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Abstract. We develop Conley’s theory for multivalued maps on finite topo-
logical spaces. More precisely, for discrete-time dynamical systems generated
by the iteration of a multivalued map which satisfies appropriate regularity con-
ditions, we establish the notions of isolated invariant sets and index pairs, and
use them to introduce a well-defined Conley index. In addition, we verify some
of its fundamental properties such as the Ważewski property and continuation.

1. Introduction

Topological methods have always been at the heart of the qualitative study of
dynamical systems. For example, topological fixed point theorems can establish
the existence of stationary states based purely on topological properties of the
underlying system and the space it is acting on. But even more complicated dy-
namical behavior can be studied in this way, for example recurrent and chaotic
dynamics. One of the central tools in this context was developed by Charles
Conley in [8]. He realized that rather than focusing on the qualitative study of
arbitrary invariant sets, it is advantageous to restrict one’s attention to isolated
invariant sets. Broadly speaking, such sets are more robust to continuous pertur-
bations than general invariant sets. This insight allowed Conley to associate an
index to isolated invariant sets S, which encodes some of their dynamical proper-
ties. The Conley index of S can be determined without explicit knowledge of the
specific isolated invariant set through associated index pairs, which provide rough
topological enclosures of S. In the case of classical continuous-time dynamical
systems the Conley index can either be defined as a pointed topological space, or
in a more computationally friendly version, as a homology module.
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While Conley’s theory originally considered continuous-time dynamical sys-
tems, it has since been extended to the case of iterated maps, i.e., to discrete-time
dynamical systems. As it turns out, its definition is more elaborate in this situa-
tion, since the use of the underlying flow for the construction of homotopies and
other auxiliary techniques are no longer available. In the discrete-time setting,
in its most general form, the Conley index is the shift equivalence class of the
homotopy type of the so-called index map, which is defined on a topological space
constructed via index pairs ([19], see also [36]). On the homology level, it is the
Leray reduction of the homology of the index map [29]. For more details, we refer
the reader to [26]. Moreover, Conley’s theory has successfully been extended to
the case of multivalued discrete-time dynamics, see for example [5, 21, 22, 35] and
the references therein.

All of the results mentioned so far assume that the underlying phase space has
nice topological properties, in particular, that it is at least a Hausdorff space.
This is not a problem in classical applications, where the dynamical system is
typically given by a vector field or a homeomorphism in the euclidean space.
With the advent of modern data sciences, however, there is a growing number of
dynamical systems known only from data gathered from experiments, observations
or computations. This constitutes a challenge, because for such systems the phase
space is known only via a sample, in the form of a point cloud. Contemporary
topological data analysis (TDA, [7, 14]) provides methods to approximate the
phase space by a simplicial complex or a more general cell complex. But, such
a space is not convenient to reconstruct the dynamical system itself. An option
is to embed the cell complex in a euclidean space and interpolate the data in
order to obtain a formula for a vector field or a generator of a dynamical system.
The problem is then reduced to a classical one, which, typically, is studied by
numerical experiments. Unfortunately, this means a re-discretization with no
direct connection to the original discrete data.

Another option is to eliminate the classical dynamical system and to construct
a combinatorial analogue of a dynamical system directly on the cell complex or,
more abstractly, a Lefschetz complex or a finite topological space. Dynamics on
such spaces were studied by Forman in [17, 18] using the concept of combinatorial
vector fields. While these papers primarily served to extend Morse theory to the
case of cell complexes, they also addressed some more general dynamical concepts.
It was shown in [23] that the notion of isolated invariant set does indeed have an
analogue in the setting of combinatorial vector fields, and that one can define a
Conley index. This was later extended to the case of combinatorial multivector
fields on Lefschetz complexes in [32], and on general finite topological spaces
in [24]. For related results on Conley theory for combinatorial vector fields we
refer the reader to [4, 33, 34]. What is important, such a combinatorial approach
to dynamics combines well with TDA methods [10, 12, 13, 11].



CONLEY INDEX FOR MULTIVALUED MAPS ON FINITE TOPOLOGICAL SPACES 3

Common to all of these results is that the underlying notion of dynamics is
created through a combinatorialized version of a vector field, i.e., through the
generator of a dynamical system which is reminiscent of continuous-time dynam-
ics. In terms of a topological approach to general sampled dynamics a study of
the persistence of homological eigenvalues of a self map presented in [15, 6] may
be considered a first step towards the persistence of the Conley index, but in the
very special setting of the whole space as an isolated invariant set.

In the present paper, we aim to demonstrate that Conley’s theory can be ex-
tended to the case of general dynamical systems on finite topological spaces. As
we will see in more detail in Section 3, actual dynamical systems on such combi-
natorial objects necessarily have to be multivalued and time-discrete. Thus, we
consider the iteration of multivalued maps on finite topological spaces and de-
fine the notions of isolated invariant sets and their Conley index. We prove that
the index is well-defined, and establish some of its basic properties. While our
approach is modeled after previous results [29, 5], the involved proof techniques
are significantly different. This is due to the lack of sufficient separation in finite
topological spaces, and will be addressed in more detail later.

The remainder of this paper is organized as follows. In Section 2 we recall basic
definitions concerning finite topological spaces and continuity properties of multi-
valued maps. This is followed in Section 3 by a brief discussion of combinatorial
topological dynamics, which specifically demonstrates that on finite topological
spaces interesting dynamics can only be observed in the context of iterating a
multivalued map. In addition, we introduce the central notion of solution in this
context. We then turn our attention to Conley theory. Section 4 is devoted to iso-
lated invariant sets and Morse decompositions, while Section 5 is concerned with
index pairs and their properties. Using these results, we can define the Conley
index in Section 6, and derive some of its fundamental properties in Section 7.
Finally, Section 8 addresses some future work and open problems.

2. Preliminaries

We begin by recalling basic concepts and definitions for finite topological spaces,
as well as for multivalued maps between them. While we focus only on the essen-
tials, additional material can be found in [1, 2, 3].

Given a finite topological space X and a subspace A, we denote by opnA the
open hull of A, that is, the smallest open set containing A. When A consists of
a unique point a we also write opnA = opn a. Note that opnA =

⋃
a∈A

opn a. The

closure of A is denoted by clA. Notice that for arbitrary elements x, y ∈ X the
inclusion x ∈ opn y is satisfied if and only if y ∈ clx. Every finite space has an
associated preorder ≤ (i.e., a reflexive and transitive relation) given by x ≤ y
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if x ∈ cl y.1 Conversely every finite set with a preorder ≤ has a corresponding
topology with the up-sets as the open sets. Recall that a subset A ⊆ X is an
up-set, if a ≤ x for some a ∈ A implies x ∈ A. Then, the dually defined down-sets
correspond to the closed sets in this topology. A finite space X is T0 if and only
if the preorder is an order (i.e., antisymmetric). A map f : X → Y between
finite spaces is continuous if and only if it is order preserving, that is, if the
inequality x ≤ x′ always implies f(x) ≤ f(x′). Although this correspondence is
very useful to understand finite spaces from a combinatorial perspective, we have
chosen to use the topological notation clA instead of X≤A = {x ∈ X| ∃ a ∈ A
with x ≤ a} and opnA instead of X≥A = {x ∈ X| ∃ a ∈ A with a ≤ x} in order
to make more evident the connection between this theory and the classical one.

We say that a multivalued map F : X ( Y between two topological spaces has
closed values, if F (x) ⊆ Y is closed for every x ∈ X. Furthermore, the map F is
called lower semicontinuous if the small preimage F−1(H) = {x ∈ X|F (x) ⊆ H}
is closed for every closed subset H ⊆ Y . For a multivalued map F : X ( Y
with closed values between finite spaces, one can easily verify that being lower
semicontinuous is equivalent to the condition that x′ ≤ x implies F (x′) ⊆ F (x),
or, in other words, x′ ∈ clx implies F (x′) ⊆ F (x), see also [3, Lemma 3.5]. Finally,
we say that F has acyclic values, if for every x ∈ X the subspace F (x) ⊆ Y is
acyclic.

For the majority of the paper, we consider multivalued maps F : X ( Y which
are lower semicontinuous and have closed values. If we assume in addition that
the map has acyclic values, then the projection p1 : F → X from the graph

F = {(x, y) ∈ X × Y | y ∈ F (x)} ⊆ X × Y

into X induces isomorphisms in all homology groups. This in turn implies that for
such multivalued maps there is an induced homomorphism F∗ : H∗(X)→ H∗(Y )
given by F∗ = (p2)∗(p1)

−1
∗ where p2 : F → Y stands for the other projection (see

[3, Proposition 4.7]).

3. Combinatorial topological dynamics

In this brief section we introduce the notion of a combinatorial dynamical system
on a finite topological space, as well as the assumed topological properties of its
multivalued generator F : X ( X. Moreover, we indicate why in the setting of
a finite topological space only discrete-time dynamics is of interest. We would
like to point out, however, that through the notion of combinatorial vector fields
on finite topological spaces, one can in fact arrive at a notion of dynamics which

1Note that this convention is the one used in [1], and it is the most appropriate one for the
setting of dynamics. We would like to point out, however, that alternatively the preorder could
be defined by letting x ≤ y if x ∈ opn y. This definition is also extensively used in the literature,
see for example the discussion in [3].
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is similar in spirit to the continuous-time case, albeit not the same. Finally, we
introduce the notion of solution, which is central to this paper.

3.1. Multivalued dynamics on finite topological spaces. Classical dynam-
ical systems can broadly be divided into two categories — discrete-time and
continuous-time dynamical systems. In the former case, one is interested in the
evolution of a system state at discrete points in time, and this is usually modeled
by the iteration of a continuous map F : X → X. Unfortunately, in the context of
a finite topological space this leads to trivial dynamical behavior, with every orbit
of the system eventually becoming periodic. Thus, in order to capture interesting
dynamics, one is forced to consider multivalued maps F : X ( X. While this
has already been described in [4, 23, 24, 32, 33, 34], these papers consider very
specific multivalued maps generated by an underlying combinatorial vector field
or combinatorial multivector field — and this approach is more in the spirit of the
continuous-time case. See also our comments below.

In contrast, the present paper is devoted to the study of general multivalued
discrete-time dynamical systems on a finite topological space X. Since such gen-
eral systems cannot rely on any supporting underlying structure such as a com-
binatorial multivector field, we need to impose certain regularity assumptions on
the map F . Throughout this paper, we assume that F : X ( X is a lower semi-
continuous multivalued map with closed values. These assumptions are inspired
by the case of classical multivalued dynamics [9, 20], and they have also been used
recently in the proof of a Lefschetz fixed point theorem for multivalued maps on
finite spaces [3]. We think of the map F as a combinatorial dynamical system,
which is obtained by iterations of the map, and which naturally leads to the con-
cept of a solution — as described in more detail in the following section. For now
we would like to point out that a combinatorial dynamical system may also be
viewed as a finite directed graph whose set of vertices is the topological space X,
and with F interpreted as the map sending a vertex to the collection of its neigh-
bors connected via an outgoing directed edge. This so-called F -digraph encodes
the dynamics of F on a purely combinatorial level. However, for the derivation
of more advanced concepts such as isolated invariant sets and their Conley index
the topological properties of X and F are essential.

In view of our focus on the discrete-time case, it is natural to wonder why we
exclude the continuous-time case. As the following result shows, the semigroup
property of a multivalued continuous-time dynamical system immediately forces
the dynamics to be trivial. In fact, every orbit of the system has to be constant.

Theorem 3.1 (Triviality of continuous-time dynamics). Let X be a finite set and
let F : X × R≥0 ( X denote a multivalued map which satisfies the semigroup
property F (x, t+ s) = F (F (x, t), s) for every t, s ≥ 0. Then F (x,−) : R>0( X,
given by t 7→ F (x, t), is constant for every x ∈ X.
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Proof: The map F induces a singlevalued map F : P(X) × R≥0 → P(X)
given by (A, t) 7→ F (A, t). Here P(X) denotes the power set of X. Note that the
identity F (A, t+ s) = F (F (A, t), s) holds for every t, s ≥ 0. Since P(X) is finite,
it suffices to prove the following assertion:

• If Y is a finite set and F : Y × R≥0 → Y is a singlevalued map satisfying
the semigroup property F (y, t+ s) = F (F (y, t), s) for every t, s ≥ 0, then
the map F (y,−) is constant on R>0 for each y ∈ Y .

To show this, note that if f : Y → Y is any map, then the sequence (fn(Y ))
n∈N is

decreasing. We call f∞(Y ) ⊆ Y its eventual value. It is clear that f∞(Y ) = fn(Y )
for every n greater than or equal to the cardinality N of Y . The map f induces a
bijection from the eventual value f∞(Y ) to itself, and since the group of bijections
has order dividing N !, the map fN ! : f∞(Y ) → f∞(Y ) is the identity. This in
turn shows that fN ! : Y → f∞(Y ) is a retraction, i.e., it is the identity when
restricted to its codomain.

Every t ≥ 0 induces a map Ft : Y → Y , y → F (y, t). Denote Rt = F∞t (Y ) ⊆ Y .
By the comments above, the iterate FN !

t : Y → Rt is a retraction. Furthermore,
the set Rt is the set of fixed points of FN !

t . Now let n ∈ N and t ≥ 0. Then
we have Fnt = F n

t in view of our hypothesis on F . Thus FN !
nt = F nN !

t fixes every
point of Rt and does not fix any point outside Rt. This proves that Rnt = Rt. We
deduce that for t > 0, the set Rt depends only on the class of t modulo Q>0, i.e.,
we have Rt = Rs if t−1s ∈ Q. In particular, this implies Rt/N ! = Rt, and thus Rt

is the image of Ft, and Ft is the identity on Rt.
Finally, let t, s > 0. Since Ft+s = FsFt, the image of Ft+s is contained in the

image of Fs, i.e., Rt+s ⊆ Rs. Thus Rt ⊆ Rs for every t ≥ s. Since Rs = Rs/n for
every n ∈ N, one also obtains Rt ⊆ Rs for every t > 0. This in turn establishes
the identity Rt = Rs for every t, s > 0. Suppose s > t > 0. Then Fs−t is the
identity on Rs−t = Rs = Rt. Since Fs = Fs−tFt and Fs−t is the identity on the
image of Ft, then Fs = Ft. This proves the assertion. �

The above result shows that it is the semigroup property alone which is in-
compatible with nonconstant dynamics if the underlying phase space is finite. As
the reader undoubtedly noticed, we did not make use of any topological struc-
ture on X. Note, however, that one can mimic the behavior of a continuous-time
dynamical system even on finite topological spaces by restricting dynamical tran-
sitions between subsets to shared boundaries. This is precisely what Forman had
in mind with his combinatorial vector fields, and also lies at the center of the the-
ory of multivector fields. In contrast, the discrete-time dynamics studied in the
present paper does not have these restrictions, as it allows for transitions between
states without topological closeness.

3.2. Solutions and invariant sets. Our study of the dynamics of discrete-time
multivalued dynamical systems is based on the notions of solution and invariant
set. These are defined just as in the classical situation.



CONLEY INDEX FOR MULTIVALUED MAPS ON FINITE TOPOLOGICAL SPACES 7

Consider a multivalued map F : X ( X. Then a solution of F in A ⊆ X is a
partial map σ : Z 9 A whose domain, denoted domσ, is an interval of integers,
and for any i, i + 1 ∈ domσ the inclusion σ(i + 1) ∈ F (σ(i)) is satisfied. The
solution σ is called a full solution if dom σ = Z, otherwise it is a partial solution.
A partial solution whose domain is bounded is referred to as a path. We denote
the set of all paths with values in A ⊆ X by Path(A). Given a path σ with domain
domσ = Z∩ [m,n] for some m,n ∈ Z, we call σ(m) and σ(n), respectively, the left
and right endpoint of σ. We denote these endpoints by the symbols σ@ and σA,
respectively.

If τ is another path with dom τ = Z∩ [m′, n′] and such that τ@ ∈ F (σA) holds,
then we define the concatenation of the paths σ and τ , denoted by σ.τ , as the
path with domain domσ.τ := Z ∩ [m,n+ n′ −m′ + 1] and defined by

(σ.τ)(k) :=

{
σ(k) if k ∈ Z ∩ [m,n],

τ(k +m′ − n− 1) if k ∈ Z ∩ [n+ 1, n+ 1 + n′ −m′].

It is straightforward to verify that σ.τ is indeed a path.
We now recall the definition of invariance. For this, we say that a solution σ

passes through x ∈ X if x = σ(i) for some i ∈ domσ. Moreover, a set A ⊆ X is
called invariant if for every x ∈ A there exists a full solution in A which passes
through x. Thus, A is invariant if A ⊆ F (A) and for each a ∈ A, F (a) ∩ A 6= ∅.

4. Isolated invariant sets and Morse decompositions

The concept of isolated invariant set lies at the heart of Conley theory. In the
classical situation, an isolated invariant set S is characterized by the property
that it is the largest invariant set in some neighborhood of S. Unfortunately, it is
not possible to define isolated invariant sets in an analogous way in the context
of finite topological spaces due to the lack of sufficient separation. Therefore, in
this section we introduce an appropriate notion for our setting and derive some
first properties of such isolated invariant sets. We also show how they form the
building blocks for Morse decompositions of phase space. Throughout this section,
we assume that X is a finite T0 topological space and that the multivalued map
F : X ( X is lower semicontinuous with closed values.

4.1. Isolated invariant sets. We begin by introducing the notion of isolating
invariant set, which in turn is based on an isolating set. The latter set is the ana-
logue of the isolating neighborhood in classical Conley theory, but its topological
properties are weaker to account for the poor separation in finite spaces.

Definition 4.1 (Isolated invariant set, isolating set). A closed set N ⊆ X is called
an isolating set for an invariant set S if the following two conditions are satisfied:

(IS1) Every path in N with endpoints in S has all its values in S.

(IS2) We have the equality S∩cl(F (S)\N) = ∅, i.e., the set S and cl(F (S)\N)
are disjoint.
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If such an isolating set for S exists, we say that S is an isolated invariant set.

Notice that condition (IS2) is satisfied if and only if opnS ∩ (F (S) \ N) = ∅.
Thus, it is equivalent to assuming the inclusion

(IS2’) opnS ∩ F (S) ⊆ N .

Note also that since S is invariant, S ⊆ F (S), and hence (IS2’) implies S ⊆ N .
Establishing condition (IS2), or its equivalent reformulation (IS2’), is the less

intuitive aspect of verifying an invariant set as an isolated invariant set. It is
therefore useful to also have sufficient conditions for its validity. Two of these are
the subject of the following remark.

Remark 4.2 (Sufficient conditions for (IS2)). Assume that S is an invariant set
and that N is closed. Then any of the following two conditions imply (IS2):

(i) We have S ⊆ intN , where intN denotes the interior of N , or
(ii) the inclusion F (S) ⊆ N is satisfied.

Indeed, the first condition is equivalent to opnS ⊆ N , and therefore either of the
above two conditions implies (IS2’), and thus (IS2).

As we mentioned earlier, in classical Conley theory, the isolated invariant set
is uniquely determined by its isolating neighborhood N . In fact, it is the largest
invariant subset of N . In contrast, in the above setting the same set N may be
an isolating set for more than one isolated invariant set. This is illustrated in the
following two examples.

Example 4.3 (A rotational multivalued map). We begin with a simple example
that rotates an equilateral triangle. In the left part of Figure 1 we indicate the
action of the map on a simplicial complex, which is just a two-dimensional sim-
plex. More precisely, the map rotates the triangle in a counterclockwise fashion
by 120◦. This example is inspired by a combinatorial vector field in the sense
of Forman, which contains the three vectors {A,AB}, {B,BC}, and {C,AC}
along the boundary, as well as the critical cell {ABC}. While we refer the reader
to [17, 18, 23, 34] for more details on the general definition of a combinatorial
vector field and its relation to classical dynamics, it is intuitively clear that in the
situation of Figure 1 one can observe both an unstable fixed point at the triangle,
as well as periodic motion along its simplicial boundary.

In order to formulate this dynamical behavior via a multivalued map on a finite
topological space, we use the standard construction given by the face poset, that
is the poset X of simplices where x ≤ y if x is a face of y. In other words,
the topology is given by x ∈ cl y if and only if x is a face of y. The associated
multivalued map F : X ( X is defined in the table in Figure 1. One can easily
verify that F has closed values, and that it is lower semicontinuous. Iteration of
the map F leads for example to the following three isolated invariant sets:

S1 = {A,B,C} , S2 = {AB,BC,AC} , and S3 = {ABC} .
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x Elements of F (x)

A B
B C
C A

AB B, C, BC
BC A, C, AC
AC A, B, AB

ABC A, B, C, AB, BC, AC, ABC

Figure 1. A simple rotation on a simplicial complex given by one
triangle, as well as three edges and three vertices. The table on the
right defines the associated multivalued map F : X ( X on the fi-
nite topological space consisting of all seven simplices, and equipped
with the closure operation induced by the face relationship.

If we then define the closed sets

N1 = {A,B,C} , N2 = {A,B,C,AB,BC,AC} , and N3 = X ,

then one can easily verify that N3 is an isolating set for all three of the above
isolated invariant sets, the set N2 isolates both S1 and S2, and the set N1 is an
isolating set for S1 only. Finally, we note that also the unions S1 ∪S2 and S2 ∪S3

are isolated invariant sets, with isolating sets N2 and N3, respectively.
On the other hand, while the union S1 ∪ S3 is invariant, it is not an isolated

invariant set. To see this, note that any isolating set for S1 ∪ S3 has to contain
the closure of S1 ∪ S3, and therefore N = X would be the only possibility. Yet,
one can easily see that (IS1) is not satisfied for this choice.

Example 4.4 (A reflection-based multivalued map). Our second example is sim-
ilar to the previous one but it is induced by the reflection of the triangle about
the vertical line through A, as depicted in the left panel of Figure 2. The corre-
sponding multivalued map G : X ( X is defined in the table on the right. Notice
that also G has closed values and is lower semicontinuous.

Iteration of the map G leads to new isolated invariant sets. For example, both
the singleton R1 = {A} and the doubleton R2 = {B,C} are examples, and they
have associated isolating sets M1 = R1 and M2 = R2, respectively. Notice,
however, that both sets are also isolated by M = X. In addition, we have the
isolated invariant sets

R3 = {BC} , R4 = {AB,AC} , and R5 = {ABC} .

If we then define the closed sets

M3 = {B,C,BC} , M4 = {A,B,C,AB,AC} , and M5 = X ,
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x Elements of G(x)

A A
B C
C B

AB A, C, AC
BC B, C, BC
AC A, B, AB

ABC A, B, C, AB, BC, AC, ABC

Figure 2. The map G : X ( X defined on the right induced by
a reflection about the vertical line through A indicated on the left.

then one can easily verify that Mk is an isolating set for Rk for k = 3, 4, 5.
Furthermore, the set M5 isolates both R3 and R4 as well. We leave it to the
reader to find additional isolated invariant sets.

The examples above will be analyzed along the paper. We have chosen finite
spaces associated with simplicial complexes because the geometric interpretation
they have make notions simpler to visualize. However, we want to stress that the
theory we develop here can be applied to any finite T0 space.

While at first glance the nonuniqueness of the isolating set seems strange, it
is necessary in finite topological space due to the lack of sufficient separation.
Nevertheless, the following remark sheds more light on this issue.

Remark 4.5 (The smallest isolating set). It is clear that there is a smallest closed
set N satisfying condition (IS2’), which is the set

(1) N = cl(opnS ∩ F (S)) .

On the other hand, one can easily see that condition (IS1) is preserved by taking
subsets: If N ′ ⊆ N and N satisfies this condition, then so does N ′. In conclusion,
the invariant set S is an isolated invariant set if and only if the set N defined
in (1) satisfies condition (IS1). We will see, however, that it is frequently useful
to work with different isolating sets for the same isolated invariant set.

We leave it to the reader to illustrate the above remark in the context of Ex-
amples 4.3 and 4.4, and close this section with the following simple result.

Proposition 4.6. Assume M and N are two isolating sets for an isolated invari-
ant set S. Then their intersection M ∩N is also an isolating set for S.

Proof: Clearly the intersection M ∩N is closed. Since every path in M ∩N
is also a path in M , property (IS1) for M ∩ N follows from the validity of prop-
erty (IS1) for M . Finally, it is clear that (IS2’) for M and N implies that (IS2’)
also holds for M ∩N . �
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4.2. Morse decompositions. Isolated invariant sets as defined in the last sec-
tion are the fundamental building blocks for analyzing the global dynamics of a
dynamical system. In general, they can be used to divide phase space into re-
gions of recurrent and gradient-like behavior. This leads to the notion of a Morse
decomposition.

Definition 4.7 (Morse decomposition). Consider a lower semicontinuous multi-
valued map F : X ( X with closed values, on a finite T0 topological space X. A
family {Mp}p∈P of mutually disjoint, non-empty, isolated invariant sets indexed
by a poset P is called a Morse decomposition of X if for every full solution γ ei-
ther all values of γ are contained in the same set Mp, or there exist indices q > r
in P and tq, tr ∈ Z such that γ(t) ∈ Mq for t ≤ tq and γ(t) ∈ Mr for t ≥ tr. In
the latter case, the solution γ is called a connection from Mq to Mr. Furthermore,
the sets Mp are called the Morse sets of the Morse decomposition.

In the context of classical dynamics, Morse decompositions are a fairly difficult
object of study, since it is possible for a dynamical system to have infinitely many
different Morse decompositions. Of course, this cannot happen in the setting of
a finite topological space. In fact, there is always a finest Morse decomposition
which can easily be determined using graph theoretic methods.

To see this, recall that the dynamics of a multivalued map F : X ( X can
be encoded via its F -digraph GF , whose vertices are given by the elements of X,
and such that there is a directed edge from x to y if and only if y ∈ F (x).
On X, we can define an equivalence relation by saying that x ∼ y if and only
if there is both a directed path in GF from x to y, and one from y to x.2 This
equivalence relation partitions X into equivalence classes which are called the
strongly connected components of GF . Such a component is called trivial , if it
consists of a single vertex which is not connected to itself with an edge, otherwise
it is non-trivial . Moreover, if each strongly connected component (along with
all the edges which begin and finish in the component) is contracted to a single
vertex, the resulting graph is a directed acyclic graph, called the condensation
of GF . After these preparations, one obtains the following result.

Proposition 4.8 (Morse decomposition via strongly connected components).
Consider a lower semicontinuous multivalued map F : X ( X with closed val-
ues on a finite T0 topological space X. Denote the non-trivial strongly connected
components of the associated F -digraph GF by {Mp}p∈P . Furthermore, let q > r
if there exists a directed path in GF from Mq to Mr. Then each of the sets Mp is
an isolated invariant set for F , and {Mp}p∈P is a Morse decomposition of X.

Proof: We begin by showing that any path which starts and ends in Mp has
to be completely contained in Mp.

2Notice that we have x ∼ x for every x ∈ X, since there always exists a path of length zero
from x to x, i.e., a path without edges.
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To see this, let p ∈ P be fixed, let x, y ∈ Mp, let γ denote any path from x
to y, and let z denote any point on the path γ. Then γ clearly can be restricted
to a path from z to y. Furthermore, since Mp is a non-trivial strongly connected
component of GF , there exists a path from y to x. Concatenation of this path with
the part of γ from x to z gives a path in GF from y to z. This immediately implies
that y ∼ z, and therefore we have z ∈Mp, and the above statement follows.

We now turn to the verification of the proposition. It is easy to see that >
is indeed a (strict) partial order on P , since the condensation of GF is acyclic.
Moreover, for any x ∈ Mp one can easily construct a full solution through x
in Mp, by infinite concatenations of the paths from x to y and from y to x, for
some y ∈Mp, again using the above observation. Thus, every set Mp is invariant.
These sets are also isolated invariant sets, since the whole space X is an isolating
set for each Mp. For this, note that (IS2) follows trivially from Remark 4.2,
and (IS1) from our above observation. Finally, if γ denotes an arbitrary full
solution, then the acyclicity of the condensation of GF together with the finiteness
of X immediately implies the existence of tq, tr ∈ Z such that γ(t) ∈ Mq for
t ≤ tq and γ(t) ∈ Mr for t ≥ tr, for some q ≥ r. If q = r, then our above
observation implies that γ is contained in Mq, and this completes the proof of the
proposition. �

Finding strongly connected components in digraphs can be done efficiently, and
thus the problem of decomposing the dynamics of a multi-valued map F into
recurrent dynamics , given by the Morse sets Mp, and gradient-like dynamics , en-
coded in the condensation of GF , is inherently computable. Furthermore, one
can easily see that the above result does in fact produce the finest Morse decom-
position of X. It is customary to represent the information about this Morse
decomposition in the form of its Morse graph. This graph consists of the Hasse
diagram of the poset P with vertices representing the individual Morse sets Mp.
In other words, it is the subgraph of the condensation induced by the non-trivial
strongly connected components.

Example 4.9 (Morse decompositions for Examples 4.3 and 4.4). We return to
the two examples introduced earlier in this section. Recall that these examples
introduced two multivalued maps F,G : X ( X on the finite topological space

X = {A,B,C,AB,AC,BC,ABC}

induced by a two-dimensional simplex. In Example 4.3 we identified the three
isolated invariant sets

S1 = {A,B,C}, S2 = {AB,BC,AC}, and S3 = {ABC},

and one can easily see that they are all strongly connected components of the
F -digraph. Similarly, in Example 4.4 we found the isolated invariant sets

R1 = {A}, R2 = {B,C}, R3 = {BC}, R4 = {AB,AC}, R5 = {ABC},
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Figure 3. Finest Morse decomposition for the map F : X ( X
from Example 4.3. The Morse graph is shown on the right, the
Morse sets are indicated on the left.

Figure 4. Finest Morse decomposition for the map G : X ( X
from Example 4.4. The Morse graph is shown on the right, the
Morse sets are indicated on the left.

which also partition the space X and are again strongly connected components.
Thus, in both of these examples all strongly connected components are non-trivial,
and one obtains the Morse graphs shown in Figures 3 and 4, respectively.

We would like to point out that the Morse sets involved in these example exhibit
different types of recurrent dynamics. While the sets S3, R1, R3, and R5 are all
equilibria of the dynamics, the remaining Morse sets are periodic orbits. More
precisely, the sets S1 and S2 are periodic orbits of period 3, while the two sets R2

and R2 have period 2.

5. Index pairs

While isolated invariant sets S are the fundamental objects of study in Conley
theory, it is their Conley index that provides algebraic information about the dy-
namics inside of S. In classical dynamics, this index information can be computed
easily from certain isolating neighborhoods called isolating blocks, but these are
often difficult to find. For this reason, one usually uses a different object for the
index computation, called an index pair . In the present section, we transfer this
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concept to the setting of multivalued maps. Throughout, we again assume that X
is a finite T0 topological space and that the multivalued map F : X ( X is lower
semicontinuous with closed values.

5.1. Definition and existence of index pairs. For the definition of an index
pair, we need to recall two important concepts. On the one hand, if A ⊆ X is
any subset, then the invariant part Inv(A) of F in A is the set of all points x ∈ A
for which there exists a full solution in A which passes through x. On the other
hand, a topological pair in X is a pair P of subsets P = (P1, P2) which satisfy the
inclusion P2 ⊆ P1. With this, we have the following central definition.

Definition 5.1 (Index pair). We say that a topological pair P = (P1, P2) of closed
subsets of an isolating set N for an isolated invariant set S is an index pair for S
in N if the following three conditions are satisfied:

(IP1) F (Pi) ∩N ⊆ Pi for i = 1, 2,

(IP2) P1 ∩ cl(F (P1) \N) ⊆ P2,

(IP3) S = Inv(P1 \ P2).

In addition, we say that index pair P = (P1, P2) is saturated if S = P1 \ P2.

We would like to point out that condition (IP1) implies F (Pi)∩N = F (Pi)∩Pi,
and therefore (IP2) could also be replaced by the inclusion P1∩cl(F (P1)\P1) ⊆ P2

to obtain an equivalent definition.
In the remainder of this section, we establish some basic properties of index

pairs. In addition, we show that every isolated invariant set S with isolating set N
does indeed have an associated index pair. For this we need another definition.
For subsets S ⊆ N ⊆ X we define

Inv−(N,S) := { y ∈ N | ∃σ ∈ Path(N) with σ@ ∈ S, σA = y },
Inv+(N,S) := { y ∈ N | ∃σ ∈ Path(N) with σ@ = y, σA ∈ S }.

In other words, the set Inv+(N,S) consists of all points in N from which one
can reach S in forward time with a path in N , and Inv−(N,S) is the analogous
set in backwards time. The following proposition follows immediately from the
definition of Inv±(N,S).

Proposition 5.2 (Inclusion properties). Assume that M ⊆ N are two isolating
sets for an isolated invariant set S. Then Inv±(M,S) ⊆ Inv±(N,S). �

In addition, the above two sets have interesting topological properties, and they
can be used to reconstruct an isolated invariant set S, as the next result shows.

Proposition 5.3 (Topological properties). Assume that S ⊆ N ⊆ X, that S
is an invariant set, and that N is closed. Then the set Inv−(N,S) is closed
and Inv+(N,S) is open in N . If in addition N isolates S, then one also has

(2) Inv−(N,S) ∩ Inv+(N,S) = S,
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and the isolated invariant set S is locally closed in X, that is S is a difference of
two closed sets in X (see [16, Problem 2.7.1]).

Proof: Denote N− := Inv−(N,S) and N+ := Inv+(N,S). In order to prove
that N− is closed take a y ∈ clN−. Then y ∈ cl y′ for some y′ ∈ N−. Hence,
we may take a path σ ∈ Path(N) from a point in S to y′. Since S is invariant,
without loss of generality we may assume that |σ| ≥ 2. Since F has closed values,
replacing y′ by y in σ one obtains a new path, so y ∈ N−. This proves that N−

is indeed closed.
To see that the set N+ is open in N , choose any x ∈ opnN N

+ = N ∩ opnN+.
Then x ∈ opnx′ for some x′ ∈ N+. Let σ ∈ Path(N) be a path from x′ to
some point in S. Since F is lower semicontinuous with closed values, F (x′) ⊆
F (x). Thus, replacing x′ by x in σ gives another path, so x ∈ N+. Therefore
N ∩ opnN+ ⊆ N+, so N+ is open in N .

Finally, the inclusion S ⊆ N− ∩ N+ is obvious. Suppose now that N iso-
lates S. To see the opposite inclusion, let x ∈ N− ∩N+ be arbitrary. Then there
exist a path in N from a point in S to x and a path in N from x to a point
in S. Concatenation of these gives a path in N through x, and with endpoints
in S. Hence, since N isolates S, we obtain x ∈ S and (2) holds. Moreover, the
representation (2) shows that S can be written as

S = N− \
(
N \N+

)
.

Since N− and N \N+ are closed, S is locally closed in X. �

The above result shows that also in the multivalued map case, isolated invariant
sets necessarily have to be locally closed. This is reminiscent of the situation in
the multivector case [24], and it provides a sufficient condition for recognizing
invariant sets which are not isolated invariant. In fact, this criterion does not
make any reference to an associated isolating set N . For example, one can easily
see that the set S1∪S3 in Example 4.3 is not locally closed, and therefore it cannot
be an isolated invariant set.

We now turn our attention to the existence of index pairs for isolated invariant
sets. For this, we need the following definition, as well as the subsequent result.

Definition 5.4 (Standard index pair). Given an isolating set N for an isolated
invariant set S, we define the standard index pair PN = (PN

1 , P
N
2 ) by

PN
1 := Inv−(N,S) and PN

2 := PN
1 \ Inv+(N,S).

If we want to explicitly emphasize the dependence of the index pair on the isolated
invariant set S, we also write P S,N = (P S,N

1 , P S,N
2 ) instead of PN = (PN

1 , P
N
2 ).

Theorem 5.5 (Existence of saturated index pair). Assume that N ⊆ X is an
isolating set for an isolated invariant set S. Then PN is a saturated index pair
for S in N .
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Proof: It follows from Proposition 5.3 that the sets PN
1 and PN

2 are both
closed. Moreover, property (IP1) is a straightforward consequence of the definition
of the sets Inv−(N,S) and Inv+(N,S). From (2) we obtain S = PN

1 \ PN
2 , which

establishes both (IP3) and the fact that PN is saturated, once condition (IP2) has
been proved.

Thus, it remains to verify that property (IP2) is satisfied. For this, assume to
the contrary that there exists an element y ∈ (PN

1 ∩ cl(F (PN
1 ) \ N)) \ PN

2 . This
implies that y ∈ PN

1 \PN
2 = S, and there exists y′ ∈ F (PN

1 )\N such that y ∈ cl y′.
Let x ∈ PN

1 be such that y′ ∈ F (x). Then y ∈ cl y′ ⊆ clF (x) = F (x), since F has
closed values. In view of x ∈ PN

1 = Inv−(N,S), there exists a path σ ∈ Path(N)
such that σ@ ∈ S and σA = x. It follows that σ · y is a path in N with endpoints
in S, and therefore (IS1) yields x ∈ S. This in turn implies y′ ∈ F (x) ⊆ F (S).
Thus, one obtains y ∈ S ∩ cl y′ ⊆ S ∩ cl(F (S) \N), which contradicts (IS2). �

The standard index pair PN that can be associated with every isolated invari-
ant S with isolating set N will be important for our further considerations. Yet,
as we pointed out earlier, this is only one possible choice among many. In partic-
ular, although the standard index pair is sufficient to define the Conley index, the
flexibility in choosing index pairs matters when addressing properties of the index,
for instance continuation (see Sec. 7.2). While the collection of index pairs will be
further studied in the next section, we close this one with a simple observation.

Proposition 5.6 (Inclusion property of standard index pairs). Assume M ⊆ N
are two isolating sets for an isolated invariant set S. Then the associated standard
index pairs satisfy PM

i ⊆ PN
i for i = 1, 2.

Proof: The inclusion PM
1 ⊆ PN

1 follows immediately from Proposition 5.2.
On the other hand, in view of (2) we have PM

2 = PM
1 \ S ⊆ PN

1 \ S = PN
2 . �

To close this section, we briefly return to our previous two examples and present
the standard index pairs for selected isolated invariant sets.

Example 5.7 (Sample standard index pairs). For the two simple multivalued
maps F : X ( X and G : X ( X from Examples 4.3 and 4.4, respectively,
on the finite topological space X = {A,B,C,AB,AC,BC,ABC}, one can easily
determine the associated standard index pairs. Recall that in Example 4.3 we
used the closed sets N1 = {A,B,C}, N2 = {A,B,C,AB,BC,AC}, and N3 = X
as respective isolating sets for the three isolated invariant sets S1, S2, and S3 given
below. This leads to the standard index pairs

(3)

P S1,N1

1 = N1, P S1,N1

2 = ∅ for S1 = {A,B,C} in N1,

P S2,N2

1 = N2, P S2,N2

2 = N1 for S2 = {AB,BC,AC} in N2,

P S3,N3

1 = N3, P S3,N3

2 = N2 for S3 = {ABC} in N3.

For example, in order to establish the second standard index pair in this list, note
that Inv−(N2, S2) = {A,B,C,AB,BC,AC} and Inv+(N2, S2) = {AB,BC,AC},
which immediately yields the above form for P S2,N2 .
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We now turn our attention to Example 4.4. In this case, we defined the closed
sets M1 = {A}, M2 = {B,C}, M3 = {B,C,BC}, M4 = {A,B,C,AB,AC}, as
well as M5 = X, as respective isolating sets for the isolated invariant sets Rk given
below. More precisely, one obtains the standard index pairs

(4)

PR1,M1

1 = M1, PR1,M1

2 = ∅ for R1 = {A} in M1,

PR2,M2

1 = M2, PR2,M2

2 = ∅ for R2 = {B,C} in M2,

PR3,M3

1 = M3, PR3,M3

2 = M2 for R3 = {BC} in M3,

PR4,M4

1 = M4, PR4,M4

2 = M1 ∪M2 for R4 = {AB,AC} in M4,

PR5,M5

1 = M5, PR5,M5

2 = M3 ∪M4 for R5 = {ABC} in M5.

Thus, we have identified the standard index pairs for all isolated invariant sets
contained in the Morse decompositions shown in Figures 3 and 4.

5.2. Properties of index pairs. In the last section, we introduced the notion
of an index pair P = (P1, P2) associated with an isolated invariant set S and its
isolating set N . These index pairs will prove to be central for the definition of
the Conley index. Yet, as we already mentioned several times, index pairs are not
unique, and the present section collects results on the construction of a variety of
index pairs. These results will be crucial for the next section, which introduces
the Conley index.

In the following, we assume that N is an isolating set for the isolated invariant
set S. If P = (P1, P2) and Q = (Q1, Q2) are two topological pairs, we use the
abbreviation P ⊆ Q for the validity of the two inclusions P1 ⊆ Q1 and P2 ⊆ Q2.
Furthermore, by P ∩Q we denote the pair (P1∩Q1, P2∩Q2). We begin by showing
that index pairs are closed under intersection.

Lemma 5.8 (Intersection preserves index pairs). If P and Q are two index pairs
for an isolated invariant set S in an isolating set N , then so is P ∩Q.

Proof: Applying property (IP1) of P we get F (Pi∩Qi)∩N ⊆ F (Pi)∩N ⊆ Pi.
Similarly, we obtain F (Pi ∩ Qi) ∩N ⊆ Qi. Therefore, F (Pi ∩ Qi) ∩N ⊆ Pi ∩ Qi

for i = 1, 2, which proves the inclusions in (IP1) for P ∩Q.
As for the second property (IP2) of an index pairs, we observe that since both P

and Q satisfy it, one obtains the inclusions

P1 ∩Q1 ∩ cl(F (P1 ∩Q1) \N) ⊆ P1 ∩ cl(F (P1) \N) ∩Q1 ∩ cl(F (Q1) \N)

⊆ P2 ∩Q2.

It remains to establish (IP3). First observe that in view of (IP3) for both P and Q
we have

S ⊆ (P1 \ P2) ∩ (Q1 \Q2) ⊆ (P1 ∩Q1) \ (P2 ∩Q2).

Therefore, S = InvS ⊆ Inv((P1∩Q1)\(P2∩Q2)). To prove the opposite inclusion,
assume to the contrary that there exists y ∈ Inv((P1∩Q1)\(P2∩Q2))\S. Moreover,
let σ : Z → (P1 ∩ Q1) \ (P2 ∩ Q2) be a full solution through y. Then there has
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to exist an index p ∈ Z such that σ(p) ∈ P2, because otherwise we obtain the
inclusion imσ ⊆ Inv(P1\P2) = S in view of (IP3) for P . In addition, due to (IP1)
for P , together with imσ ⊆ P1 ⊆ N , one has to have σ(r) ∈ P2 for every r ≥ p.
Symmetrically, there exists an index q ∈ Z such that σ(r) ∈ Q2 for all r ≥ q. In
particular, this implies σ(max{p, q}) ∈ P2 ∩Q2, a contradiction. �

The next two results introduce a few ways for constructing new index pairs
from two given nested ones.

Lemma 5.9 (New index pairs from nested ones). If P ⊆ Q are index pairs in N
for an isolated invariant set S, then so are (P1, P1 ∩Q2) and (P1 ∪Q2, Q2).

Proof: Let us start with the first pair (P1, P1 ∩ Q2). The verification of
property (IP1) is straightforward. Observe that in view of (IP2) for the index
pair P we get P1 ∩ cl(F (P1) \N) ⊆ P2 ⊆ P1 ∩Q2, and therefore (IP2) holds. To
establish (IP3), we observe that due to (IP3) for both P and Q one has

S = InvS ⊆ Inv((P1 \ P2) ∩ (Q1 \Q2)) ⊆ Inv(P1 \Q2)

= Inv(P1 \ (P1 ∩Q2)) ⊆ Inv(P1 \ P2) = S.

Hence, Inv(P1 \ (P1 ∩ Q2)) = S, which completes the proof that (P1, P1 ∩ Q2) is
indeed an index pair.

Consider now the second pair (P1∪Q2, Q2). As before, the verification of (IP1)
is straightforward. In order to establish (IP3) we observe that as seen above

S = Inv(P1 \Q2) = Inv((P1 ∪Q2) \Q2).

Finally, in order to verify (IP2) for (P1 ∪Q2, Q2) we note that

(P1 ∪Q2) ∩ cl(F (P1 ∪Q2) \N) ⊆ Q1 ∩ cl(F (Q1) \N) ⊆ Q2,

which yields (IP2) for the second pair and completes the proof. �

The second lemma is concerned with a useful construction of new index pairs
which includes the action of F itself. For this, suppose we are given two index
pairs P and Q for an isolated invariant set S in N , and such that P ⊆ Q. We
then define a topological pair of sets G(P,Q) = (G1(P,Q), G2(P,Q)) by

Gi(P,Q) = Pi ∪ (F (Qi) ∩N) for i = 1, 2.

Note that we always have G2(P,Q) ⊆ G1(P,Q) ⊆ N , as required by a topological
pair, and thatGi(P,Q) is closed for i = 1, 2. The latter fact is due to the closedness
of the values of F . While in general the pair G(P,Q) is not an index pair for S
in N , the following result gives sufficient conditions, as well as a number of other
useful properties.

Lemma 5.10 (Properties of the pair G(P,Q)). Let P ⊆ Q be two index pairs for
the isolated invariant set S in N , and let G = G(P,Q) be defined as above. Then
we have the following properties.

(i) P ⊆ G ⊆ Q.
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(ii) Pi = Qi implies Pi = Gi = Qi, for i = 1, 2.

(iii) If P1 = Q1 or P2 = Q2 then G is an index pair in N .

(iv) F (Qi) ∩N ⊆ Gi, for i = 1, 2.

(v) If P3−i = Q3−i and Gi = Qi, then Pi = Qi for i = 1, 2.

Proof: The first inclusion in (i) is obvious. The second one follows from (IP1)
for Q. Moreover, property (ii) is an immediate consequence of (i).

In order to prove property (iii), let us begin with property (IP1). Its verification
does not require the hypothesis of (iii), since we have

F (Gi) ∩N = (F (Pi) ∩N) ∪ (F (F (Qi) ∩N) ∩N) ⊆ Pi ∪ (F (Qi) ∩N) = Gi

in view of (IP1) applied to P and Q.
If P1 = Q1, then we have G1 ∩ cl(F (G1) \N) = P1 ∩ cl(F (P1) \N) ⊆ P2 ⊆ G2

by (i), (ii), and (IP2) for P , and this establishes (IP2) for G in this case. On the
other hand, if the equality P2 = Q2 holds, then

G1 ∩ cl(F (G1) \N) ⊆ Q1 ∩ cl(F (Q1) \N) ⊆ Q2 = G2,

in view of (IP2) for Q, (i), and (ii). This proves (IP2) for G also in this case.
In order to verify property (IP3), observe that by (IP3) applied to P and Q one

obtains S ⊆ (P1\P2)∩(Q1\Q2) = P1\Q2 ⊆ G1\G2, and this in turn immediately
yields S = InvS ⊆ Inv(G1 \G2). According to property (i) we have the inclusion
G1 \ G2 ⊆ Q1 \ P2. Hence, if P1 = Q1, we obtain G1 \ G2 ⊆ P1 \ P2, and (IP3)
applied to P further implies Inv(G1 \G2) ⊆ Inv(P1 \P2) = S. Similarly, if instead
the equality P2 = Q2 holds, then one obtains G1\G2 ⊆ Q1\Q2, and (IP3) applied
to Q furnishes Inv(G1 \G2) ⊆ Inv(Q1 \Q2) = S. Altogether, we get the inclusion
Inv(G1 \ G2) ⊆ S, which completes the proof of (IP3) for G, and establishes the
latter as an index pair, as claimed in (iii).

Since property (iv) is obvious, it remains to establish (v). For this, fix i ∈ {1, 2}
and assume that the identities P3−i = Q3−i and Gi = Qi are satisfied. We want
to show that Pi = Qi. Since Pi ⊆ Qi by assumption, we only need to verify the
inclusion Qi ⊆ Pi.

Thus, take an arbitrary point y ∈ Qi. We will begin by constructing recursively
a function σ : Z− → Qi as follows, where Z− denotes the set of all nonpositive
integers. We set σ(0) := y ∈ Qi. Assuming σ(−k) ∈ Qi has already been defined
for k ∈ N0, we consider two cases to define σ(−k−1). If we have σ(−k) ∈ Pi, then
we define σ(−k − 1) := σ(−k). If instead we have σ(−k) 6∈ Pi, then one obtains
from the assumption Qi = Gi and the above definition Gi = Pi ∪ (F (Qi) ∩ N)
that σ(−k) ∈ F (Qi), and we can select an element σ(−k− 1) ∈ Qi which satisfies
the inclusion σ(−k) ∈ F (σ(−k − 1)).

We claim that imσ∩Pi 6= ∅. Assume the contrary. Then σ : Z− → Qi \Pi is a
solution. Since the space X is finite, we can therefore find indices m,n ∈ Z− such
that m < n and σ(m) = σ(n). Thus, the point σ(m) lies on a periodic solution in
the set difference Qi \ Pi. But then we have σ(m) ∈ Inv(Qi \ Pi). Consider now
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first the case i = 1. Then we have P2 = Q2 and σ : Z− → Q1 \ P1, as well as
the inclusion Q1 \ P1 ⊆ Q1 \ P2 = Q1 \ Q2. Hence, using property (IP3) applied
to Q one obtains that σ(m) ∈ Inv(Q1 \ Q2) = S ⊆ P1, which contradicts our
assumption that imσ ∩ P1 = ∅. Consider now the second case i = 2. Then one
has P1 = Q1 and σ : Z− → Q2 \ P2, as well as Q2 \ P2 ⊆ Q1 \ P2 = P1 \ P2.
Hence, we get from (IP3) applied to P that σ(m) ∈ Inv(P1 \ P2) = S ⊆ Q1 \Q2.
Therefore, σ(m) 6∈ Q2, again a contradiction. Thus, we established imσ∩Pi 6= ∅.

With this we can immediately complete the proof of (v). According to the last
paragraph, the index m := max { k ∈ Z− | σ(k) ∈ Pi } is well defined. We cannot
have m < 0, because in that case one obtains σ(m+ 1) ∈ F (σ(m)) ⊆ F (Pi), and
due to (IP1) applied to P one further gets σ(m+1) ∈ Qi∩F (Pi) ⊆ N∩F (Pi) ⊆ Pi,
which is a contradiction. Hence, we have to have m = 0, and thus y = σ(0) ∈ Pi.
This completes the proof of the lemma. �

The next result shows that for nested index pairs P ⊆ Q which satisfy P1 = Q1

or P2 = Q2, it is always possible to construct a sequence of index pairs between
them with certain mapping properties. While the specifics of this lemma might
seem strange at first sight, it is essential for proving that the Conley index com-
putation is independent of the underlying index pair.

Lemma 5.11 (Interpolating between nested index pairs). Let P ⊆ Q be index
pairs for an isolated invariant set S in N such that either P1 = Q1 or P2 = Q2.
Then there exists a sequence of index pairs for S in N

P = Qn ⊆ Qn−1 ⊆ · · · ⊆ Q1 ⊆ Q0 = Q

which satisfy the following:

(a) Pi = Qi implies Qk
i = Pi = Qi for all k = 1, 2, . . . , n− 1 and i = 1, 2,

(b) F (Qk
i ) ∩N ⊆ Qk+1

i for all k = 0, 1, . . . , n− 1 and i = 1, 2.

Proof: Define the index pairs Qk recursively by Q0 := Q and Qk+1 := G(P,Qk)
for k ∈ N. Using Lemma 5.10(i), (ii) and (iii), together with induction on k, one
can easily show that the family {Qk} forms a decreasing sequence of index pairs
with respect to k which satisfies property (a). In addition, Lemma 5.10(iv) implies
that they also satisfy property (b) for all k ∈ N0. Finally, since X is finite, there
has to be an n ∈ N0 such that Qn = Qn+1 = G(P,Qn), and an application of
Lemma 5.10(v) shows that then Qn = P . �

For the remainder of this section, we briefly introduce and study a topological
pair which can be associated with an index pair, and which plays a crucial role
for the definition of the index map in the next section.

To define this topological pair, we again let P = (P1, P2) denote an index pair
for an isolated invariant set S in the isolating set N . Then we define P̄ := (P̄1, P̄2)
via

P̄i := Pi ∪ cl(F (P1) \N) for i = 1, 2.
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Notice that the new topological pair P̄ extends the index pair P by adding the
closure of the images of P1 under F that lie outside of N . The resulting pair P̄ still
consists of closed sets, but in general it is no longer an index pair. Nevertheless,
it will allow us to study the action of F on P on the homological level in the next
section. For now, we note the following proposition.

Proposition 5.12 (The extended topological pair P̄ ). Assume that P = (P1, P2)
is an index pair for the isolated invariant set S in an isolating set N . Then the
following hold for the extended topological pair P̄ defined above:

P ⊆ P̄ ,(5)

F (P ) = (F (P1), F (P2)) ⊆ P̄ ,(6)

P̄1 \ P̄2 = P1 \ P2.(7)

Proof: As we already mentioned, property (5) follows directly from the defi-
nition of P̄ . To see (6), note that in view of (IP1) we have F (Pi)\Pi ⊆ F (Pi)\N ,
and therefore F (Pi) ⊆ Pi ∪ (F (Pi) \ Pi) ⊆ Pi ∪ (F (Pi) \N) ⊆ P̄i. Finally, observe
that property (IP2) implies

P̄1 \ P̄2 = (P1 ∪ cl(F (P1) \N)) \ (P2 ∪ cl(F (P1) \N))

= P1 \ P2 \ cl(F (P1) \N) = P1 \ P2,

and this completes the proof of the proposition. �

As our final result of this section, we consider the extended topological pairs of
the standard index pairs introduced in Definition 5.4. More precisely, we consider
the situation of nested isolating sets for the same isolated invariant set S.

Proposition 5.13 (The extended topological pair for standard index pairs). As-
sume that the closed sets M ⊆ N are two isolating sets for the same isolated
invariant set S. Then the inclusion PM ⊆ PN holds.

Proof: We first establish the validity of PM
1 ⊆ PN

1 . Using Proposition 5.6 one
obtains the inclusion

PM
1 = PM

1 ∪ cl(F (PM
1 ) \M) ⊆ PN

1 ∪ cl(F (PN
1 ) \M)

= PN
1 ∪ cl(F (PN

1 ) \N) ∪ cl((F (PN
1 ) ∩N) \M)

⊆ PN
1 ∪ cl(F (PN

1 ) \N) = PN
1 ,

where the last inclusion follows from (IP1) and the fact that PN
1 is closed.

It remains to show that PM
2 ⊆ PN

2 . For this, let y ∈ PM
2 = PM

2 ∪cl(F (PM
1 )\M).

If in fact we have y ∈ PM
2 , then an application of Proposition 5.6 immediately

implies that y ∈ PN
2 ⊆ PN

2 . Suppose therefore that we have y ∈ cl(F (PM
1 ) \M)

and y /∈ PN
2 . Furthermore, let y′ ∈ F (PM

1 ) \M be such that y ∈ cl y′.
We now claim that y′ 6∈ N . To verify this, assume to the contrary that y′ ∈ N .

Let x ∈ PM
1 be such that y′ ∈ F (x). If x ∈ PM

2 , then y′ ∈ F (PM
2 ) ⊆ F (PN

2 ), and
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therefore y′ ∈ F (PN
2 ) ∩ N ⊆ PN

2 by (IP1), as well as y ∈ cl y′ ⊆ clPN
2 = PN

2 , a
contradiction. Thus we have to have x /∈ PM

2 , and this yields x ∈ PM
1 \ PM

2 = S
by Theorem 5.5. Hence, y′ ∈ F (S) \M and y ∈ cl(F (S) \M).

Since we assumed y′ ∈ N , one obtains y′ ∈ F (PM
1 ) ∩ N ⊆ F (PN

1 ) ∩ N ⊆ PN
1 ,

and together with the closedness of PN
1 this further implies y ∈ PN

1 . This in turn
shows that the inclusion y ∈ PN

1 \ PN
2 = S holds, by Theorem 5.5. However, this

finally furnishes y ∈ S ∩ cl(F (S) \M), which contradicts (IS2). Thus, we deduce
that our assumption on y′ was wrong and we actually have y′ /∈ N .

With this in hand the proof of the second inclusion can easily be finished. We

now have y′ ∈ F (PM
1 ) \N ⊆ F (PN

1 ) \N , as well as y ∈ cl(F (PN
1 ) \N) ⊆ PN

2 . �

We close this section by deriving the extended topological pairs for the index
pairs in Example 5.7.

Example 5.14 (Sample extended topological pairs). We leave it to the reader to
verify that all eight standard index pairs given in (3) and (4) are in fact equal to
their extended topological pairs as defined above. In every one of these cases, if S
is an isolated invariant set in an isolating set N , we have both P S,N

1 = N , as well
as either F (N) ⊆ N or G(N) ⊆ N , respectively, depending on which multivalued
map is considered. From this our claim follows immediately.

6. Definition of the Conley index

With this section, we finally turn our attention to the Conley index for isolated
invariant sets. For this, we first introduce the index map based on an index pair
in Section 6.1, which transfers the action of the multivalued map F restricted
to the index pair to the algebraic level in terms of homology. Clearly, this map
will depend on the chosen index pair, and the remainder of the section is aimed
at deriving an index definition from the index map which only depends on the
isolated invariant set. Our approach relies on the notion of normal functor, which
is introduced in Section 6.2. Finally, Section 6.3 combines both notions to define
the Conley index and prove that it is well-defined. In addition, we compute
the Conley indices for the isolated invariant sets in our earlier examples. In
contrast to the previous section, we need to impose an additional condition on the
underlying multivalued map. In this section the multivalued map F : X ( X
will be assumed to be lower semicontinuous with closed and acyclic values. The
additional acyclicity assumption is needed in order to obtain induced maps in
homology. All the homology groups are considered with coefficients in a fixed
ring R.

6.1. The index map. The basic idea of the Conley index in this paper is to
lift information from the multivalued map F : X ( X close to an isolated
invariant set S to the setting of homology. On the level of the phase space, this
is accomplished by considering the relative homology H∗(P ) = H∗(P1, P2) of an
index pair for S, and on the level of the map F by the associated index map IP ,
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which is an endomorphism of H∗(P ). The latter map should of course in some
way lift the dynamics of F to the homology level.

Passing from a multivalued map to a map induced in homology is slightly more
involved than the classical map setting, and we begin by reviewing the necessary
approach. As it was already said in Section 2, every lower semicontinuous map
with closed values is in fact strongly lower semicontinuous (slsc). Recall that a
multivalued map F : X ( Y between finite T0 spaces is called strongly lower
semicontinuous, if x ∈ clx′ implies F (x) ⊆ F (x′). If in addition F : X ( Y
has acyclic values, then it induces a homomorphism F∗ : H∗(X) → H∗(Y ) in
homology. More precisely, in [3, Proposition 4.7] it is shown that if F is identified
with its graph F ⊆ X×Y , then the restriction p1 : F → X of the projection onto
the first coordinate is an isomorphism in homology in every degree, and therefore
one can define the induced map in homology as F∗ = (p2)∗(p1)

−1
∗ with p2 : F → Y

denoting the restriction of the other projection. Although the results in [3] are
stated only for integer coefficients, i t is easy to see that the same results hold for
homology with coefficients in an arbitrary ring (see [3, Theorem 2.2]).

As we mentioned earlier, the index map will be a homological version of the
action of F on a given index pair, and it is therefore not surprising that we have to
recall a few notions about maps of pairs. A multivalued map F : (X,A)( (Y,B)
between pairs of finite T0 spaces is a multivalued map F : X ( Y which satisfies
the inclusion F (a) ⊆ B for every a ∈ A. We say that F : (X,A)( (Y,B) is slsc
(or with closed values, or with acyclic values) if F : X ( Y has the respective
property. Suppose that F : (X,A) ( (Y,B) is slsc with acyclic values. Then
the restriction F |BA : A ( B is also slsc with acyclic values, and its graph is a
subspace of F . Since the projections F → X and F |BA → A induce isomorphisms
in homology, by the long exact sequence of homology and the five lemma, so
does the projection of pairs p1 : (F, F |BA) → (X,A). Finally, in view of these
preparations we can define the homomorphims F∗ : H∗(X,A) → H∗(Y,B) by
letting F∗ = (p2)∗(p1)

−1
∗ as before.

Before moving on to the definition of the index map, we need the following two
auxiliary results concerning maps in homology induced by compositions.

Lemma 6.1 (Homology map of compositions). Let F : X ( Y and G : Z ( Y
be slsc multivalued maps with acyclic values, and suppose that f : X → Z is a
continuous map such that Gf = F . Then we have G∗f∗ = F∗ : H∗(X)→ H∗(Y ).
The same result holds more generally, for pairs.

Proof: Consider the following two commutative diagrams:

X Y X F Y

Z Z G
?

f

bF b
�

�
��

G
?

f

�
p1 -

p2

?

f×1Y
�
�
���

p2

�
p1
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The commutativity of the first diagram implies that f × 1Y : F → G is well
defined, and this immediately leads to the second commutative diagram. The
result then follows by definition. For pairs we have the exact same proof. �

Lemma 6.2 (Homology map of compositions). Let F : Z ( X and G : Z ( Y
be slsc multivalued maps with acyclic values, and let f : Y → X be a continuous
map such that fG = F . Then f∗G∗ = F∗ : H∗(Z) → H∗(X). The same result
holds more generally, for pairs.

Proof: Similar to the last proof, consider the following commutative diagrams:

Y G Y

Z X Z F X

b
�

�
��

G

?

f
�

�
��	

p1

?

1Z×f

-
p2

?

f

b
F

�
p1

-
p2

The commutativity of the first diagram implies that 1Z × f : Z × Y → Z ×X is
well defined. This leads to the second commutative diagram, and the result then
follows by definition. For pairs we have the exact same proof. �

As our last preparation we turn our attention briefly to the strong excision
property. For this, let (Y1, Y2) and (Z1, Z2) denote two topological pairs of closed
subspaces of a finite T0 space X such that the inclusions Yi ⊆ Zi hold for i = 1, 2,
and that Y1 \Y2 = Z1 \Z2. Then the inclusion i : (Y1, Y2)→ (Z1, Z2) induces a ho-
momorphism i∗ between the relative homology groups H∗(Y1, Y2) and H∗(Z1, Z2).
In fact, the strong excision property states that i∗ : H∗(Y1, Y2)→ H∗(Z1, Z2) is an
isomorphism. This result follows directly from the pair of McCord isomorphisms
H∗(K(Y1),K(Y2)) → H∗(Y1, Y2) and H∗(K(Z1),K(Z2)) → H∗(Z1, Z2), where K is
the functor which associates to each poset its order complex ([25, Corollary 1]).
The hypotheses imply that the chains in Y1 which are not in Y2 are the same as
the chains in Z1 not in Z2, and thus i∗ : C∗(K(Y1),K(Y2))→ C∗(K(Z1),K(Z2)) is
already an isomorphism of chain complexes, and in particular an isomorphism in
homology.

After these preparations we can finally introduce the index map. In the rest
of the paper X will be a finite T0 topological space and F : X ( X will be
lower semicontinuous with closed and acyclic values. The index map lifts the
action of the multivalued map F on an index pair P to the homological level.
This has to be done with care, since we usually do not have F (P ) ⊆ P . In fact,
we will make use of the extended pair P̄ whose properties where established in
Proposition 5.12. More precisely, let P be an index pair for an isolated invariant
set S in the isolating set N . By applying Proposition 5.12, we then immediately
obtain both an inclusion induced isomorphism (ιP )∗ : H∗(P ) → H∗(P̄ ) and a
homomorphism (FP )∗ : H∗(P ) → H∗(P̄ ), where the latter is induced by the

multivalued map FP = F |P 1
P1

: P ( P . This leads to the following definition.
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Definition 6.3 (Index map). Let P be an index pair for an isolated invariant
set S in the isolating set N . Then the associated index map is the endomorphism

IP : H∗(P1, P2)→ H∗(P1, P2) given by IP := (ιP )−1∗ ◦ (FP )∗,

where we use the maps induced in homology by the restriction FP = F |P 1
P1

: P ( P

and the inclusion ιP : P → P̄ .

Remark 6.4. Note that the definition of P̄ makes sense and the conclusion of
Proposition 5.12 remains true even if P = (P1, P2) is merely a pair of closed
subspaces of X, and if N is a closed subspace of X such that P2 ⊆ P1 ⊆ N and
conditions (IP1) and (IP2) hold. In other words, the isolated invariant set S, and
the conditions (IS1), (IS2), and (IP3) are not needed for the above. Thus, the
index map IP : H∗(P1, P2)→ H∗(P1, P2) can still be defined as in Definition 6.3.

6.2. Normal functors. Next we need to recall some definitions and results from
category theory, in particular centered around the notion of normal functors. For
this, let E denote a category. We define the category of endomorphisms of E ,
denoted by Endo(E) as follows:

• The objects of Endo(E) are pairs (A, a), where A ∈ E and a ∈ E(A,A) is
an endomorphism of A.
• The set of morphisms from (A, a) ∈ Endo(E) to (B, b) ∈ Endo(E) is the

subset of E(A,B) consisting of exactly those morphisms ϕ ∈ E(A,B) for
which ϕa = bϕ.

We write ϕ : (A, a)→ (B, b) to denote that ϕ is a morphism from (A, a) to (B, b)
in Endo(E). It is easy to see that if ϕ : (A, a)→ (B, b) is a morphism in Endo(E)
which is an isomorphism in E , then it is also an isomorphism in Endo(E). Note that
any endomorphism a ∈ E(A,A) is in particular a morphism a : (A, a) → (A, a)
in Endo(E). Such morphisms of Endo(E) are called induced.

Now let L : Endo(E) → C be a functor. We say that L is normal if L(a) is
an isomorphism in C for every induced morphism a : (A, a)→ (A, a) in Endo(E).
Then we have the following result.

Proposition 6.5 (Isomorphism inducing property of normal functors). In the
situation above, let L : Endo(E)→ C denote a normal functor, and let ϕ : A→ B
and ψ : B → A be morphisms in E. Then ϕ : (A,ψϕ) → (B,ϕψ) is a morphism
in the category Endo(E), and L(ϕ) is an isomorphism in C.

Proof: Clearly we have that ϕ is a morphism from (A,ψϕ) to (B,ϕψ) in
Endo(E) and ψ is a morphism from (B,ϕψ) to (A,ψϕ). In addition, one obtains
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the commutative diagram

(B,ϕψ) (B,ϕψ)

(A,ψϕ) (A,ψϕ)
?

ψ

-
ϕψ

?

ψ

-
ψϕ

�
�
�
��3ϕ

If we now apply the functor L to this diagram, then the horizontal morphisms
become isomorphisms in C. Thus, the image L(ϕ) has both a left and a right
inverse, and therefore it is also an isomorphism. �

We would like to point out that if W denotes the class of induced morphisms
in Endo(E), then the natural functor Endo(E)→ Endo(E)[W−1] to the localization
is universal in the sense that any other normal functor Endo(E) → C factorizes
through it, see also [31, 36]. We close this section with one specific example of a
normal functor. For further examples we refer the reader to the paper [30].

Example 6.6 (The Leray functor). For the example computations of this paper,
we make use of the specific normal functor introduced in [29], the Leray functor .
For this, let Mod denote the category of graded moduli over the ring R together
with homomorphisms of degree zero. Using the setting for the definition of normal
functors from above, we consider the categories

E = Mod and C = Auto(Mod) ,

where Auto(Mod) ⊆ Endo(Mod) is the subcategory of automorphisms of Mod.
Then the Leray functor LLeray : Endo(Mod)→ Auto(Mod) can be defined as the
composition of the following maps:

• Let (H, h) ∈ Endo(Mod) be arbitrary. Then the generalized kernel of h
can be defined as

gker(h) :=
⋃
n∈N

h−n(0) ,

and one can easily see that the map h : H → H induces a well-defined
map h′ : H/gker(h)→ H/gker(h). Thus, the definition

L′(H, h) := (H/gker(h), h′) ∈ Mono(Mod) ⊆ Endo(Mod)

gives an object in the category Mono(Mod) of monomorphisms of Mod.
Furthermore, it is straightforward to define L′(ϕ) also for morphisms ϕ
in Endo(Mod), and to show that in this way one obtains a well-defined
contravariant functor L′ : Endo(Mod)→ Mono(Mod).
• Now let (H, h) ∈ Mono(Mod) be arbitrary. Then the generalized image

of h can be defined as

gim(h) :=
⋂
n∈N

hn(H) ,
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and it is not difficult to verify that the map h : H → H induces a well-
defined map h′′ : gim(h)→ gim(h). Thus, the definition

L′′(H, h) := (gim(h), h′′) ∈ Auto(Mod) ⊆ Endo(Mod)

gives an object in the category Auto(Mod) of automorphisms of Mod. In
addition, it is again straightforward to define L′′(ϕ) also for morphisms ϕ
in Mono(Mod), and to show that this time one obtains a well-defined
contravariant functor L′′ : Mono(Mod)→ Auto(Mod).
• Finally, the Leray functor is defined as LLeray := L′′ ◦ L′.

For more details on the above construction, as well as the proof that the Leray
functor is indeed a normal functor, we refer the reader to [29, Section 4]. For
our applications below, we note that by the construction of LLeray we have the
implication

(8) (H, h) ∈ Auto(Mod) ⊆ Endo(Mod) =⇒ LLeray(H, h) = (H, h) ,

i.e., the Leray functor is the identity on Auto(Mod) ⊆ Endo(Mod). This fact
will enable us to determine the Conley index of isolated invariant sets in many
situations.

6.3. The Conley index. After these preparations we can finally define the Con-
ley index. A first attempt would be to use the index map IP : H∗(P ) → H∗(P )
introduced in Definition 6.3. Unfortunately, however, this would mean that the
index depends on the chosen index pair of the isolated invariant set.

This issue can be addressed by using the concept of normal functors from the last
section. More precisely, let Mod denote as before the category of graded moduli
over the ring R and let L : Endo(Mod)→ Auto(Mod) be a fixed normal functor.
Note that if P is an index pair for an isolated invariant set S in an isolating set N ,
then one obtains (H∗(P ), IP ) ∈ Endo(Mod). Thus, the L-reduction L(H∗(P ), IP )
is an automorphism of a graded module over R, and we have the following crucial
result.

Theorem 6.7 (Well-definedness of the Conley index). In the situation described
above, the isomorphism type of L(H∗(P ), IP ) ∈ Auto(Mod) does not depend on
the choice of the isolating set N for the isolated invariant set S, or on the chosen
index pair P in N .

Proof: To begin, let M and N be two isolating sets for S, and let P and Q
denote two index pairs in N and M , respectively. Our goal is to establish the
equivalence L(H∗(P ), IP ) ∼= L(H∗(Q), IQ). This is accomplished in five steps.

Step 1. We first consider the special case

(i) M = N ,

(ii) P ⊆ Q,

(iii) P1 = Q1 or P2 = Q2,

(iv) F (Q) ∩N ⊆ P .
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Let D = (D1, D2) be the pair of closed sets defined by Di = Pi ∪ cl(F (Q1) \ N)
for i = 1, 2. By (iv) we may treat F as a map of pairs FQD = F |DQ : Q ( D.

In view of (i) and (ii), we also have P ⊆ D ⊆ Q. This gives the following
commutative diagram

P P P

D

Q Q Q
?

j

bFP

?

k

�ιP

?

jb
�
�

��

FQD

?
l

bFQ �
ιQ

in which vertical arrows denote inclusions. Since F induces a map FPD = F |DP , by
Lemmas 6.1 and 6.2 we have k∗(FP )∗ = (FPD)∗ = (FQD)∗j∗ and l∗(FQD)∗ = (FQ)∗.
We then obtain a commutative diagram

H∗(P ) H∗(P ) H∗(P )

H∗(D)

H∗(Q) H∗(Q) H∗(Q)
?

j∗

-
(FP )∗

?

k∗

�
(ιP )∗

?

j∗

?

l∗

-
(FQ)∗

�
�
�
���(FQD)∗

�
(ιQ)∗

We claim that k induces an isomorphism in homology. Indeed, if P1 = Q1, k is
the identity. Otherwise, by (iii) we have P2 = Q2. In this case we claim that k
fulfills the hypothesis of strong excision, namely,

P1 \ (P2 ∪ cl(F (P1) \N)) = P1 \ (P2 ∪ cl(F (Q1) \N)).

Inclusion of the second subspace in the first is trivial, and their difference is

P1 ∩ cl(F (Q1) \N) \ (P2 ∪ cl(F (P1) \N)) ⊆ Q1 ∩ cl(F (Q1) \N) \ P2,

which is equal to Q1 ∩ cl(F (Q1) \N) \Q2, and this is empty by (IP2).



CONLEY INDEX FOR MULTIVALUED MAPS ON FINITE TOPOLOGICAL SPACES 29

If one defines IQP := (ιP )−1∗ k
−1
∗ (FQD)∗, then we get the commutative diagram

in Mod given by

H∗(P ) H∗(P )

H∗(Q) H∗(Q)
?

j∗

-IP

?

j∗

-
IQ

�
�
�
�
���

IQP

,

and L(j∗) : L(H∗(P ), IQP j∗) = L(H∗(P ), IP ) → L(H∗(Q), j∗IQP ) = L(H∗(Q), IQ)
is an isomorphism in view of Proposition 6.5.

Step 2. Next we drop assumption (iv). According to Lemma 5.11 we can
find a sequence Q0, Q1, . . . , Qn of index pairs such that Q0 = Q and Qn = P ,
and such that each pair (Qk+1, Qk) satisfies assumptions (i)–(iv). Due to Step 1
the L-reductions L(H∗(Q

k, IQk)) and L(H∗(Q
k+1, IQk+1)) are isomorphic, and the

conclusion follows.
Step 3. We now drop assumptions (iii) and (iv). For this, notice that in view

of Lemma 5.9 the pairs R = (P1, P1 ∩Q2) and T = (P1 ∪Q2, Q2) are index pairs.
The pairs P and R satisfy assumptions (ii) and (iii), and therefore they have

isomorphic L-reductions. The same holds for T and Q. On the other hand,
the inclusion j : R ↪→ T induces an isomorphism j∗ : H∗(R) → H∗(T ) by strong
excision. SinceR ⊆ T , we have an inclusion j : R ↪→ T , as well as the commutative
diagram

H∗(R) H∗(R) H∗(R)

H∗(T ) H∗(T ) H∗(T )
?

j∗

-
(FR)∗

?

j∗

�
(ιR)∗

?

j∗

-
(FT )∗ �

(ιT )∗

Thus, one obtains j∗IR = j∗(ιR)−1∗ (FR)∗ = (ιT )−1∗ j∗(FR)∗ = (ιT )−1∗ (FT )∗j∗ = IT j∗.
This shows that j∗ ∈ Endo(Mod)((H∗(R), IR), (H∗(T ), IT )), and since j∗ is an
isomorphism in Mod, it also is an isomorphism in Endo(Mod). This in turn
implies that L(j∗) : L(H∗(R), IR)→ L(H∗(T ), IT ) is an isomorphism, and that P
and Q indeed have isomorphic L-reductions.

Step 4. Now we only assume (i). By Lemma 5.8 the pair P ∩ Q is an index
pair. Hence, the claim follows from Step 3 applied to P ∩Q ⊆ P and P ∩Q ⊆ Q.

Step 5. Finally, we drop all auxiliary assumptions. We have already proved
that the isomorphism type of the L-reduction depends only on the isolating set
for S. Moreover, since by Proposition 4.6, the intersection of two isolating sets is
again an isolating set, we may assume M ⊆ N .
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Consider the index pairs PM for S in M and PN for S in N . In view of
Proposition 5.6 and Proposition 5.13 we then have the commutative diagram

PM PM PM

PN PN PN

?

j

bF
PM

?

k

�
ι
PM

?

j

bF
PN

�
ι
PN

in which vertical arrows denote inclusions. Then IPN j∗ = j∗IPM , which implies
that j∗ : (H∗(P

M), IPM ) → (H∗(P
N), IPN ) is a morphism in Endo(Mod). On

the other hand, since PM and PN are saturated by Theorem 5.5, strong excision
shows that j∗ : H∗(P

M)→ H∗(P
N) is an isomorphism in Mod. Thus, the map j∗

is an isomorphism in Endo(Mod), and then so is L(j∗). �

Based on the above result, the Conley index can now be defined as follows. We
would like to point out that the functor L in the definition could be, for example,
the computationally convenient Leray functor of Example 6.6.

Definition 6.8 (The Conley index). The L-reduction L(H∗(P ), IP ) will be called
the homological Conley index of S, and be denoted by C(S, F ), or simply C(S) if F
is clear from context. Due to Theorem 6.7 the Conley index C(S) ∈ Auto(Mod)
is well-defined up to isomorphism.

In order to illustrate the above abstract definition of the Conley index, we now
briefly return to our earlier two examples and determine the Conley indices of all
the Morse sets shown in Figures 1 and 2.

Example 6.9 (Sample Conley index computations). We return one last time to
the two simple multivalued maps F : X ( X and G : X ( X from Examples 4.3
and 4.4, respectively. We have already seen that these maps give rise to associated
Morse decompositions with three and five isolated invariant sets, which themselves
are subsets of the finite topological space X = {A,B,C,AB,AC,BC,ABC}.
Notice that in view of Example 5.14 in all of these cases the extended topological
pair P equals the index pair P that was chosen for each isolated invariant set.
Thus, the index map IP is simply given by IP = (FP )∗ : H∗(P )→ H∗(P ) for the
sets in (3), and similarly for the isolated invariant sets in (4).

Consider now the multivalued map F : X ( X from Example 4.3. For the
sake of simplicity, we compute the Conley index for the ring R = Z and with
respect to the Leray functor. Then for the isolated invariant set S1 = {A,B,C}
one can easily see that H0(P

S1,N1) ' Z3. Moreover, the index map IPS1,N1 maps
the generators in a cyclic fashion, i.e., it is an automorphism. Based on (8), this
shows that the Conley index with respect to LLeray is just (H∗(P

S1,N1), IPS1,N1 ).
In a similar way, one can determine the Conley index for all the isolated invariant
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sets in Figure 1 as

S1 = {A,B,C} : H0(P
S1,N1) ' Z3 with IPS1,N1 (ei) = e(i+1) mod 3,

S2 = {AB,BC,AC} : H1(P
S2,N2) ' Z3 with IPS2,N2 (ei) = e(i+1) mod 3,

S3 = {ABC} : H2(P
S3,N3) ' Z with IPS3,N3 (ei) = ei,

where in each case all unlisted homology groups are trivial, and the listed group Zk
has a suitable basis {e0, e1, . . . , ek−1}. Similarly, for the multivalued map G from
Example 4.4 and the isolated invariant sets in Figure 2 one obtains

R1 = {A} : H0(P
R1,M1) ' Z with IPR1,M1 (ei) = ei,

R2 = {B,C} : H0(P
R2,M2) ' Z2 with IPR2,M2 (ei) = e(i+1) mod 2,

R3 = {BC} : H1(P
R3,M3) ' Z with IPR3,M3 (ei) = −ei,

R4 = {AB,AC} : H1(P
R4,M4) ' Z2 with IPR4,M4 (ei) = e(i+1) mod 2,

R5 = {ABC} : H2(P
R5,M5) ' Z with IPR5,M5 (ei) = −ei,

where we use the same conventions as above. We leave the details of these straight-
forward computations to the reader.

7. Properties of the Conley index

In this section, we present first properties of the Conley index for multivalued
maps defined in the last section. In addition to the Ważewski property, we also
briefly address continuation.

7.1. The Ważewski property. In classical Conley theory, the Ważewski prop-
erty is central, as it allows one to deduce the existence of a nontrivial isolated
invariant set S from a nontrivial index, and the latter can be computed from an
index pair without explicit knowledge of S.

In order to show that the same result still holds in the multivalued context of
the present paper, let P = (P1, P2) denote a topological pair of closed subspaces
of X. Suppose further that N = P1 satisfies conditions (IP1) and (IP2), i.e., we
have the inclusion P1 ∩ (cl(F (P1) \P1)∪F (P2)) ⊆ P2. In view of Remark 6.4, the
index map IP : H∗(P ) → H∗(P ) is defined in this situation. Then we have the
following result.

Proposition 7.1 (Ważewski property). Suppose that X is a finite T0 topological
space and that the multivalued map F : X ( X is lower semicontinuous with
closed and acyclic values. Moreover, let P = (P1, P2) be a pair of closed subspaces
of X such that

P1 ∩ (cl (F (P1) \ P1) ∪ F (P2)) ⊆ P2.

If one further has L(H∗(P ), IP ) 6= 0 ∈ Auto(Mod), then Inv(P1 \ P2) 6= ∅.

Proof: Suppose Inv(P1 \ P2) = ∅. Then N = P1 is an isolating set for
the invariant set S = ∅, and P is an index pair for S in N . According to our
hypothesis, we have C(S) 6= 0. But this is absurd since S admits N ′ = ∅ as
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isolating set and P ′ = (∅,∅) is an index pair for S in N ′. Thus, we have the
equality H∗(P

′) = 0, as well as C(S) = L(H∗(P
′), IP ′) = 0. �

7.2. Homotopies and continuation. As our second property of the Conley
index we address the fundamental concept of continuation. For this, we first need
to review some results on homotopies in finite topological spaces.

Let X and Y be two finite T0 spaces. Two lower semicontinuous multivalued
maps F,G : X ( Y with closed and acyclic values are called homotopic if there
exists a lower semicontinuous map H : X × [0, 1] ( Y with closed and acyclic
values such that H(x, 0) = F (x) and H(x, 1) = G(x) for every x ∈ X. This
definition extends in a natural way to maps (X,A) ( (Y,B) between pairs of
finite T0 spaces by requiring that H : X × [0, 1] → Y maps (a, t) to H(a, t) ⊆ B
for every a ∈ A and t ∈ [0, 1].

General homotopies in the setting of finite topological spaces can be more suc-
cinctly described as follows. Define an order on the set of all lower semicontinuous
multivalued maps X ( Y with closed and acyclic values by letting F ≤ G if we
have F (x) ⊆ G(x) for all x ∈ X. A sequence F = F0 ≤ F1 ≥ F2 ≤ . . . Fk = G is
called a fence from F to G. Then the proof of the following result is essentially
the same as the proof of [3, Proposition 8.1], and therefore we omit it.

Proposition 7.2 (Homotopy characterization via fences). Let X and Y be two
finite T0 spaces and let F,G : X ( Y be two lower semicontinuous multivalued
maps with closed and acyclic values. Then the maps F and G are homotopic
if and only if there exists a fence F = F0 ≤ F1 ≥ F2 ≤ . . . Fk = G of lower
semicontinuous multivalued maps X ( Y with closed and acyclic values.

Furthermore, if the maps F,G : (X,A)( (Y,B) are maps of pairs of finite T0
spaces, then they are homotopic if and only if there exists a fence as above in
which the maps are maps of pairs (X,A)( (Y,B).

In terms of the associated maps in homology we have the following result, which
is in the spirit of [3, Corollary 8.2].

Lemma 7.3 (Homotopic maps induce the same map in homology). Let X, Y be
finite T0 spaces, and let F,G : X ( Y be two homotopic lower semicontinuous
multivalued maps with closed and acyclic values. Then F∗ = G∗ : H∗(X)→ H∗(Y )
for the maps induced in homology. The same result holds more generally for pairs.

Proof: We may assume F ≤ G. Consider the following commutative diagram

F

X Y

G
?

j

�
�	

p1
@
@R

p2

@
@I
p̃1 �

��
p̃2
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in which j denotes the inclusion between the graphs, and the other maps are the
projections to the first or second coordinate. Since p1 and p̃1 induce isomorphisms
in homology, so does j. This immediately implies

G∗ = (p̃2)∗(p̃1)
−1
∗ = (p2)∗(j∗)

−1j∗(p1)
−1
∗ = F∗ : H∗(X)→ H∗(Y ).

The result for pairs follows with the exact same proof. �

The following definition introduces the notion of continuation for the setting of
multivalued maps in finite topological spaces.

Definition 7.4 (Continuation of isolated invariant sets). Let X be a finite T0
space and let F,G : X ( X be two lower semicontinuous multivalued maps with
closed and acyclic values such that F ≤ G or F ≥ G. Moreover, let SF , SG ⊆ X be
isolated invariant sets for F and G, respectively. We say that (SF , F ) and (SG, G)
(or just SF and SG) are related by an elementary continuation if there exist iso-
lating sets NF and NG for SF and SG with respect to F and G, respectively, as
well as a pair P = (P1, P2) which is both

• an index pair for SF in NF with respect to F , and
• an index pair for SG in NG with respect to G.

More generally, let F,G : X ( X denote two homotopic lower semicontinuous
multivalued maps with closed and acyclic values. We say that isolated invariant
sets SF and SG for F and G, respectively, are related by continuation, if there ex-
ists a fence F = F0 ≤ F1 ≥ F2 ≤ . . . Fk = G of lower semicontinuous multivalued
maps X ( X with closed and acyclic values, as well as isolated invariant sets Si
for Fi, for 0 ≤ i ≤ k, such that S0 = SF , Sk = SG, and (Si, Fi), (Si+1, Fi+1) are
related by an elementary continuation for each 0 ≤ i < k.

As in the classical case, we then have the following central result.

Proposition 7.5 (Continuation). Let F,G : X ( X be homotopic lower semi-
continuous multivalued maps with closed and acyclic values, and let SF and SG be
isolated invariant sets for F and G, respectively, which are related by continuation.
Then the Conley index C(SF , F ) is isomorphic to the Conley index C(SG, G).

Proof: We can assume without loss of generality that F ≤ G, and that SF
and SG are related by an elementary continuation. Let NF , NG, and P be as in
Definition 7.4. Since we have F ≤ G, one obtains the inclusion

Pi
F

= Pi ∪ cl(F (P1) \NF ) = Pi ∪ cl(F (P1) \ P1)

⊆ Pi ∪ cl(G(P1) \ P1) = Pi ∪ cl(G(P1) \NG) = Pi
G
.
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Figure 5. The finite T0 topological space X used in Example 7.6.
The left panel shows a simplicial complex in the form of a penta-
gon, given by five vertices and five edges. Using the order given
by the face relationship, one obtains the ten-point finite topological
space X, which is shown in the right panel via its poset representa-
tion.

Thus we have a (non-commutative) diagram

P
F

P P

P
G

b
�
�

FP

?

j

@
@I

ιP,F

�
�	 ιP,Gb@@GP

in which j denotes inclusion. According to Lemma 6.2 one has j∗(FP )∗ = (jFP )∗

as a map from H∗(P ) to H∗(P
G

). Moreover, our assumption F ≤ G immediately
implies jFP ≤ GP , and therefore Lemma 7.3 yields (jFP )∗ = (GP )∗. Since the
right triangle is in fact commutative, the map j∗ is an isomorphism. Thus the
index map IP,F of P with respect to F is given by

(ιP,F )−1∗ (FP )∗ = (ιP,F )−1∗ j
−1
∗ j∗(FP )∗ = (ιP,G)−1∗ (GP )∗ = IP,G,

and this furnishes in particular L(H∗(P ), IP,F ) = L(H∗(P ), IP,G). In other words,
the Conley indices C(SF , F ) and C(SG, G) are isomorphic. �

To close this section, we present a detailed example which illustrates the concept
of continuation, and also provides further insight into isolated invariant sets and
their Conley indices.

Example 7.6 (Continuation of isolated invariant sets). For this example, we let X
denote the finite topological space which is generated by a simplicial representation
of a pentagon, as shown in Figure 5. Using the Alexandrov topology induced by
the face relation, one obtains the ten-point topological space X indicated in the
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x F (x)

0 0
1 0
2 0
3 0 1 2
4 2
5 2 3 4 5 6 7 8
6 8
7 0 8 9
8 0
9 0

Figure 6. Definition of the multivalued map F : X ( X. The left
image shows the graph of F . For this, we represent the pentagon
from Figure 5 as a line segment, whose end points are identified.
The table on the right lists all function values F (x).

x G(x)

0 0 1 2
1 0 1 2
2 0 1 2
3 0 1 2
4 2
5 2 3 4 5 6 7 8
6 4 5 6 7 8
7 0 4 5 6 7 8 9
8 0
9 0 1 2

Figure 7. Definition of the multivalued map G : X ( X. The
left image shows the graph of G. As before, the pentagon from
Figure 5 is represented by a line segment with identified end points.
The table on the right lists all function values G(x).

right panel of the figure as a poset. Note that we can identify X with the set Z10,
where the topology is given as in the poset.
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On the topological space X, we consider the two multivalued maps F : X ( X
and G : X ( X which are defined in the tables in Figures 6 and 7, respectively.
In addition, these two figures show the graphs of these maps, where we represent
the pentagon from Figure 5 as a line segment, whose end points correspond to 0
and are identified. Both maps are lower semicontinuous and have closed and
acyclic values. In addition, one can easily see that both maps give rise to a Morse
decomposition with two isolated invariant sets, namely

SF = {0} and RF = {5} for F , and

SG = {0, 1, 2} and RG = {5, 6, 7} for G.

We claim that the isolated invariant sets (SF , F ) and (SG, G) are related by an
elementary continuation. For this, we use the isolating sets NF = NG = {0, 1, 2},
as well as the topological pair P = (P1, P2) with P1 = {0, 1, 2} and P2 = ∅.
Then one can easily see that P is an index pair for SF in NF with respect to F ,
as well as for SG in NG with respect to G. In addition, the definitions of F
and G immediately imply F ≤ G, which furnishes our claim. Thus, in view of
Proposition 7.5 the Conley indices C(SF , F ) and C(SG, G) are isomorphic. We
leave it to the reader to verify that the only nontrivial homology group occurs in
dimension zero, that it is one-dimensional, and that the index map is the identity.
In other words, both isolated invariant sets have the Conley index of an attracting
fixed point. We note that also (RF , F ) and (RG, G) are related by an elementary
continuation, but leave the verification of this and the index computation to the
reader.

Yet, even more is true. Recall that we use the representation X = Z10 for our
underlying topological space X. By using addition and subtraction modulo 10 we
can then define the maps Fi : X ( X via

(9)
Fi(a) = F (a− i) + i ⊆ X for even i ∈ Z10,

Fi(a) = G(a− i+ 1) + i− 1 ⊆ X for odd i ∈ Z10,

for every a ∈ X. These definitions give a fence F0 ≤ F1 ≥ F2 ≤ . . . F9 ≥ F0

of lower semicontinuous multivalued maps with closed and acyclic values. By
suitably adapting the argument from above, one can show that for odd i the map Fi
has the isolated invariant set SFi

= {i−1, i, i+1}. Furthermore, this set is related
by an elementary continuation to both the isolated invariant set SFi−1

= {i − 1}
for Fi−1, as well as to the isolated invariant set SFi+1

= {i + 1} for Fi+1. This in
turn shows for example that SF0 = {0} and SF4 = {4} are related by continuation.
This is illustrated in Figure 8, where we only depict the first six functions of the
fence, and indicate the isolated invariant sets in orange.

8. Future work and open problems

In this paper, we have developed a notion of isolated invariant sets and Conley
index for multivalued maps on finite topological spaces. Our theory requires these
maps to be lower semicontinuous with closed and acyclic values. In addition, we
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Figure 8. A sample fence F0 ≤ F1 ≥ F2 ≤ . . . of lower semi-
continuous multivalued maps Fi : X ( X with closed and acyclic
values, as defined in (9). The panels depict the first six functions of
the fence. The associated isolated invariant sets SFi

are indicated
in orange, and they are related by continuation.

have established first properties of these objects, which mimic the corresponding
results in the setting of classical dynamics. We would like to point out, however,
that crucial assumptions concerning isolation had to be completely changed, due to
poor separation in finite topological spaces. In addition, due to space constraints,
we have omitted a number of properties of the Conley index, such as for example
its additivity, and how it can be used to detect heteroclinic orbits.

While the results of this paper are very general and should be useful in a number
of applied situations, we would like to close with a comment on one unresolved
issue. To explain this in more detail, recall that classical dynamics can be broadly
divided into continuous-time and discrete-time. As we saw earlier in this paper,
on finite topological spaces the continuous-time analogue is trivial. Nevertheless,
there is a dynamical theory which mimics the behavior of flows, and it is based on
the concepts of combinatorial vector and multivector fields, see [17, 18, 24, 32]. In
these approaches, the flow-like behavior is achieved by requiring solutions to move
between adjacent elements of the space via their shared boundary. In contrast,
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Figure 9. Two sample combinatorial vector fields in the sense of
Forman. While the one depicted on the left can be represented
via an admissible multivalued map F : X ( X on the underlying
finite topological space with the same overall dynamics, this is not
possible for the vector field shown on the right. There exists no
lower semicontinuous G : Y ( Y with closed and acyclic values
for which the set S = {B,AC} is an isolated invariant set, and
such that the map G has the same Morse graph as the indicated
combinatorial vector field.

the results of the present paper allow for large jumps in the orbits via iteration of
a multivalued map, i.e., our results mimic the discrete-time case.

It is natural to wonder what the relationship is between combinatorial vector
and multivector fields, and the theory of this paper. For classical dynamics it
has been shown in [27, 28] that every isolated invariant set for a continuous-time
dynamical system is also an isolated invariant set for the discrete-time time-one-
map. In this sense, continuous-time dynamical systems can also be studied via
discrete-time results. Is the same true in the case of combinatorial vector fields?
To illustrate this, Figure 9 shows two different combinatorial Forman vector fields.
The one on the left is defined on a 2-simplex, while the one on the right is defined
on a simplicial complex representing the boundary of a triangle. One can easily
see that the dynamics of the left vector field can equivalently be described by
a multivalued map F : X ( X, where X denotes the associated seven-point
finite space. One just has to map every vertex to its opposite edge, every edge
to everything along the boundary except itself, and the triangle to everything
— and the resulting Morse graph induced by F is the same as the Morse graph
associated with the depicted combinatorial vector field. However, this is not
possible for the example on the right. If Y denotes the six-point finite space
given by the boundary of the triangle, then one can show that there exists no
lower semicontinuous multivalued map G : Y ( Y with closed and acyclic values
for which the set S = {B,AC} (consisting of a vertex and the opposite edge) is
an isolated invariant set, and such that the Morse graph of G equals the Morse
graph of the indicated Forman vector field. This failure is due to our last two
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requirements on G. It is therefore an interesting open problem as to whether our
theory could be generalized to allow for a larger class of multivalued maps.
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