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Abstract. We give an alternative proof of a result of Babai, that there exists a constant
c such that any finite group G can be realized as the automorphism group of a poset
with at most c|G| points. We also provide bounds for the minimum number of points of
a poset with cyclic automorphism group of a given prime power order.

1. Introduction

In 1946 Birkhoff [8] proved that if G is a finite group, then there exists a poset P
of |G|(|G| + 1) points whose automorphism group is isomorphic to G. In 1948 Frucht
[9] improved Birkhoff’s bound showing that P can be taken with |G|2 points. In 1950
Frucht [10] proved that P can be constructed with only (d + 2)|G| points if G admits a
generating set of cardinality d. For generators h1, h2, . . . , hd, it is easy to see that the
order in G × {−1, 0, . . . , d} given by (g, j) ≥ (g, i) for −1 ≤ i ≤ j and (g, j) ≥ (ghi,−1)
for 1 ≤ i ≤ j, has automorphism group G. In 1980 Babai improved all previous results
by showing that a poset with only 3|G| points can be obtained with automorphism group
isomorphic to G [4, Theorem 2.1]. In [2] Babai had already proved that every finite
group G different from Z2,Z3 and Z5 is the automorphism group of a graph with 2|G|
vertices. In [4] Babai adapted his construction to classify the finite groups G which admit
a digraphical regular representation (DRR), i.e. for some set S of generators the Cayley
digraph Γ(G,S) has automorphism group equal toG. Concretely, he describes the DRR for
groups G which have a set of generators satisfying certain technical conditions. For some
of the groups in the classification (cyclic, generalized dihedral, Z2

3 and the quaternions)
the general construction does not apply and a separate argument is given. His proof uses
results from [11] and [12]. Now, for any digraph Γ of n vertices there is a poset with 3n
points and the same automorphism group [3]. Thus, any group G admiting a DRR is the
automorphism group of a poset with 3|G| points. For a group G not having a DRR either
there is a digraph realizing G with at most |G| vertices or a poset of 3|G| points which is
constructed with a different idea.

From Babai’s paper the following is evident

Theorem 1. There exists a constant k such that for any finite group G there is a poset

P realizing G with at most k orbits.

The following, however, remains open.

Conjecture 2. [6, Conjecture 4.13] There exists a constant k such that for any finite

group G there is a lattice L realizing G with at most k orbits.
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In this article we build on Babai’s work in [2] to give a proof of the following

Theorem 3. Let G be a finite group. Then there exists a poset P with 4|G| points whose

automorphism group Aut(P ) is isomorphic to G. Moreover, the action of G on P is free,

that is it has 4 orbits.

Although our constant 4 is worse than Babai’s 3, the advantage of our proof is that
it is shorter, more direct, self-contained, and gives a general construction which works
for every group G. The unique condition that we require from the generator set used in
our construction is the minimality, as in [2]. The poset P we construct is not a lattice
in general, but we believe it could be possible to use similar ideas to construct a lattice
bigger than P which gives a direct answer to Conjecture 2.

The minimum number of vertices in a graph realizing G has been determined by Ar-
linghaus [1] for every abelian finite group G using results by Sabidussi and Meriwether.
Meriwether solved the case G cyclic of prime power order by fixing some errors in results
by Sabidussi. The analogous result for posets has not yet been settled, to the best of our
knowledge. In Section 3 we prove the first general result in this context, establishing lower
and upper bounds for the minimum number of points in a poset with automorphism group
Zpk .

Acknowledgement. I would like to thank Pedro Chocano Feito for drawing my at-
tention to Babai’s paper [4] after the first version of this article was completed.

2. Proof of Theorem 3

Proof. Let H = {h1, h2, . . . , hd} be a minimal generating set of G, i.e. no proper subset
generates G. By Frucht’s construction of a poset with (d + 2)|G| points, the result holds
for d ≤ 2, so assume d ≥ 3. We consider first the case that d is odd.

Define h0 = h−1 = e ∈ G. The underlying set of P is G × {0, 1, 2, 3}. The set of
minimal points in P is G × {0}. If g ∈ G, (g, 1) covers exactly d + 1 minimal points: all
the elements of the form (gh−1

i+1hi, 0), for −1 ≤ i ≤ d − 1. The point (g, 2) covers just
one element, (g, 1). The point (g, 3) covers the points (ghk, 2) for 0 ≤ k ≤ d even and the
points (ghk, 1) for 0 ≤ k ≤ d odd (see Figure 1).

(g,2) (gh ,2)2 (gh ,2)4

(g,1) (gh ,1)2 (gh ,1)4(gh ,1) (gh ,1) (gh ,1)1 3 5

(g,0) (gh ,0)1 (gh ,0)2 (gh ,0)3 (gh ,0)4

Figure 1. The subposet P<(g,3) for d = 5. There are many minimal points
missing in this picture, each point of height 1 covers 6 points. The dotted
lines and the empty circles represent edges and points which could be part
of the poset or not, namely there could be a point smaller than (ghk, 1)
and (ghl, 1) if |k − l| = 2, but not if |k − l| ≥ 3.
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We will say that two points (g, 1) and (g′, 1) of height 1 are adjacent if there exists a
point which is smaller than both of them. Note that (hk, 1) and (hk+1, 1) are adjacent for
every for every 0 ≤ k ≤ d− 1. Indeed, hkh

−1
0 h−1 = hk = hk+1h

−1
k+1hk. On the other hand

(hk, 1) and (hl, 1) are not adjacent if |k− l| ≥ 3 (k, l ≥ 0). This is tedious but follows from
the minimality of H. Suppose hkh

−1
i+1hi = hlh

−1
j+1hj . If i = −1, then hk ∈ 〈hl, hj , hj+1〉

and hl ∈ 〈hk, hj , hj+1〉. At least one of these contradicts the minimality of H. The same

happens if j = −1. If i = 0, hkh
−1
1 = hlh

−1
j+1hj , which contradicts again minimality. The

same holds if j = 0. If i, j ≥ 1, without loss of generality suppose i < j. Then hi must
appear more than once in the expression above, so k = i or l = i. In any case, hi+1 must
be repeated as well, so j = i + 1. And finally j + 1 = l or j + 1 = k, so |k − l| = 2, a
contradiction.

Note that G acts freely on P by left multiplication on the first coordinate. This shows
that G is a subgroup of Aut(P ). The G-orbit of (e, 3) has size |G|, and since any automor-
phism of P maps (e, 3) to a maximal point, the Aut(P )-orbit of (e, 3) has size at most |G|,
so it is exactly |G|. In order to verify that Aut(P ) is isomorphic to G it suffices to show
that the stabilizer S of (e, 3) under the action of Aut(P ) is trivial. Indeed, in that case
the size of the Aut(P )-orbit of (e, 3) is |G| = |Aut(P )|/|S| = |Aut(P )| so Aut(P ) ≃ G.

Assume then that ϕ ∈ Aut(P ) fixes (e, 3). We want to prove that ϕ is the identity. Since
ϕ(e, 3) = (e, 3), ϕ induces an automorphism of the subposet P<(e,3). Since ϕ preserves
heights, ({e} ∪ H) × {1} is mapped into itself. Moreover, this restriction maps adjacent
points to adjacent points. If 0 ≤ k ≤ d is odd, then (hk, 1) is maximal in P<(e,3), so it is
mapped to another maximal point (hl, 1) with l odd.

Since d is odd, (e, 1) is the unique non-maximal point of height 1 in P<(e,3) which is
adjacent to exactly one maximal point: (h1, 1). Indeed (hk, 1) is adjacent to (hk−1, 1) and
(hk+1, 1), which are maximal when k is even. Therefore ϕ(e, 1) = (e, 1). Now, (h1, 1)
is the unique maximal point which is adjacent to (e, 1) and thus it is also fixed by ϕ.
In general, once we have proved that (hl, 1) is fixed for every l ≤ k, then (hk+1, 1) is
the unique maximal or non-maximal point (hr, 1) with r ≥ k + 1 which is adjacent to
(hk, 1) and so it is fixed as well. We deduce that ϕ fixes all the points of height 1 in
P<(e,3), and it is easy to see that then it also fixes (e, 2). In general, if ϕ fixes (g, 3),
then it fixes (g, 2), (g, 1) and moreover (ghk, 1) for every 0 ≤ k ≤ d. Conversely, if (g, 1)
is fixed, then (g, 3) is fixed (if ϕ(g, 3) = (g′, 3), take mg(g′)−1 the left multiplication by

g(g′)−1. Then mg(g′)−1ϕ fixes (g, 3), so it fixes (g, 1), and then g′ = g). In conclusion,
(g, 3) fixed implies (ghk, 3) fixed for every k. Since (e, 3) is fixed and H generates G,
all the points (g, 3) are fixed, and then also (g, 2) and (g, 1). It only remains to prove
that the points (g, 0) are fixed. It suffices to prove that (e, 0) (and then every minimal
point in P ) is determined by the points that cover it. Suppose e 6= g ∈ G is such that
{e, h1, h

−1
1 h2, h

−1
2 h3, . . . , h

−1
d−1hd} = {g, gh1, gh

−1
1 h2, gh

−1
2 h3, . . . , gh

−1
d−1hd}. Note that e

and h1 differ by a right multiplication by h1. Now, if i ≥ 1, gh−1
i hi+1h1 6= gh−1

j hj+1 for

every j ≥ −1, by minimality of H. And gh21 = gh−1
j hj+1 only if j = −1 and h21 = e. Thus,

we must have e = gh1, h1 = g. But then h2 = gh−1
1 h2 ∈ {e, h1, h

−1
1 h2, h

−1
2 h3, . . . , h

−1
d−1hd},

which is absurd by minimality of H. This finishes the proof of the case d odd.
The case d even is very similar. The definition of P changes only for points of height

1 and 3: P = G× {0, 1, 2, 3}, the points (g, 0) are minimal. If g ∈ G, (g, 1) covers now d
minimal points: (g, 0) and the points (gh−1

i+1hi, 0), for 1 ≤ i ≤ d− 1. The point (g, 2) just
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covers (g, 1). The point (g, 3) covers (g, 2), the points (ghk, 2) for 1 ≤ k ≤ d odd and the
points (ghk, 1) for 1 ≤ k ≤ d even.

As before (hk, 1) and (hk+1, 1) are adjacent for 1 ≤ k ≤ d − 1, and (hk, 1), (hl, 1) are
non-adjacent for k, l ≥ 1 and |k − l| ≥ 3. Moreover, (e, 1) is not adjacent to (hk, 1) for
any k ≥ 1. Assume ϕ ∈ Aut(P ) fixes (e, 3). It induces a bijection on ({e} ∪ H) × {1}.
Since (e, 1) is the unique point of height 1 in P<(e,3) which is not adjacent to any other
point (d ≥ 2), it is fixed by ϕ. Now, since d is even, (h1, 1) is the unique non-maximal
point of height 1 which is adjacent to just one maximal point, so it is also fixed. And the
proof continues as in the previous case, showing that (hk, 1) is fixed for every 1 ≤ k ≤ d.
Of course, (e, 2) is also fixed. To finish the proof we will prove that the point (e, 0) is
determined by the set of points which cover it. Suppose {e, h−1

1 h2, h
−1
2 h3, . . . , h

−1
d−1hd} =

{g, gh−1
1 h2, gh

−1
2 h3, . . . , gh

−1
d−1hd} for some g 6= e. The elements e and h−1

1 h2 differ by a

right multiplication by h−1
1 h2. But if i ≥ 2 then gh−1

i hi+1h
−1
1 h2 6= gh−1

j hj+1 for every

j ≥ 1 and gh−1
i hi+1h

−1
1 h2 6= g, by minimality of H. On the other hand gh−1

1 h2h
−1
1 h2 6=

gh−1
j hj+1 for every j ≥ 1. Thus, we must have gh−1

1 h2h
−1
1 h2 = g, and g = h−1

1 h2. In

particular h−1
1 h3 = gh−1

2 h3 ∈ {e, h−1
1 h2, h

−1
2 h3, . . . , h

−1
d−1hd}, which is absurd, again by

minimality of H. �

The proof is easier if we replace 4|G| by 5|G| in the statement, and one does not
need to divide in two cases. Babai’s bound 3|G| in general cannot be replaced by 2|G|:
G = Z3,Z5,Z7 require 3|G| points at least (see next section). It would be nice to know if
there is an infinite family for which the bound 2|G| fails.

3. Abelian groups

Example 4. If G = Z3 and P realizes G with minimum number of points, then there is
an orbit O in P with 3 elements. Recall that the orbit of any group action on a finite
poset is discrete (any two points are not comparable). If every other orbit has 1 element,
then all the elements in O have the same points above and the same points below. Thus,
any permutation of O which fixes the remaining points is an automorphism and then
|Aut(P )| ≥ 6, a contradiction. There exists then a second orbit O′ with 3 elements.
Depending on the number of elements in O′ which are comparable to each element in O,
the subposet Q of P given by these 6 points is isomorphic to one of the four posets in
Figure 2.

Figure 2. .

In any case, every permutation of O is induced by an automorphism of Q. Let H 6

Aut(Q) be the subgroup of automorphisms of Q which leave O invariant. Then |H| ≥ 6.
If any other orbit of the action of Aut(P ) on P has 1 point, then the action of H on Q
extends to an action on P , fixing every point not in Q. Thus Aut(P ) 6= Z3. We deduce
then that there is a third orbit with 3 points, so |P | ≥ 9 = 3|G|.
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Given a finite group G denote by α(G) the minimum number of vertices of a graph
realizing G, and by β(G) the minimum number of points in a poset realizing G. We have
just proved that β(Z3) = 9.

The number α(G) has been determined for all finite abelian groups by Arlinghaus [1]
based on work by Sabidussi and Meriwether. The analogous result has not yet been
obtained for β(G). The computation of α(Zpk) for p prime and k ≥ 1 is key in [1]. It is
summarized in the following theorem by Meriwether.

Theorem 5. [1, Theorem 5.4]
α(Z2) = 2.
α(Z2k) = 2k + 6 if k ≥ 2.
α(Zpk) = pk + 2p if p = 3, 5.

α(Zpk) = pk + p if p ≥ 7 is a prime.

In this section we will prove the following

Theorem 6.

β(Z2) = 2.
2k+1 ≤ β(Z2k) ≤ 2k+1 + 12 if k ≥ 2.
2pk ≤ β(Zpk) ≤ 2pk + 3p if p = 3, 5.

2pk ≤ β(Zpk) ≤ 2pk + p if p ≥ 7 is a prime.

Proof. The claim β(Z2) = 2 is trivial. For the other cases we prove first the lower bounds.
If P is a finite poset with Aut(P ) = Zpk , there must be an orbit O with pk points, since

otherwise every automorphism would have order dividing pk−1. There must be at least
one more orbit, since O is discrete with automorphism group Spk and pk > 2. Let g
be a generator of Zpk . Suppose that all the orbits different from O have order smaller

than pk. Then gp
k−1

fixes all the points outside O. In particular for any x ∈ O we have
P<x = P

<gp
k−1

x
and P>x = P

>gp
k−1

x
. Thus, there is an automorphism which switches two

points of P , say x0 and gp
k−1

x0, and fixes all the other. This map is different from gi for
all i, a contradiction. Thus, there is another orbit of cardinality pk and then |P | ≥ 2pk.

We prove now the upper bound for p = 3, 5. We use in this case additive notation
with Zpk being the integers modulo pk. Let Q be the (crown) poset with underlying set
Zpk × {0, 1} with (i, 1) > (i, 0) < (i + 1, 1) for every i ∈ Zpk . Let Q′ be the (subdivided
crown) poset of order 3p and automorphism group Zp constructed in [7]: Q′ = Zp×{0, 1, 2},
(i+ 1, 0) < (i, 2) > (i, 1) > (i, 0) for every i ∈ Zp. The underlying set of P is the disjoint
union of Q and Q′. Let q : Zpk → Zp be the projection. The order in P is constructed by
keeping the orders within Q and Q′, adding the relations (i, 1) < (q(i), 0) for each i ∈ Zpk

and taking the transitive closure of this relation (see Figure 3). Clearly |P | = 2pk + 3p.
It is clear that Zpk acts faithfully on P , by left multiplication on the first coordinate

(precomposing with q to act on Q′). In order to prove that Aut(P ) ≃ Zpk , we only need
to prove that an automorphism ϕ : P → P fixing (0, 1) ∈ Q, must be the identity. Since
(0, 0) ∈ Q′ is the unique point covering (0, 1) ∈ Q, it must be fixed. Also, ϕ preserves
heights, so it maps Q′ into itself. Since ϕ|Q′ : Q′ → Q′ fixes a point, it is the identity.
Now, ϕ|Q : Q → Q is an automorphism of Q, but there are only two automorphisms fixing
(0, 1). One is the identity and the other maps (i, 1) 7→ (−i, 1) for every i ∈ Zpk . But
(1, 0) ∈ Q′ covers (1, 1) ∈ Q and does not cover (−1, 1) ∈ Q, since 1 6= −1 ∈ Zp. Since ϕ
fixes (1, 0) ∈ Q′, then ϕ|Q = 1Q, and we are done.
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(0,1)

(0,0)

(1,1) (-1,1)

(1,0)

Figure 3. A poset P with 2pk+3p points and cyclic automorphism group
of order pk. In this case p = 3, k = 2.

For the case p = 2, k ≥ 2, we change Q′ by taking Z4 × {0, 1, 2} with the order defined
in the same way. Since 1 6= −1 ∈ Z4 the same argument holds and |P | = 2k+1 + 12.

Finally we prove the upper bound for p ≥ 7. We take Q as defined in the case p = 3, 5,
but choose Q′ with underlying set Zp and discrete. To construct P we add the relations
(i, 1) ∈ Q is smaller than q(i) − 1, q(i), q(i) + 2 ∈ Q′ for i ∈ Zpk and take the transitive
closure. We prove that an automorphism ϕ : P → P fixing (0, 1) ∈ Q has to be the identity.
Suppose ϕ induces the automorphism ofQ which maps (i, 1) to (−i, 1). Since 0 covers (0, 1)
and (1, 1), ϕ(0) covers (0, 1) and (−1, 1), so ϕ(0) = −1 ∈ Zp. Analogously, ϕ(−1) = 0.
Since {−1, 0, 2} = P>(0,1) is invariant, ϕ(2) = 2 and then the set {(0, 1), (2, 1), (3, 1)} of
points covered by 2 is invariant. But this is absurd, since ϕ(2, 1) = (−2, 1) 6= (2, 1), (3, 1).
Thus, ϕ|Q is the identity of Q. This implies that ϕ induces the identity on Q′ as well,
since each point in Q′ is uniquely determined by the points it covers. �

Problem. Improve the statement of Theorem 6: compute β(G) for G cyclic of prime
power order. More generally, for G finite cyclic and then for G finite abelian.

Babai’s survey [5] of 1981 contains several results about graphs and lattices with a
prescribed automorphism group. Many of these inspire questions which are open for
general posets.
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