
Theorem 3.6 we give the explicit construction of the corresponding covering.

In Section 4 we use colorings to find alternative presentations of the fundamental group.
We exhibit various examples and applications of this new characterization. For instance,
we deduce a generalization of van Kampen’s theorem (Theorem 4.11). We also character-
ize, in terms of colorings, the posets with abelian fundamental group.

In Section 5 we use colorings to study maps between the fundamental groups and in
the last section of the paper we consider a combinatorial problem related with boards on
surfaces.

2. Preliminaries

In this section we recall the basic notions on A-spaces, their relationship with posets
and simplicial complexes, and the description of their fundamental group in terms of
edge-paths. For more details we refer the reader to [1, 3, 12, 18].

A preorder is a set with a reflexive and transitive relation. Such a set is a poset if
the relation is also antisymmetric. An A-space is a topological space in which arbitrary
intersections of open sets are open. Finite topological spaces and, more generally, locally
finite spaces, are examples of A-spaces. A locally finite space is a topological space in which
every point has a finite neighborhood. There is a natural correspondence between A-spaces
and preorders. Given an A-space X, for each point x in X let Ux be the intersection of all
the open sets containing x. This is the smallest open set which contains x. The preorder
associated to the A-space X has the same underlying set and the relation is given by x ≤ y
if x ∈ Uy. Conversely, given a preorder ≤ on a set X, the topology corresponding to this
relation is the one generated by the subsets Ux = {y ∈ X | y ≤ x}, for every x ∈ X. A
function between A-spaces is continuous if and only if it is order- preserving. Note that if
X is an A-space, {Ux}x∈X is a basis for the topology. Any A-space is locally contractible
since the sets Ux are contractible. It is easy to see that there is a homotopy which is the
identity for t < 1 and it is the constant x for t = 1. In particular, any A-space has a
universal cover. Given an A-space X, the closed sets of X form another topology on the
underlying set of X, called the opposite topology. The preorder associated to this topology
is the opposite order of X. This space is denoted by Xop. Note that a map f : X → Y
between A-spaces is continuous if and only if the induced map fop : Xop → Y op, which
coincides with f in the underlying sets, is continuous. If X is an A-space, the closure of
a point x in X is denoted by Fx. Note that FXx = {y ∈ X, x ≤ y} = (UX

op

x )op. The
notations FXx and UXx will be used when we need to emphasize the space X where these
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subsets are considered. The star of a point x in an A-space X is Cx = Ux∪Fx. We denote
respectively Ûx, F̂x and Ĉx the reduced sets Ux r {x}, Fx r {x} and Cx r {x}.

Recall that a topological space X is said to be T0 if for any two points x, y ∈ X there is
an open set which contains one and only one of them. This is the unique separation axiom
that we will work with. Note that if an A-space is T1 (i.e. if each point is closed), then it
is discrete. It is not hard to prove that an A-space is T0 if and only if the corresponding
preorder is a poset.

A finite T0-space is a finite poset. A locally finite T0-space is a locally finite poset, i.e.
a poset such that for every element x there are only finitely many elements smaller than
x. The Hasse diagram of a locally finite T0-space X is the digraph whose vertices are the
points of X and whose edges are the pairs (x, y) such that x ≺ y. Here x ≺ y means that
x is covered by y, i.e. x < y and there is no z ∈ X such that x < z < y. In the graphical
representation of the Hasse diagram, instead of drawing the edge (x, y) with an arrow, we
simply put y over x (see for example Figure 1). Note that a map f : X → Y between
locally finite T0-spaces is continuous if and only if x ≺ x′ implies f(x) ≤ f(x′).

In contrast to the case of finite simplicial complexes, it is easy to decide whether two
finite spaces are homotopy equivalent or not. The combinatorial description of the homo-
topy types of finite spaces is due to Stong [18]. Given a finite T0-space X, a point x ∈ X is
called a beat point if it covers a unique element or if it is covered by a unique element. It
follows immediately from Stong’s ideas that a finite T0-space is contractible if and only if
it is possible to remove beat points one by one from X to obtain the space of one point ∗.
Moreover, removing a beat point x from a finite T0-space X produces a subspace X r {x}
homotopy equivalent to X. Concretely, one has the following

Proposition 2.1. (Stong [18, Theorem 2]) If x is a beat point of a finite T0-space X,
X r {x} is a strong deformation retract of X.

In particular, if X is contractible and we remove beat points x1, x2, . . . , xn, one by one,
the subspace Y obtained in this way is also contractible, so we can continue removing beat
points to obtain the singleton. Contractible finite T0-spaces correspond to dismantlable
posets.

The order complex K(X) of a T0-A-space X is the simplicial complex whose simplices
are the non-empty finite chains of X. The polyhedron K(X) and the A-space X do not
have in general the same homotopy type, however they do have isomorphic homotopy
and homology groups. Moreover, McCord proved [12] that there exists a weak homotopy
equivalence µX : K(X)→ X (i.e. a continuous map which induces isomorphisms in all the
homotopy groups). A continuous map f : X → Y between T0-A-spaces has an associated
simplicial map K(f) : K(X)→ K(Y ) such that K(f)µX = µY f . In the other direction, if
K is a simplicial complex, or more generally a regular CW-complex, the face poset X (K)
is the T0-A-space which corresponds to the poset of cells of K ordered by inclusion. In
this case there exists a weak homotopy equivalence K → X (K).

It is well-known that the fundamental group of a simplicial complex can be described
by means of the edge-path group (see [17, Section 3.6] for more details). The fundamental
group of a locally finite T0-space can be described in a similar way. This was developed
in [3] for finite T0-spaces, but it extends straightforward to locally finite T0-spaces. Let X
be a locally finite T0-space. The set of edges of the Hasse diagram of X will be denoted
by E(X), an edge-path from x to y in X is a sequence (x0, x1)(x1, x2) . . . (xn−1, xn) of
ordered pairs such that (xi, xi+1) ∈ E(X) or (xi+1, xi) ∈ E(X) for every 0 ≤ i < n and
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such that x0 = x, xn = y. Note that since X is locally finite, the following statements are
equivalent: (1) X is a connected topological space, (2) X is path-connected and (3) for
any two points x, y ∈ X there exists an edge-path from x to y. Of course, an edge-path
ξ from x to y and an edge-path ξ′ from y to z can be concatenated to form an edge-path
ξξ′ from x to z. The inverse of an edge-path ξ = (x0, x1)(x1, x2) . . . (xn−1, xn) is defined
as ξ−1 = (xn, xn−1)(xn−1, xn−2) . . . (x1, x0). An edge-path (x0, x1)(x1, x2) . . . (xn−1, xn) is
monotonic if (xi, xi+1) ∈ E(X) for all i or if (xi+1, xi) ∈ E(X) for all i. When the con-
catenations ξ = ξ1ξ2ξ3ξ4 and ξ′ = ξ1ξ4 are well-defined, ξ and ξ′ are said to be elementary
equivalent if ξ2 and ξ3 are monotonic. This relation generates an equivalence relation of
edge-paths from x to y. The class of an edge-path ξ from x to y is denoted by [ξ]. Given
x0 ∈ X we denote by H(X,x0) the group whose elements are the classes of closed edge-
paths at x0, i.e. the edge-paths from x0 to x0, and the product is defined by [ξ][ξ′] = [ξξ′].
Note that this is well defined and the identity [] is the class of the empty edge-path. The
inverse [ξ]−1 of [ξ] is [ξ−1].

Note that if ξ and ξ′ are two monotonic edge-paths from x to y, ξ1 is an edge-path from
x0 to x and ξ2 is an edge-path from y to x0 then [ξ1ξξ2] = [ξ1ξ

′ξ2].
The group H(X,x0) and the edge-path group E(K(X), x0) of the simplicial complex

K(X) are isomorphic. The isomorphism φX : H(X,x0)→ E(K(X), x0) is defined in [3] (see
also [1, pp.24]). An explicit isomorphism εX : E(K(X), x0) → π1(K(X), x0) is described
in [17, pp.136]. In particular H(X,x0) is isomorphic to π1(X,x0) via the isomorphism
ηX = (µX)∗εXφX : H(X,x0) → π1(X,x0). Concretely π1(X,x0) is isomorphic to the set
of closed edge-paths at x0 where two closed edge-paths are equivalent if we can obtain
one from the other by replacing a monotonic sub-edge-path by another monotonic edge-
path with the same origin and end and where the inverse of an edge-path is given by the
edge-path in the opposite direction.

The application H is functorial. If f : X → Y is a continuous map between locally finite
T0-spaces and ξ = (x0, x1)(x1, x2) . . . (xn−1, xn) is a closed edge-path at x0 in X, there is
a closed edge-path ξ′ at f(x0) in Y which is obtained by concatenation of monotonic
edge-paths from f(xi) to f(xi+1) for every i. We define H(f)([ξ]) = f∗([ξ]) = [ξ′]. It is
easy to check that f∗ = H(f) : H(X,x0)→ H(Y, f(x0)) is a well defined homomorphism.
Moreover, the application φ above is a natural isomorphism between H and EK. In
particular we have the following

Remark 2.2. Let f : X → Y be a continuous map between locally finite T0-spaces. Then
there is a commutative diagram where the horizontal arrows are isomorphisms

H(X,x0)
φX //

f∗
��

E(K(X), x0)
εX //

K(f)∗
��

π1(K(X), x0)
(µX)∗ //

K(f)∗
��

π1(X,x0)

f∗
��

H(Y, f(x0))
φY // E(K(Y ), f(x0))

εY // π1(K(Y ), f(x0))
(µY )∗ // π1(Y, f(x0)).

If B is locally finite and T0 and p : E → B is a covering, then E is also locally
finite and T0. In particular if b0 ∈ B and e0 ∈ p−1(b0), the fundamental groups of E
and B can be described with the groups H(E, e0) and H(B, b0). In this case the map
p∗ : H(E, e0)→ H(B, b0) is easy to describe. If ξ = (e1, e2)(e2, e3) . . . (er−1, er) is an edge-
path in E, then p∗(ξ) = (p(e1), p(e2))(p(e2), p(e3)) . . . (p(er−1), p(er)) is also an edge-path
in Y . The covering p maps edges to edges since p|Ue : Ue → Up(e) (also p|Fe : Fe → Fp(e))
is a homeomorphism for every e ∈ E. The homomorphism p∗ : H(E, e0) → H(B, b0)
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is given by p∗([ξ]) = [p∗(ξ)]. Given an edge-path ξ in B starting in b0, there exists a

unique edge-path ξ̃ in E starting in e0 such that p∗(ξ̃) = ξ. If ξ and ξ′ are two equivalent

edge-paths from b0 to a point b1, then it is clear that both lifts ξ̃ and ξ̃′ end in the same
point.

The group HFix(e0) = p∗(H(E, e0)) 6 H(B, b0) consists of the classes of closed edge-
paths at b0 which lift to closed edge-paths at e0.

Proposition 2.3. Let B be a locally finite T0-space, b0 ∈ B, p : E → B a covering and
e0 ∈ p−1(b0). The isomorphism ηB = (µB)∗εBφB : H(B, b0) → π1(B, b0) restricts to an
isomorphism HFix(e0)→ Fix(e0) = p∗(π1(E, e0)).

Proof. It follows immediately from the commutativity of the diagram in Remark 2.2. �

3. G-colorings and regular coverings

In this section we introduce the notion of a coloring of a locally finite poset X, which is
used to classify the normal subgroups of π1(X). In particular, the colorings of X describe
all its regular coverings.

Definition 3.1. Let X be a connected locally finite T0-space and let G be a group. A
G-coloring of X is a map c : E(X)→ G. If c is a G-coloring of X and (x, y) ∈ E(X), we
define c(y, x) = c(x, y)−1. Given a G-coloring c, there is an induced weight map w (also
denoted by wc), which associates an element of G to every edge-path of X. This map is
defined by

w((x0, x1)(x1, x2) . . . (xn−1, xn)) =

n−1∏
i=0

c(xi, xi+1) = c(x0, x1)c(x1, x2) . . . c(xn−1, xn).

The weight of the empty edge-path is defined as 1, the identity of G.
A G-coloring of X is admissible if for any x ≤ y in X and any two monotonic edge-

paths ξ, ξ′ from x to y, the weights w(ξ) and w(ξ′) are equal. Let x0 ∈ X. An admissible
G-coloring c of X induces a group homomorphism W = Wc : H(X,x0) → G defined by
W ([ξ]) = w(ξ).

A G-coloring is said to be connected if for every g ∈ G there exists a closed edge-path
at x0 whose weight is g. When the G-coloring is admissible, this is equivalent to saying
that W : H(X,x0)→ G is an epimorphism. Note that this definition is independent of the
choice of the base point x0. The motivation of the term “connected” for such a coloring
is the space E(c) which appears in Theorem 3.6.

Definition 3.2. Two G-colorings c, c′ of X are said to be equivalent if there exists an
automorphism ϕ : G→ G and an element gx ∈ G for each x, such that

c′(x, y) = ϕ(gxc(x, y)g−1
y )

for every (x, y) ∈ E(X). In this case we write c ∼ c′.

It is easy to see that this is an equivalence relation in the set of G-colorings of X. If
c ∼ c′ and ξ is an edge path from x to y in X then, with the notation of the last definition,
wc′(ξ) = ϕ(gxwc(ξ)g

−1
y ). Therefore, if c ∼ c′ and c is admissible, then so is c′. Also, if c is

connected, so is c′.
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Theorem 3.3. Let X be a connected locally finite poset, x0 ∈ X and G a group. There
exists a correspondence between the set of equivalence classes of admissible connected G-
colorings of X and the set of normal subgroups N / π1(X,x0) such that π1(X,x0)/N is
isomorphic to G.

Proof. Since the groups H(X,x0) and π1(X,x0) are naturally isomorphic, it suffices to
prove the result for H(X,x0). An admissible connected G-coloring c of X induces an
epimorphism W : H(X,x0) → G. Then G is isomorphic to H(X,x0)/N where N =
ker(W ). Equivalent colorings induce the same subgroup N since the associated weight
maps differ in an automorphism of G.

Conversely, if N / H(X,x0) is such that H(X,x0)/N ' G, then choose an isomor-
phism ψ : H(X,x0)/N → G and define ρ = ψp : H(X,x0) → G where p : H(X,x0) →
H(X,x0)/N is the canonical projection. Since X is connected and locally finite, for
each x ∈ X there exists an edge-path γx from x0 to x. Given (x, y) ∈ E(X), de-
fine c(x, y) = ρ([γx(x, y)γ−1

y ]). If ξ and ξ′ are two monotonic edge-paths in X from

a point x to a point y ≥ x, then wc(ξ) = ρ([γxξγ
−1
y ]) = ρ([γxξ

′γ−1
y ]) = wc(ξ

′), since

[γxξγ
−1
y ] = [γxξ

′γ−1
y ]. Therefore the G-coloring c is admissible. The induced morphism

Wc : H(X,x0)→ G is the composition of ρ with the conjugation by [γx0 ]. It follows that
Wc is an epimorphism and therefore c is connected. Note that different choices of the
isomorphism ρ and the edge-paths γx induce equivalent colorings.

It remains to show that these constructions are reciprocal. Let c be an admissible
connected G-coloring of X and let N = ker(W ) be the induced normal subgroup of
H(X,x0). We can choose the isomorphism ψ : H(X,x0)/N → G to be the morphism
induced by W in the quotient. In this way, the map ρ : H(X,x0) → G coincides with
W . Therefore the new color c′(x, y) of an edge (x, y) ∈ E(X) is W ([γx(x, y)γ−1

y ]) =

wc(γx)c(x, y)wc(γy)
−1. Thus, c′ ∼ c.

Finally, if N /H(X,x0) induces a coloring c, then the kernel of Wc is ker(ρ) = N . �

Corollary 3.4. Let X be a connected locally finite poset, x0 ∈ X and G a group. Then,
there exists an admissible connected G-coloring of X if and only if there exists an epimor-
phism π1(X,x0)→ G.

Let B be a path-connected, locally path-connected, semilocally simply-connected space,
p : E → B a covering, b0 ∈ B and e0 ∈ p−1(b0). We denote by Deck(p) the group of
deck transformations (=covering transformations) of p, and let Fix(e0) = p∗(π1(E, e0)) 6
π1(B, b0). Recall that two coverings p : E → B, p′ : E′ → B are said to be equivalent if
there exists a homeomorphism h : E → E′ such that p′h = p. The correspondence between
conjugacy classes of subgroups of π1(B, b0) and equivalence classes of coverings of B maps
a normal subgroup N / π1(B, b0) to a regular covering p : E → B with Fix(e0) = N (see
[10, Section 1.3]). In this case, Deck(p) is isomorphic to π1(B, b0)/N . Therefore we deduce
the following

Corollary 3.5. Let B be a connected locally finite poset and let G be a group. There exists
a correspondence between the set of equivalence classes of regular coverings p : E → B of
B with Deck(p) isomorphic to G and the set of equivalence classes of admissible connected
G-colorings of B.

We state a more precise version of Corollary 3.5 making an explicit construction of
the covering associated to a given G-coloring. Given an admissible connected G-coloring
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c of B, we define the poset E = E(c) = {(x, g) | x ∈ B, g ∈ G} with the relations
(x, g) ≺ (y, gc(x, y)) whenever x ≺ y in B.

Theorem 3.6. Let B be a connected locally finite poset and let G be a group. If c is
an admissible connected G-coloring of B, then the projection p(c) : E(c) → B onto the
first coordinate is a regular covering of B with Deck(p) isomorphic to G. Moreover, if
c and c′ are equivalent admissible connected G-colorings of B, then p(c) and p(c′) are
equivalent coverings of B. This application describes a correspondence between the set of
equivalence classes of admissible connected G-colorings of B and equivalence classes of
regular coverings of B with deck transformation group isomorphic to G.

Proof. The map p = p(c) : E = E(c) → B is clearly continuous. We claim that if b ∈ B,
then

p−1(Ub) =
∐
g∈G

U(b,g),

and that the restrictions to each U(b,g) are homeomorphisms. The inclusion U(b,g) ⊆
p−1(Ub) follows from the continuity of p. Now suppose (b′, g) ∈ p−1(Ub). Then b′ ≤ b and
there exists a chain b′ = b1 ≺ b2 ≺ . . . ≺ br = b. Since (bi, h) ≺ (bi+1, hc(bi, bi+1)), we have
that

(b′, g) ≤ (b, gc(b1, b2)c(b2, b3) . . . c(br−1, br)).

Thus (b′, g) ∈ U(b,h) for h = gc(b1, b2)c(b2, b3) . . . c(br−1, br).
Suppose (b′, h) ∈ U(b,g1) ∩ U(b,g2). Then there exists a chain b′ = b1 ≺ b2 ≺ . . . ≺ br = b

such that g1 = hc(b1, b2)c(b2, b3) . . . c(br−1, br) and there is a chain b′ = b′1 ≺ b′2 ≺ . . . ≺
b′s = b such that g2 = hc(b′1, b

′
2)c(b′2, b

′
3) . . . c(b′r−1, b

′
s). By the admissibility of c, g1 = g2.

This proves that the union is disjoint.
The map Ub → U(b,g) which maps b′ into (b′, gc(br, br−1)−1 . . . c(b2, b1)−1), where b′ =

b1 ≺ b2 ≺ . . . ≺ br = b is any chain between b′ and b, is a continuous inverse of p|U(b,g)
.

Therefore p is a covering.
Note that E is a connected space since the coloring c is connected. If ξ is a closed

edge-path at b0 with weight wc(ξ) = g, then the lift of ξ from (b0, 1) ends in (b0, g).
Therefore the connectedness of c implies that any two points in the fiber of b0 lie in the
same component of E.

Suppose c′ ∼ c, that is, there exists ϕ ∈ Aut(G) and gb ∈ G for every b ∈ B such that
c′(b1, b2) = ϕ(gb1c(b1, b2)g−1

b2
) for each (b1, b2) ∈ E(B). Consider the map h : E(c)→ E(c′)

which maps (b, g) to (b, ϕ(gg−1
b )). If (b1, g) ≺ (b2, gc(b1, b2)) then

h(b1, g) = (b1, ϕ(gg−1
b1

)) ≺ (b2, ϕ(gg−1
b1

)c′(b1, b2)) =

= (b2, ϕ(gc(b1, b2)g−1
b2

)) = h(b2, gc(b1, b2)).

Hence, h is continuous and p(c′)h = p(c). Moreover h′ : E(c′)→ E(c) given by h′(b, g) =
(b, ϕ−1(g)gb) is the inverse of h. Therefore p(c) and p(c′) are equivalent coverings.

Let b0 ∈ B. Note that a closed edge-path ξ at b0 lifts to a closed edge-path at (b0, 1) ∈
E(c) if and only if wc(ξ) = 1 ∈ G. Therefore, HFix(b0, 1) = ker(Wc). On the other
hand, the application which associates a normal subgroup of π1(B, b0) to an admissible
connected G-coloring of B, maps c into ηB(ker(Wc))/π1(B, b0). This subgroup corresponds
to a regular covering of B whose fix subgroup is equal to ηB(ker(Wc)), or equivalently by
Proposition 2.3, to a covering with HFix equal to ker(Wc). Therefore, the composition of
the correspondence of Theorem 3.3 with the correspondence between normal subgroups
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of π1(B, b0) and regular coverings of B, is the application described above. In particular,
p(c) : E(c)→ B is a regular covering with Deck(p(c)) isomorphic to G and this assignation
is a one-to-one correspondence.

�

One can prove that the functor X induces a correspondence between the equivalence
classes of coverings of a simplicial complex K and the equivalence classes of coverings of
X (K). A similar result holds for the functor K (see [5]). Therefore, colorings can be used
to describe all the regular coverings of a given polyhedron.

Example 3.7. The poset X of Figure 1 is the face poset of a regular CW-complex home-
omorphic to the real projective plane RP 2. Therefore, its fundamental group is the group
Z2 of order two. We will show in Section 4 an alternative way to compute π1(X,x0)
(ignoring the fact that this poset is related to the projective plane).

e

e
e

ee

1
2

3

4 5

Figure 1. A finite model of the projective plane.

Consider the Z2-coloring of X in which every solid edge of Figure 1 is colored with the
identity 0 of Z2 and where the four dotted edges are colored with the non-trivial element
of Z2. It is easy to check that this coloring is admissible and connected and corresponds,
by Theorem 3.3, to a subgroup N / π1(X,x0) such that π1(X,x0)/N is isomorphic to Z2.
Therefore N is the trivial group and the corresponding covering is the universal cover.
Now, it is easy to distinguish the closed edge-paths which are trivial in H(X,x0) once we
have the coloring corresponding to the universal cover. A closed edge-path ξ at x0 is trivial
if and only if it lifts to a loop in the universal cover. This happens if and only if its weight
wc(ξ) is trivial. Therefore, in this example a closed edge-path represents the identity of
H(X,x0) if and only if it passes through a dotted edge an even number of times.

Example 3.8 (Detecting K(G, 1)’s). A topological space having a universal cover is
an Eilenberg-MacLane space K(G, 1) if and only if its universal cover is homotopically
trivial, i.e. weak homotopy equivalent to the singleton. We use Theorem 3.6 to construct
a covering from a given coloring, and the fact that, in the context of posets, sometimes it
is easy to recognize homotopically trivial spaces via beat points (see Proposition 2.1).

Consider the space X of Figure 2 with the following Z-coloring c. The solid edges are
colored with the trivial element 0 ∈ Z and the dotted edges are colored with the generator
1 ∈ Z. This is an admissible and connected Z-coloring of X.

The covering E associated to this coloring according to Theorem 3.6 is sketched in
Figure 3.

We claim that E is a homotopically trivial space. Indeed, the Hasse diagram of E is
a countable union of copies Xn, n ∈ Z, of the diagram X0 in Figure 4. The intersection
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Figure 2. The Z-coloring c of the poset X.

... ...

Figure 3. The covering E associated to c.

of Xn and Xm has two points if |n − m| = 1 and is empty otherwise. The space X0 is
contractible. Moreover, the subspace of two points, x and y, is a deformation retract of
X0. This is really easy to check, removing beat points one by one.

x

y

Figure 4. The space X0 which deformation retracts to the edge (x, y).

This shows in fact that Zn,k+1 = Xn ∪ Xn−1 ∪ . . . ∪ Xn−k−1 deformation retracts to
Zn,k = Xn ∪Xn−1 ∪ . . . ∪Xn−k, and then Zn,k is contractible for any n ∈ Z, and k ≥ 0.
Now, any compact subspace of E is contained in a subspace Zn,k since any minimal open
set Uz of E intersects finitely many copies of X0 (one or two). Then the image of any
map from a sphere to E is contained in a contractible subspace, which proves that E is
homotopically trivial. In particular πr(X) = 0 for every r ≥ 2. This proves that X is a
K(G, 1) for some G. In fact, X is a K(Z, 1). One can easily verify that π1(X) = Z using
for example Theorem 4.4 below.

Note that an admissible G-coloring c : E(X) → G is equivalent to a functor X → G
where G is viewed as a category with a unique object and one arrow for each element
of the group. Since every morphism in the category G is an isomorphism, a functor
X → G is equivalent to a functor Σ−1X → G from the category of fractions of X, which
is obtained from X by formally inverting all the arrows (see [9]). This is equivalent to a
group homomorphism π1(X,x0)→ G (cf. [15, pp.89-90]).

To finish this section we exhibit a method for constructing a poset with fundamental
group isomorphic to any given group. This idea copies, in some sense, Milnor’s classical
construction of universal bundles and classifying spaces of groups [13].
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Let G be a group. Let X be the following poset of height 2. The set of minimal elements
is G × Z3. The set of points of height 1 is G × G × Z3 and the set of maximal points
is G × G × G. The order is given as follows (g, h, i + 1) covers (g, i) and (h, i + 2), and
(g, h, k) covers (g, h, 1), (k, g, 2) and (h, k, 0) for each g, h, k ∈ G and i ∈ Z3. The group
G acts on X by left multiplication in each coordinate belonging to G. This action is
properly discontinuous and therefore the projection p : X → X/G is a covering with deck
transformation group isomorphic to G. The space X is simply-connected. This can be
proved for instance by induction in the order of G, using Theorem 4.4 of the next section.
Therefore X/G is a poset with fundamental group isomorphic to G.

For G = Z2 this construction gives a space X/G of 13 points, isomorphic to the model
of the projective plane of Example 3.7.

4. Presentations of the fundamental group

Let X be the poset of Figure 5. Let G = Z ∗ Z be the free group on two generators
g, h. There is an admissible connected G-coloring which is trivial in the solid edges and
such that the two dotted edges are colored one with g and the other with h. By Corollary
3.4, there exists an epimorphism π1(X,x0) → G. Again by Corollary 3.4, there exists an
admissible connected π1(X,x0)-coloring c of X. Since the undirected subgraph given by
the solid edges is a tree, it is possible to show that there is a coloring c′ of X which is
equivalent to c and which is trivial in the solid edges. Hence, π1(X,x0) is generated by
two elements, the c′-colors of the dotted edges. This says that there exists an epimorphism
G→ π1(X,x0). One can deduce then that π1(X,x0) is isomorphic to Z ∗ Z.

g

h

Figure 5. A poset whose fundamental group is the free group on two generators.

In general it is not true that the existence of epimorphisms G→ H and H → G implies
that G and H are isomorphic (see for instance [6]). Two posets admitting the same set of
groups G for which there is an admissible connected G-coloring, need not have isomorphic
fundamental groups. Nevertheless we will see that we can use colorings to compute the
fundamental groups of posets (and therefore of simplicial complexes).

By a subdiagram of a Hasse diagram D we mean a subgraph of D. If X is a locally
finite poset, any subdiagram of the Hasse diagram of X is the Hasse diagram of a locally
finite space A. This space need not be a subspace of X. However, the inclusion A ↪→ X
is continuous.

Lemma 4.1. Let G be a group with identity 1. Let X be a connected locally finite T0-space
and let D be a subdiagram of the Hasse diagram of X which corresponds to a connected
space A. If the map i∗ : H(A, x0)→ H(X,x0) induced by the inclusion is trivial for some
x0 ∈ A, then for each admissible G-coloring c of X there exists a G-coloring c′ equivalent
to c such that c′(x, y) = 1 for every (x, y) ∈ E(A). In particular, this holds when A is
simply-connected.

Proof. Choose an edge-path γa in A from x0 to a for each a ∈ A. Define the G-coloring
c′ of X by c′(x1, x2) = gx1c(x1, x2)g−1

x2 where gx = wc(γx) if x ∈ A and gx = 1 if x /∈ A.
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Then c′ and c are equivalent G-colorings of X and c′ restricted to A is trivial. Given
(a1, a2) ∈ E(A), one has c′(a1, a2) = wc(γa1)c(a1, a2)wc(γa2)−1 = wc(γa1(a1, a2)γ−1

a2 ) which

is 1 since the closed edge-path γa1(a1, a2)γ−1
a2 is equivalent to the empty path at x0 by the

hypothesis on i∗ : H(A, x0)→ H(X,x0). �

Remark 4.2. Lemma 4.1 can be generalized as follows. If {Dj}j∈J is a collection of pair-
wise disjoint connected subdiagrams of X and the inclusions Dj ↪→ X induce the trivial
homomorphism on fundamental groups, then for each admissible G-coloring c of X there
exists an equivalent coloring which is trivial in all the diagrams Dj simultaneously. To
prove this we follow the proof of Lemma 4.1 above choosing the edge-paths γa carefully.
Let x0 be any point of X. Choose a point xj in each diagram Dj and an edge-path γj
in X from x0 to xj . For each point a ∈ Dj let γ′a be an edge-path in Dj from xj to a
and let γa = γjγ

′
a. Define the coloring c′ and the gx as before considering A =

⋃
Dj . If

(a1, a2) ∈ E(Dj), γa1(a1, a2)γ−1
a2 =γjγ

′
a1(a1, a2)(γ′a2)−1γ−1

j is equivalent to the empty path

at x0 since, by hypothesis, γ′a1(a1, a2)(γ′a2)−1 is equivalent to the empty path at xj .

Definition 4.3. Let X be a connected locally finite T0-space and let x0 ∈ X. Choose for
each x ∈ X with x 6= x0 an edge-path γx from x0 to x and take γx0 to be the trivial edge-
path. The standard coloring of X is the H(X,x0)-coloring given by c(x, y) = [γx(x, y)γ−1

y ].
Clearly c is admissible and connected since the weight of a closed edge-path ξ at x0 is [ξ].
If we take a different γx for x 6= x0, we obtain an equivalent coloring. Therefore, the
standard coloring of X is well defined up to equivalence.

The following is the main result of this section. Although at first sight its statement
may seem technical, the examples below show that it can be easily applied to compute
the fundamental group of posets.

Theorem 4.4. Let X be a connected locally finite T0-space and let x0 ∈ X. Let D be
a subdiagram of the Hasse diagram of X which corresponds to a simply-connected space
A. Let {eα}α∈Λ be the subset of E(X) of edges which are not in D. Let G be the group
generated by the eα’s with the relations given by admissibility. Concretely, for any two
chains

x = x1 ≺ x2 ≺ . . . ≺ xr = y,

x = x′1 ≺ x′2 ≺ . . . ≺ x′s = y

from any point x to any point y, we put a relation∏
(xi,xi+1)/∈D

(xi, xi+1) =
∏

(x′i,x
′
i+1)/∈D

(x′i, x
′
i+1).

Suppose there is a subset Γ ⊆ Λ such that the classes {eα}α∈Γ generate G and such that
for each α ∈ Γ there exists a closed edge-path ωα in x0 which contains eα exactly once and
contains no other edge eβ for β ∈ Λ. Then π1(X,x0) ' G.

Proof. We construct first a G-coloring ĉ of X. We color all the edges in D with 1 ∈ G and
each edge eα with eα. This coloring is admissible by definition of G. Let Wĉ : H(X,x0)→
G be the weight map induced by ĉ. Replacing, if necessary, ωα by ω−1

α , we have for every
α ∈ Γ,

Wĉ([ωα]) = w(ωα) = eα.

Let c be the standard coloring of X. The induced weight Wc : H(X,x0) → H(X,x0)
is the identity. By Lemma 4.1, there exists an H(X,x0)-coloring c′ of X equivalent to c
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which is trivial in A. Since c′ ∼ c, the weight Wc′ induced by c′ is Wc composed with an
automorphism of H(X,x0). Hence Wc′ is an automorphism of H(X,x0).

Define ϕ : G → H(X,x0) by ϕ(eα) = c′(eα) for every α ∈ Λ. This homomorphism is
well-defined since c′ is admissible and {eα}α∈Γ generatesG. Moreover, since c′ is connected,
H(X,x0) is generated by {c′(eα)}α∈Λ. Therefore, ϕ is an epimorphism.

Let α ∈ Γ. Since ωα passes through eα only once and all the other edges in ωα have
weight 1 with respect to the coloring c′, then Wc′([ωα]) = c′(eα). Thus,

WĉW
−1
c′ ϕ(eα) = WĉW

−1
c′ (c′(eα)) = Wĉ([ωα]) = eα.

Then WĉW
−1
c′ ϕ is the identity of G and, in particular, ϕ is injective. Therefore ϕ is an

isomorphism. �

Therefore, in order to compute the fundamental group of a connected locally finite
poset X, we choose a simply-connected subdiagram D of X satisfying the hypotheses of
Theorem 4.4 (for example, a simply-connected subdiagram containing all the vertices of
X). The generators of π1(X) are the edges which are not in D and the relators are given
by digons. A digon in a poset X is a subdiagram which is the union of two different
monotonic edge-paths from a point x to a point y. Moreover, in the presentation of the
group it suffices to consider only the relations given by the simple digons, i.e. digons in
which the two chains have no vertex in common with the exception of x and y.

This result can be applied to compute the fundamental group of any regular CW-
complex by means of its face poset. Note that for any regular CW-complex K, X (K) is
locally finite.

Example 4.5. Consider the poset X whose Hasse diagram is shown in Figure 1. Its
edges are the solid lines together with the dotted lines. The subdiagram given by the
solid lines corresponds to a simply-connected space A. It is easy to check that in fact A
is a contractible space (to prove this, we only have to show that it is possible to reduce
the space A to a point by removing beat points one by one). The group G of Theorem
4.4 is then generated by the classes of the dotted edges e1, e2, e3, e4, e5. There is a digon
containing e2 and e3 which says that e2 = e3 is one of the relations in the presentation
of G. There is another digon which contains the edges e4 and e1 producing the relation
e4e1 = 1. After checking all possible digons containing at least one dotted edge, we obtain
the following admissibility relations: e4e1 = 1, e2 = e3, e2 = e5, e1 = e5, e3 = e4.
Therefore, the group G is isomorphic to the group Z2, generated by e3. By Theorem 4.4,
the fundamental group of X is isomorphic to Z2.

Remark 4.6. Consider the G-coloring ĉ in the proof of Theorem 4.4. The color of an edge
e is its class e in G. By the proof of Theorem 4.4, the weight map Wĉ associated to this
coloring is an isomorphism, which implies that this coloring corresponds to the trivial
subgroup of π1(X). Therefore its corresponding covering E(ĉ) is the universal covering X̃
of X.

Remark 4.7. Given a connected locally finite poset X, it is always possible to find a
subdiagram D of the Hasse diagram of X in such a way that the hypotheses of Theorem
4.4 are fulfilled. Namely, we can take D such that its underlying undirected graph is a
maximal tree of the underlying undirected graph of the Hasse diagram of X. It is easy
to see that any closed edge-path in D is equivalent to the trivial edge-path. Then A, the
locally finite space corresponding to D, is simply-connected. Any edge of X which is not
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in D is contained in a closed edge-path with all the other edges in D. Therefore, it is
possible to apply the theorem using Γ = Λ.

In fact, the locally finite space A is contractible. When A is finite this is clear using
Proposition 2.1. When A is locally finite we can use Proposition 2.1 together with the
standard idea of the proof of [10, Proposition 1.A.1] and the fact that A has the weak
topology with respect to its edges. Moreover, any subdiagram Y of X is contained in a

subdiagram Ỹ of X which contains all the points of X and such that the space Y is a

strong deformation retract of Ỹ .

Example 4.8. Consider the poset X1 of Figure 6. The subdiagram D given by the solid
edges is a tree. The remaining edges are the generators for the presentation of π1(X1) in
the statement of Theorem 4.4.

1

2

3

4

5

6

7

8

9

Figure 6. A simply-connected space.

The dotted edge labeled with the number 1 is contained in a digon with all the other
edges in D. Therefore, the edge 1 is the trivial element of π1(X1). Edge 2 is contained
in a digon with all other edges representing the trivial element (two in D and the other
being edge 1). In each step we can choose a new dotted edge contained in a digon whose
edges are in D or were already labeled. Therefore each dotted edge represents the trivial
element and then π1(X1) = 0.

One last example X2 appears in Figure 7. As before, the subdiagram D given by the
solid edges is simply-connected and edges 1 to 5 represent the trivial element of π1(X2).

1

2

3

4

5

a

a

Figure 7. A space with infinite cyclic fundamental group.

Two dotted edges remain after this process, labeled with the letter a. They are part
of the same digon, and this relation says that they represent the same element of π1(X2).
None of these two edges is part of another digon, so π1(X2) is the infinite cyclic group.
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Remark 4.9. There exists an analogue to Theorem 4.4 for simplicial complexes. Let K be
a simplicial complex. If L is a simply-connected subcomplex containing all the vertices
of K, the fundamental group of K is isomorphic to the group generated by the ordered
1-simplices of K with the relations e = 1 if e is in L and e0e1e2 = 1 if e0 + e1 + e2 is the
boundary of a 2-simplex of K. However by means of the poset X (K), our result allows
one to manipulate the simplicial complex combinatorially (not only simplicially), resulting
in better or more tractable presentations. The advantages of this discrete approach will
be more clear later.

Corollary 4.10. Let X be a connected locally finite poset and let B be a subdiagram of
the Hasse diagram of X which corresponds to a simply-connected space and such that any
maximal chain of X has all its edges in B except perhaps for one. Then the fundamental
group of X is free.

Proof. We can assume thatB contains all the points ofX by Remark 4.7 and then Theorem
4.4 applies. Since any monotonic edge-path in X has at most one edge not in B then the
relators of the presentation of π1(X) either identify two generators or identify a generator
with the trivial element. Therefore, π1(X) is free. �

Theorem 4.11. Let X be a connected locally finite T0-space. Let A and B be two connected
subdiagrams of the Hasse diagram of X such that every edge of X is in A or B. Suppose
that the diagram C = A∩B of common vertices and common edges is connected. Let x0 ∈
C and let i : C → A, j : C → B be the canonical inclusions. Let N ≤ π1(A, x0)∗π1(B, x0)
be the normal subgroup generated by the words i∗([γ])j∗([γ])−1, for every [γ] ∈ π1(C, x0).
Then there exists an epimorphism (π1(A, x0) ∗ π1(B, x0))/N → π1(X,x0). Moreover,
if each simple digon of X is contained in A or in B, then π1(X,x0) is isomorphic to
(π1(A, x0) ∗ π1(B, x0))/N .

Proof. By Remark 4.7 there exists a subdiagram DC of C which is simply-connected and
contains all the vertices of C. Moreover, there exist subdiagrams DA and DB of A and
B containing all the vertices of A and of B respectively, which strong deformation retract
into DC . Therefore DA ∪ DB is a simply-connected subdiagram of X and we can apply
Theorem 4.4 to obtain presentations of π1(C), π1(A), π1(B) and π1(X). The presentation
of π1(C) is < GC |RC >, where GC is the set of edges in C which are not in DC , and
there is a relator for each digon in C. The presentations of π1(A), π1(B) and π1(X) are
< GC∪GA|RC∪RA >, < GC∪GB|RC∪RB > and < GC∪GA∪GB|RC∪RA∪RB∪RX >
respectively. Here GA is the set of edges of A which are not in DA ∪ C and the relators
RA are given by digons in A which are not in C. GB and RB are defined similarly. The
relators in RX are given by digons of X which are neither in A nor in B. Note that the
following diagram

< GC |RC >
α //

β
��

< GC ∪GA|RC ∪RA >

��
< GC ∪GB|RC ∪RB > // < GC ∪GA ∪GB|RC ∪RA ∪RB >

in which every homomorphism maps each generator to itself, is a pushout. Moreover,
Wĉi∗ = αWĉ and Wĉj∗ = βWĉ, where Wĉ denotes the three isomorphisms H(C, x0) →<
GC |RC >, H(A, x0) →< GC ∪ GA|RC ∪ RA > and H(B, x0) →< GC ∪ GB|RC ∪ RB >
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constructed in the proof of Theorem 4.4. By Remark 2.2, < GC∪GA∪GB|RC∪RA∪RB >
is isomorphic to (π1(A, x0) ∗ π1(B, x0))/N .

If each simple digon of X is contained in A or B, (π1(A, x0) ∗ π1(B, x0))/N =< GC ∪
GA ∪ GB|RC ∪ RA ∪ RB >→< GC ∪ GA ∪ GB|RC ∪ RA ∪ RB ∪ RX >= π1(X,x0) is an
isomorphism. �

The last result generalizes van Kampen’s theorem. If {A,B} is an open covering of
a locally finite T0-space X, with A,B and A ∩ B connected, then every digon of X is
contained in A or B, so the result reduces to the classical van Kampen’s theorem. Also if
K is a regular CW-complex covered by two connected subcomplexes L,M with connected
intersection, then X (L) and X (M) are open subspaces of X (K) and every digon of X (K)
is in one of the subspaces. However, our result allows one to work also with non-simplicial
combinatorial decompositions {A,B} of X (K), obtaining information on the fundamental
group of K from the fundamental groups of the “discrete parts” A and B.

We finish this section with a result that characterizes posets with abelian fundamental
group in terms of colorings. Given a G-coloring c of X we denote by c−1 the G-coloring
defined by c−1(x, y) = c(x, y)−1 for every edge (x, y) ∈ E(X).

Theorem 4.12. Let X be a connected locally finite T0-space and let x0 ∈ X. The following
are equivalent:

(i) π1(X,x0) is abelian.
(ii) For every group G and every admissible connected G-coloring c of X, c−1 is an

admissible and connected G-coloring of X.

Proof. If π1(X,x0) is abelian and c is an admissible connected G-coloring of X, then G is
abelian by Corollary 3.4. Then the inverse map G→ G is a homomorphism and therefore
c−1 is equivalent to c. In particular it is admissible and connected. Conversely, suppose
that (ii) holds. We consider two cases: when X has at least one digon or when X has
no digon. In the first case, let D be a simple digon which is the union of the chains
x = x0 ≺ x1 ≺ . . . ≺ xk = y and x = x′0 ≺ x′1 ≺ . . . ≺ x′l = y. Let g, h ∈ π1(X,x0). Let c
be an admissible connected π1(X,x0)-coloring of X. Since D is the diagram of a simply-
connected space, by Lemma 4.1 there exists a coloring c′ equivalent to c which is trivial in
D. We consider the coloring c′′ obtained from c′ when choosing, following the notations
of Definition 3.2, gxk−1

= g, gy = hg, all the other gz = 1, and ϕ = 1π1(X,x0). This

coloring is admissible and connected and then, by hypothesis, (c′′)−1 is also admissible.
The admissibility of (c′′)−1 in the digon D says that gh = hg. Thus, π1(X,x0) is abelian.

Assume now that X has no digons. In this case, by Theorem 4.4, π1(X,x0) is a free
group. Suppose π1(X,x0) is not abelian. Then it is a free group on at least two generators.
We claim that there exist two closed edge-paths (not necessarily at x0 nor at the same
base point) ξ = e0e1 . . . ek, ξ

′ = e′0e
′
1 . . . e

′
l which are simple (i.e. any vertex is in at most

two edges of each path) and such that e0 and e1 are not edges of ξ′, with any orientation,
and e′0 is not an edge of ξ, with any orientation. Moreover e′0 is not adjacent to x, the
common vertex of e0 and e1. Since π1(X,x0) is not cyclic, the underlying undirected graph
of the Hasse diagram of X has at least two simple cycles ξ, ξ′. If there exists a vertex x
of ξ which is not a vertex of ξ′, then we take e0 and e1 as its adjacent edges in ξ and e′0
as any edge of ξ′ which is not in ξ. In the case that ξ and ξ′ have exactly the same set of
vertices, take any edge e of ξ′ not in ξ, then in the subgraph of edges e, e0, e1, . . . , ek there
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are three simple cycles and at least two of them have different length. In the longest, there
is a vertex which is not in the other and we can reason as above.

Consider now the Dihedral group D3 =< s, r | s2, r3, (rs)2 >. We will show that there
exists an admissible and connected D3-coloring c of X such that c−1 is not connected. Let
x1 be the vertex of e0 different from x. If x1 ≺ x, color e0 with color r, if x ≺ x1, color it
with r2. Color all the remaining edges adjacent to x with color sr2. Color e′0 with s, and
the rest of the edges of X with the trivial color 1. This coloring c is admissible since X
has no digons. The weight of ξ is rsr2 = sr. Take γ the shortest edge-path from x1 to x′1,

the base vertex of ξ′, and define the closed edge-path at x1, ξ̃′ = γξ′γ−1. Then the weight

of ξ̃′ is s or rsr2s(rsr2)−1 = sr2, depending on if e0 is in γ or not. In any case {sr, s} and
{sr, sr2} are generating sets of D3, which proves that c is connected. On the other hand,
the coloring c−1 is not connected. It coincides with c in each edge of X with exception of
e0. Taking gx = sr2 and all the other gz trivial, we obtain a coloring c′ equivalent to c−1

such that c′(e0) = c′(e′0) = s while all the other edges of X are colored with 1. Then c′ is
not connected, and therefore neither is c−1. �

5. Colorings and π1 on maps

In this section we characterize, in terms of colorings, the maps of posets which induce
sections, epimorphisms or the trivial map between the fundamental groups. In some cases
we prove first the result for inclusions and then we achieve the general result by considering
a discrete analogue of the mapping cylinder. If f : X → Y is a map between posets, then

the non-Hausdorff mapping cylinder B̃(f) is the poset whose underlying set is the disjoint
union of X and Y keeping the given ordering within X and Y , and setting y < x for x ∈ X
and y ∈ Y if y ≤ f(x). The map r : B̃(f) → Y which maps x to f(x) for every x ∈ X
and y to y for each y ∈ Y is a homotopy equivalence (if j : Y → B̃(f) is the canonical
inclusion, the homotopy which coincides with jr for t < 1 and with 1

B̃(f)
for t = 1 is

continuous). This allows us to replace f∗ by the map i∗ induced by the inclusion of X in
the cylinder. In [1, 4] we considered a slightly different version B(f) of the cylinder. In

fact, B̃(f) = B(fop)op. Note that if f : X → Y is a map between locally finite T0-spaces,

B̃(f) is locally finite.

Lemma 5.1. Let A be a connected space corresponding to a subdiagram D of the Hasse
diagram of a connected locally finite T0-space X and let x0 ∈ A. Let G be a group and c, c′

two admissible G-colorings of A. If c extends to an admissible G-coloring c̃ of X, then c′

extends to an admissible G-coloring c̃′ of X which is equivalent to c̃.

Proof. Since c and c′ are equivalent, there exist an automorphism ϕ : G→ G and a family
{gx}x∈A of elements of G such that c′(x, y) = ϕ(gxc(x, y)g−1

y ) for every (x, y) ∈ E(A).

Define a G-coloring of X by c̃′(x, y) = ϕ(hxc̃(x, y)h−1
y ) for every (x, y) ∈ E(X), where

hx = gx if x ∈ A and hx = 1 otherwise. Then c̃′ ∼ c̃ and it extends c′. �

Given an admissible G-coloring c of a locally finite poset X and any two elements
x, x′ ∈ X such that x ≤ x′, we will denote by c(x, x′) the weight of any monotonic edge-
path from x to x′. If x = x′, then c(x, x′) = 1, the identity of G.

Theorem 5.2. Let f : X → Y be a continuous map between connected locally finite
T0-spaces and let x0 ∈ X. Then the following are equivalent
(i) The homomorphism f∗ : π1(X,x0)→ π1(Y, f(x0)) is a section.
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(ii) For every group G and every admissible connected G-coloring c of X, there exist an
admissible G-coloring c̃ of Y and gx ∈ G for each x ∈ X such that

c̃(f(x), f(x′)) = gxc(x, x
′)g−1

x′

for every edge (x, x′) ∈ E(X).

Proof. Suppose first that the Hasse diagram of X is a subdiagram of the Hasse diagram
of Y . In this case, if the inclusion i : X ↪→ Y induces a section i∗ : H(X,x0)→ H(Y, x0),
let r : H(Y, x0) → H(X,x0) be a homomorphism such that ri∗ = 1H(X,x0). Let c be
an admissible connected G-coloring of X and let W : H(X,x0) → G be the weight map
induced by c. Choose for each y ∈ Y an edge path γy from x0 to y in such a way that γx is

contained in X for every x ∈ X. Define the G-coloring c̃ by c̃(y, y′) = Wr([γy(y, y
′)γ−1

y′ ])

for each (y, y′) ∈ E(Y ). Then c̃ is admissible. Moreover, if (x, x′) ∈ E(X), c̃(x, x′) =
Wr([γx(x, x′)γ−1

x′ ]) = W ([γx(x, x′)γ−1
x′ ]) = w(γx)c(x, x′)w(γx′)

−1. Therefore, c̃|X is equiv-
alent to c. Since c̃|X extends to an admissible G-coloring of Y , by Lemma 5.1 so does
c.

Suppose now f : X → Y is any continuous map between connected locally finite T0-
spaces such that f∗ : π1(X,x0) → π1(Y, f(x0)) is a section. Then the inclusion i : X ↪→
B̃(f) induces a section i∗ : H(X,x0) → H(B̃(f), x0). Given an admissible connected G-
coloring c of X, by the previous paragraph, this extends to an admissible G-coloring c̃ of

B̃(f). The restriction of this coloring to Y is an admissible coloring. Let gx = c̃(f(x), x) for
every x ∈ X. The admissibility of c̃ for a digon containing f(x), f(x′), x and x′ determines
the identity

c̃(f(x), f(x′)) = gxc(x, x
′)g−1

x′ .

Conversely, let c be the standard coloring of X. By hypothesis there exist an admissible
H(X,x0)-coloring c̃ of Y and a family {gx}x∈X satisfying the identity above. This gives

an H(X,x0)-coloring c′ of B̃(f) which coincides with c in X, with c̃ in Y and such that
c′(f(x), x) = gx if f(x) ≺ x. Note then that c′(f(x), x) = gx for every x ∈ X. The coloring
c′ is admissible since for a digon with minimum y ∈ Y , maximum x ∈ X and containing
the edges (f(x′), x′) and (f(x′′), x′′) (see Figure 8 below) one has

c′(y, f(x′))c′(f(x′), x′)c′(x′, x) = c̃(y, f(x′))gx′c(x
′, x) = c̃(y, f(x′))c̃(f(x′), f(x))gx =

= c̃(y, f(x′′))c̃(f(x′′), f(x))gx = c̃(y, f(x′′))gx′′c(x
′′, x) = c′(y, f(x′′))c′(f(x′′), x′′)c′(x′′, x).

f(x´)

x

x´ x´´

y

f(x)

f(x´´)

Figure 8. A digon decomposed in three digons. The lines in the diagram
represent monotonic paths.
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Since the coloring c extends to an admissible coloring c′ of B̃(f), the weight map Wc′ :

H(B̃(f), x0)→ H(X,x0) satisfies Wc′i∗ = Wc = 1H(X,x0), which proves that i∗ is a section.
Then f∗ is also a section. �

Remark 5.3. Note that if A is a connected subdiagram of the Hasse diagram of a connected
locally finite poset X, then the inclusion A ↪→ X induces a section in the fundamental
groups if and only if for every group G, each admissible connected G-coloring of A extends
to an admissible G-coloring of X. This follows from Theorem 5.2 and its proof.

Theorem 5.4. Let f : X → Y be a continuous map between connected locally finite
T0-spaces and let x0 ∈ X. Then the following are equivalent
(i) The homomorphism f∗ : π1(X,x0)→ π1(Y, f(x0)) is an epimorphism.
(ii) For every group G and every admissible connected G-coloring c of Y , the G-coloring
of X given by

c̃(x, x′) = c(f(x), f(x′))

is connected.

Proof. Given an admissible G-coloring c of Y , the coloring of X defined by the identity of
(ii) is clearly admissible. Moreover, there is a commutative triangle

H(X,x0)
Wc̃

$$

f∗ // H(Y, f(x0))

Wcyy
G.

If f∗ is an epimorphism and c is connected, then Wc is an epimorphism and therefore so
is Wc̃, which shows that c̃ is connected. Conversely, if (ii) holds, then for the standard
coloring c of Y we have that c̃ is connected and then f∗ = Wc̃ is an epimorphism. �

Remark 5.5. By the last result, if A is a connected subdiagram of the Hasse diagram of
a connected locally finite poset X, then the inclusion A ↪→ X induces an epimorphism
in the fundamental groups if and only if for every group G, each admissible connected
G-coloring of X restricts to a connected G-coloring of A.

Theorem 5.6. Let f : X → Y be a continuous map between connected locally finite
T0-spaces and let x0 ∈ X. Then the following are equivalent
(i) The homomorphism f∗ : π1(X,x0)→ π1(Y, f(x0)) is the trivial map f∗ = 0.
(ii) For every group G and every admissible G-coloring c of Y , there exist gx ∈ G for each
x ∈ X and a G-coloring c̃ of Y , equivalent to c such that

c̃(f(x), f(x′)) = gxg
−1
x′

for every (x, x′) ∈ E(X).

Proof. Suppose f∗ = 0 and let c be an admissibleG-coloring of Y . We define aG-coloring of

B̃(f) by c′(z, z′) = c(r(z), r(z′)) where r : B̃(f)→ Y is the retraction of the non-Hausdorff

mapping cylinder onto Y . Clearly, c′ is admissible. Since i∗ : H(X,x0) → H(B̃(f), x0) is

trivial, by Lemma 4.1 there exists a G-coloring c̃ of B̃(f) equivalent to c′ which is trivial
in X.

Since c̃ is admissible, for a digon containing an edge (x, x′) ∈ E(X), f(x) and f(x′), we
have c̃(f(x), x)c̃(x, x′) = c̃(f(x), f(x′))c̃(f(x′), x′). Let gx = c̃(f(x), x). Since c̃ is trivial
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in X, we have gxg
−1
x′ = c̃(f(x), f(x′)). The restriction of c̃ to Y is equivalent to c′|Y = c

and satisfies the required identity.
Conversely, assume now that condition (ii) holds. Let c be the standard coloring of

B̃(f). Then c|Y is equivalent to some coloring c̃ such that c̃(f(x), f(x′)) = gxg
−1
x′ for every

(x, x′) ∈ E(X) and some family {gx}x∈X . By Lemma 5.1, c̃ extends to an H(B̃(f), x0)-

coloring C̃ of B̃(f) equivalent to c. Define for each x ∈ X, hx = C̃(f(x), x). Since C̃ is
admissible, for every (x, x′) ∈ E(X) we have

hxC̃(x, x′) = C̃(f(x), f(x′))hx′ = gxg
−1
x′ hx′ .

Thus, C̃(x, x′) = h−1
x gxg

−1
x′ hx′ . Choosing for every x ∈ X, kx = g−1

x hx, we obtain a

coloring c′ of B̃(f), equivalent to C̃, and such that c′|X is trivial. Therefore we obtain

a coloring of B̃(f) equivalent to the standard coloring c which is trivial in X. Then

1H(B̃(f),x0)
= Wc = ϕWc′ for some ϕ ∈ Aut(H(B̃(f), x0)). Hence, if ξ is a closed edge-

path in X, the class i∗([ξ]) of ξ in H(B̃(f), x0) is [ξ] = Wc([ξ]) = ϕWc′([ξ]) = 1. This says
that i∗ = 0 and then f∗ = 0. �

Remark 5.7. When A is a connected subdiagram of a connected locally finite poset X, the
inclusion i : A ↪→ X induces the trivial homomorphism between the fundamental groups if
and only if for every group G, each admissible G-coloring of X is equivalent to a coloring
which is trivial in A. This follows directly from Lemma 4.1 and the last theorem.

Recall that a digon is called simple if it consists of two monotonic edge-paths from a
point x to a point y which have no common vertex other than x and y.

Proposition 5.8. Let Y be a connected locally finite T0-space, y0 ∈ Y and let (a, b) ∈
E(Y ). Let X be the space corresponding to the subdiagram of Y obtained when removing
the edge (a, b). If (a, b) is contained in a simple digon, the map i∗ : π1(X, y0)→ π1(Y, y0)
induced by the inclusion is an epimorphism.

Proof. By Remark 5.5 it suffices to check that any admissible connected G-coloring c of Y
restricts to a connected coloring of X. Note that X is connected. If ξ is a closed edge-path
at y0 in Y , then there is another closed edge-path with the same weight as ξ and which
does not contain the edge (a, b). We can just avoid edge (a, b) using the remaining edges
of the simple digon. Thus c|X is also connected. �

If X is simply-connected and we add an edge which appears as part of a simple digon,
the new space is also simply-connected. However, if the edge is not contained in a simple
digon, the fundamental group of the new space is Z.

6. Boards on surfaces

In the previous sections we used colorings to study problems of topological nature.
In this section we exhibit an application in a different direction. Consider the following
elementary combinatorial problem. Let n and m be positive integers and suppose we have
an n × m rectangular board. The edges of the squares in the board are colored either
with blue or with red, and one such coloring is called valid if for each square of the board
exactly 0, 2 or 4 of its edges are colored with blue. A possible move is to pick a vertex
of the board and change the colors of all the (two, three or four) edges incident to that
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(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

Figure 9. On the left, a 4× 5 board and a valid coloring. The solid edges
represent color blue and the dotted edges red. On the right, the Hasse
diagram of the poset I4 × I5 in which the orientation of the edges is indi-
cated with an arrow. The corresponding admissible coloring is represented
using solid edges for the identity of Z2 and dotted edges for the non-trivial
element.

vertex, blue by red and red by blue. Prove that if c and c′ are two valid colorings of the
board, then it is possible to obtain c′ from c by performing a finite sequence of moves.

We give a solution using the methods described in this paper. Let In be the poset
0 < 1 > 2 < 3 > . . . n. Then In and Im are contractible and therefore, so is the product
In × Im. In particular any two admissible Z2-colorings of In × Im are equivalent. The
Hasse diagram of In× Im is an n×m board where the edges of the diagram coincide with
edges of the squares (see Figure 9). A Z2-coloring is a coloring of the edges with colors
0 =blue and 1 =red. The admissibility of the coloring is equivalent to the validity. Finally,
the equivalence of Z2-colorings is the same as the existence of moves taking one coloring
to the other.

Suppose now that we have a cylindrical board, obtained from the n × m board by
identifying the top edge of each square in the first row with the bottom edge of the square
in the last row and the same column. Note that the notions of valid colorings and moves
still make sense. In this case there exist two valid colorings such that none of them can
be obtained from the other by performing allowed moves. However, given any three valid
colorings, there are two of them which are related by a sequence of moves.

To see this consider, when n ≥ 4 is even, the poset Cn which is obtained from In by
identifying 0 and n. It is the poset 0 < 1 > 2 < . . . < n− 1 > 0 (see Figure 10).

1
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8

Figure 10. C8 and C9.

The fundamental group of Cn, and also of Cn× Im is infinite cyclic. As in the first case,
the edges of the Hasse diagram of Cn × Im are in correspondence with edges of squares
in the board and admissibility equals validity of the coloring. Since Z2 is a quotient of Z,
by Theorem 3.3, there exists an admissible and connected Z2-coloring c of Cn × Im. The
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coloring c is connected and therefore it cannot be equivalent to the trivial coloring. In this
way we obtain non-equivalent colorings of the board. In the case that n ≥ 5 is odd, we
define Cn again by identifying 0 and n in In. It is the poset 0 < 1 > 2 < . . . > n− 1 < 0.
Now the height of Cn is two but it still has fundamental group isomorphic to Z. The
vertices and edges in the Hasse diagram of Cn × Im are still in correspondence with
vertices and edges in the cylindrical board. It is still true that validity of a coloring is
equivalent to admissibility although this is a little harder to see. Therefore, also when n
is odd, there are two colorings of the board where one cannot be obtained from the other
and they correspond to a connected and a non-connected Z2-coloring of Cn × Im. Now,
if c is a non-connected admissible Z2-coloring of a poset X, it induces the trivial weight
W = Wc : H(X,x0) → Z2 and, by the proof of Lemma 4.1, it is equivalent to the trivial
coloring. Hence, two non-connected Z2-colorings of Cn × In are equivalent. On the other
hand, there exists a unique normal subgroup N /Z such that Z/N is isomorphic to Z2. It
follows from Theorem 3.3 that any two connected admissible Z2-colorings of Cn × Im are
equivalent. Finally we deduce that in any three valid colorings of the cylindrical board,
there are two such that one can be obtained from the other by a sequence of allowed
moves.

Of course these results can be applied in other examples. The analysis of the toric
board, obtained by identifying left and right edges of the rectangular board as well as the
top and the bottom, is similar to the cylindrical one but considering the poset Cn × Cm.
In this case it is not longer true that in any three valid colorings there are two equivalent
since there are two different subgroups of Z× Z of index 2.
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