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Abstract

We prove that the simplicial complex whose simplices are the nonempty partial bases of Fn

is homotopy equivalent to a wedge of (n− 1)-spheres. Moreover, we show that it is Cohen–
Macaulay.

1. Introduction

The curve complex C(Sg) of an oriented surface Sg of genus g was introduced by Harvey as
an analogue of Tits buildings for the mapping class group Mod(Sg). Harer proved that C(Sg)
is homotopy equivalent to a wedge of (g − 1)-spheres [7]. Masur and Minsky proved that C(Sg)
is hyperbolic [12]. The curve complex became a fundamental object in the study of Mod(Sg).
Since there is an analogy between Aut(Fn) and Mod(Sg), it is natural to seek for an analogue of
C(Sg) in this context. There are many candidates that share properties with the curve complex.

One of these analogues is the poset FC(Fn) of proper free factors of Fn. Hatcher and
Vogtmann [8] proved that its order complex K(FC(Fn)) is Cohen–Macaulay (in particular,
that it is homotopy equivalent to a wedge of (n− 2)-spheres). Bestvina and Feighn [3] proved
that K(FC(Fn)) is hyperbolic. Subsequently, different proofs of this fact appeared in [10] and
[9].

Other natural analogues are defined in terms of partial bases. A partial basis of a free group
F is a subset of a basis of F. Day and Putman [5] defined the complex B(Fn) whose simplices are
sets {C1, . . . , Ck} of conjugacy classes of Fn such that there exists a partial basis {v1, . . . , vk}
with Ci = JviK for 1 ≤ i ≤ k. They proved that B(Fn) is 0-connected for n ≥ 2 and 1-connected
for n ≥ 3 [5, Theorem A], that a certain quotient is (n− 2)-connected [5, Theorem B] and they
conjectured that B(Fn) is (n− 2)-connected [5, Conjecture 1.1]. As an application, they used
B(Fn) to prove that the Torelli subgroup is finitely generated.

In this paper we study the simplicial complex PB(Fn) with simplices the nonempty partial
bases of Fn. Our main result is the following.

Theorem 6.2. The complex PB(Fn) is (n− 1)-spherical. Moreover, it is Cohen–Macaulay.

In Section 2 we review some basic definitions and results on posets.
In Section 3 we prove Theorem 3.1, which is a version of a result due to Quillen [17, Theorem

9.1]. Our version produces an explicit basis of the top homology group of X. The proof is based
on Piterman’s proof of Quillen’s Theorem [16, Teorema 2.1.28], which uses Barmak–Minian’s
non-Hausdorff mapping cylinder argument [2].

In Section 4 we review the basic facts on partial bases and free factors and we state earlier
results by Hatcher and Vogtmann [8] which relate different complexes and posets associated
to a free group.
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In Section 5 we prove that the link lk(B0,PB(Fn)) is connected if n− |B0| = 2 and simply
connected if n− |B0| = 3.

In Section 6 we prove Theorem 6.2. The key idea is to compare the link lk(B0,PB(Fn))
(which is (n− |B0| − 1)-dimensional) with FC(Fn)>〈B0〉 (which is (n− |B0| − 2)-dimensional).
In order do this, we have to consider the (n− |B0| − 2)-skeleton of lk(B0,PB(Fn)). Finally,
using the basis given by Theorem 3.1, we can understand what happens when we pass from
lk(B0,PB(Fn)(n−2)) to lk(B0,PB(Fn)). We proceed by induction on n− |B0|.

Note. The author is grateful to Andrew Putman, who was the referee for this paper and
pointed out that the original proof for Propositions 5.4 and 5.9 could be greatly simplified. To
this end, he provided the statement of Theorems 5.3 and 5.7 and a proof of Theorem 5.7.

The original proof of Theorem 6.2 appeared in the author’s thesis [18]. One of the main steps
in that proof was to obtain a presentation for SAut(Fn, B0) analogous to Gersten’s classical
presentation of SAut(Fn) [6]. This involved many computations using McCool’s method [13,
14] and the Reidemeister–Schreier method. Then to prove Propositions 5.4 and 5.9 we had
to imitate the proof of [5, Theorem A] using the presentation for SAut(Fn, B0) instead of
Gersten’s presentation.

Another proof of Theorem 6.2 was obtained independently by Andrew Putman and Neil
Fullarton about the same time as we finished the original version of this paper.

2. Some preliminaries on posets

If K is a simplicial complex, X (K) denotes the face poset of K, that is the poset of simplices
of K ordered by inclusion. If X is a poset K(X) denotes the order complex of X, that is the
simplicial complex with simplices the chains of X. Both the face poset and the order complex
are functorial. The complex K(X (K)) is the barycentric subdivision K ′ of K. Throughout the
paper we consider homology with integer coefficients and C̃•(K) is the augmented simplicial
chain complex. Let λ : C̃•(K)→ C̃•(K

′) be the subdivision operator α 7→ α′. If X is a poset
Xop denotes the poset X with the opposite order and we write H̃•(X) for the homology
H̃•(K(X)). We thus have H̃•(X) = H̃•(X

op). Recall that if X is a poset and x ∈ X the height
of x denoted h(x) is the dimension of K(X≤x). If K is a simplicial complex we can identify
X (lk(σ,K)) = X (K)>σ by the map τ 7→ σ ∪ τ . If K1,K2 are simplicial complexes we have
C̃•(K1 ∗K2) = C̃•(K1) ∗ C̃•(K2) (here ∗ denotes the join of chain complexes, defined as the
suspension of the tensor product). Recall that the join of two posets X1, X2 is the disjoint
union of X1 and X2 keeping the given ordering within X1 and X2 and setting x1 < x2 for
every x1 ∈ X1 and x2 ∈ X2 [1, Definition 2.7.1]. We have K(X1 ∗X2) = K(X1) ∗ K(X2). If X
is a poset and x ∈ X, then the link lk(x,X) = X<x ∗X>x is the subposet of X consisting of
elements that can be compared with x. We have lk(x,K(X)) = K(lk(x,X)).

Definition 2.1. Let f : X → Y be an order preserving map. The non-Hausdorff mapping
cylinder M(f) is the poset given by the following order on the disjoint union of X and Y . We
keep the given ordering within X and Y and for x ∈ X, y ∈ Y we set x < y in M(f) if f(x) ≤ y
in Y .
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In the context of preorders (equivalently, Alexandrov spaces) this construction is an analogue
of the usual mapping cylinder. If j : X →M(f), i : Y →M(f) are the inclusions, then K(i) is
a homotopy equivalence. Since j ≤ if we also have K(j) ' K(if). For more details see [1, 2.8].

Definition 2.2. A simplicial complex K is said to be n-spherical if dim(K) = n and K is
(n− 1)-connected. We say that K is homologically n-spherical if dim(K) = n and H̃i(K) = 0
for every i < n. Recall that K is Cohen–Macaulay if K is n-spherical and the link lk(σ,K) is
(n− dim(σ)− 1)-spherical for every simplex σ ∈ K. A poset X is (homologically) n-spherical
if K(X) is (homologically) n-spherical.

Remark 2.3. Note that from this definition it follows that a homologically 0-spherical
complex K is nonempty.

Recall that if f : X → Y is a map of posets, the fiber of f under y is the subposet f/y =
{x : f(x) ≤ y} ⊆ X.

Definition 2.4. An order preserving map f : X → Y is (homologically) n-spherical, if
Y>y is (homologically) (n− h(y)− 1)-spherical and f/y is (homologically) h(y)-spherical for
all y ∈ Y .

Proposition 2.5. Let f : X → Y be homologically n-spherical. Then for every x ∈ X we
have h(f(x)) ≥ h(x).

Proof. Let y = f(x). Since x ∈ f/y and f/y is homologically h(y)-spherical we have h(x) ≤
dim(f/y) = h(y).

Proposition 2.6. A homologically n-spherical map f : X → Y is surjective.

Proof. Let y ∈ Y and let r = h(y). Since f/y is homologically r-spherical, dim(f/y) = r.
So there is x ∈ f/y with h(x) = r. Let ỹ = f(x). We obviously have ỹ ≤ y. By Proposition 2.5
we have h(ỹ) ≥ h(x) = r. Therefore we have ỹ = y.

From the definition of spherical map we also have the following:

Proposition 2.7. If f : X → Y is homologically n-spherical then dim(X) = dim(Y ) = n.
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3. A variation on Quillen’s result

The first part of the following result is due to Quillen [17, Theorem 9.1]. To prove the second
part we build on the proof of the first part given by Piterman [16, Teorema 2.1.28]. The idea
of considering the non-Hausdorff mapping cylinder of f : X → Y and removing the points of
Y from bottom to top is originally due to Barmak and Minian [2]. The word homologically in
the statement of Theorem 3.1 is parenthesized because the result holds both with and without
it. We prove the “homologically spherical” version of the result, the other version then follows
from Quillen’s original result [17, Theorem 9.1].

Theorem 3.1. Let f : X → Y be a (homologically) n-spherical map between posets such
that Y is (homologically) n-spherical. Then X is (homologically) n-spherical, f∗ : H̃n(X)→
H̃n(Y ) is an epimorphism and

H̃n(X) ' H̃n(Y )⊕
⊕
y∈Y

H̃h(y)(f/y)⊗ H̃n−h(y)−1(Y>y).

Moreover suppose that X = X (K) for a certain simplicial complex K and
(i) If f(σ1) ≤ f(σ2) then lk(σ2,K) ⊆ lk(σ1,K).
(ii) If f(σ1) ≤ f(σ2) and f(τ1) ≤ f(τ2) then f(σ1 ∪ τ1) ≤ f(σ2 ∪ τ2), whenever σ1 ∪ τ1, σ2 ∪
τ2 ∈ K.
(iii) For every y ∈ Y and every σ ∈ f−1(y), the map f∗ : H̃n−h(y)−1(X>σ)→ H̃n−h(y)−1(Y>y)
is an epimorphism.

Then we can produce a basis of H̃n(K) as follows. Since f∗ is an epimorphism, we can take
{γi}i∈I ⊆ H̃n(K) such that {f∗(γ′i)}i∈I is a basis of H̃n(Y ). In addition, for every y ∈ Y we
choose x ∈ f−1(y) and we consider the subcomplexes Ky = {σ : f(σ) ≤ y} and Ky = lk(x,K).
By (i), Ky does not depend on the choice of x. Also by (i), Ky ∗Ky is a subcomplex of K. Let

f̃ : X (Ky)→ Y>y be defined by f̃(τ) = f(x ∪ τ). By (ii), f̃ does not depend on the choice of

x. We take a basis {αi}i∈Iy of H̃h(y)(Ky) and using (iii) we take {βj}j∈Jy ⊆ H̃n−h(y)−1(Ky)

such that {f̃∗(β′j)}j∈Jy is a basis of H̃n−h(y)−1(Y>y). Then

{γi : i ∈ I} ∪ {αi ∗ βj : y ∈ Y, i ∈ Iy, j ∈ Jy}

is a basis of H̃n(K).

Proof. Let M = M(f) be the non-Hausdorff mapping cylinder of f and let j : X →M ,
i : Y →M be the inclusions. We have j∗ = i∗f∗. Since f is n-spherical we have dim(M) = n+ 1.

Let Yr = {y ∈ Y : h(y) ≥ r}. For each r we consider the subposet Mr = X ∪ Yr of M . We
have Mn+1 = X and M0 = M . Let

Lr =
∐

h(y)=r

lk(y,Mr) =
∐

h(y)=r

f/y ∗ Y>y.

For each r we consider the Mayer-Vietoris sequence for the open covering {U, V } of K(Mr−1)
given by

U = K(Mr−1)− {y ∈ Y : h(y) = r − 1}

V =
⋃

h(y)=r−1

◦
st(y,K(Mr−1))

where
◦
st(v,K) denotes the open star of v in K. We have homotopy equivalences U ' K(Mr)

and U ∩ V ' K(Lr). Since f is a homologically n-spherical map lk(y,Mr−1) is homologically
n-spherical, so the homology of Lr is concentrated in degrees 0 and n. The tail of the sequence is
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0→ H̃n+1(Mr)→ H̃n+1(Mr−1) and since H̃n+1(M0) = H̃n+1(Y ) = 0 we have H̃n+1(Mr) = 0
for every r. We also have isomorphisms H̃i(Mr)→ H̃i(Mr−1) if 0 ≤ i ≤ n− 1 (since Lr may
not be connected, we have to take some care when i = 0, 1). From this we conclude that X is
homologically n-spherical and we also have short exact sequences

0→ H̃n(Ln)
in+1−−−→H̃n(X)

pn+1−−−→ H̃n(Mn)→ 0

· · ·

0→ H̃n(Lr−1)
ir−→H̃n(Mr)

pr−→ H̃n(Mr−1)→ 0

· · ·

0→ H̃n(L0)
i1−→H̃n(M1)

p1−→ H̃n(M)→ 0.

Here the map ir is the map induced by the map Lr−1 →Mr given by the coproduct of the
inclusions lk(y,Mr−1)→Mr and the map pr is induced by the inclusion Mr →Mr−1. By
induction on r, it follows that these sequences are split and that H̃n(Mr) is free for every r.
We have

H̃n(Lr) =
⊕
h(y)=r

H̃r(f/y)⊗ H̃n−r−1(Y>y)

and therefore using the isomorphism i∗ : H̃n(Y )→ H̃n(M) we obtain

H̃n(X) = H̃n(Y )
⊕
y∈Y

H̃h(y)(f/y)⊗ H̃n−h(y)−1(Y>y).

Now H̃n(j) = p1 · · · pn is an epimorphism so f∗ : H̃n(X)→ H̃n(Y ) is also an epimorphism.
We will need the following claim which is proved at the end of the proof.

Claim. Let y ∈ Y , r = h(y). Then for every α ∈ Zr(Ky), β ∈ Zn−r−1(Ky) we have [(α ∗
β)′] = [α′ ∗ f̃∗(β′)] in H̃n(Mr+1).

Let jr : X →Mr be the inclusion. We have jr∗ = pr+1 ◦ . . . ◦ pn+1. Now by induction on r
we prove that for 0 ≤ r ≤ n+ 1

{jr∗(γ′i) : i ∈ I} ∪ {jr∗((αi ∗ βj)′) : y ∈ Y, i ∈ Iy, j ∈ Jy, h(y) < r}

is a basis of H̃n(Mr). Since j0 = j and j∗ = i∗f∗ it holds when r = 0. Now, assuming it holds
for r, we prove it also holds for r + 1. By the split exact sequence obtained above, it suffices
to check that

{jr+1((αi ∗ βj)′) : i ∈ Iy, j ∈ Jy}

is a basis of H̃n(lk(y,Mr)) for every y ∈ Y of height r. Now in H̃n(Mr+1) we have

jr+1((αi ∗ βj)′) = (αi ∗ βj)′ = α′i ∗ f̃∗(β′j)

and the induction is complete, for {α′i ∗ f̃∗(β′j)}i∈Iy,j∈Jy is a basis of H̃n(lk(y,Mr)). We have

jn+1 = 1X and taking r = n+ 1 we get the desired basis of H̃n(K).

Proof (claim). We consider chain maps φ1, φ2 : C̃•(Ky ∗Ky)→ C̃•(K(Mr+1)) defined by

φ1 : C̃•(Ky ∗Ky) ↪→ C̃•(K)
λ−→ C̃•(K(X)) ↪→ C̃•(K(Mr+1))

and

φ2 : C̃•(Ky ∗Ky) = C̃•(Ky) ∗ C̃•(Ky)
λ∗λ−−→ C̃•(K(f/y)) ∗ C̃•(K(X (Ky)))

1∗f̃∗−−−→
C̃•(K(f/y)) ∗ C̃•(K(Y>y)) = C̃•(K(f/y ∗ Y>y)) ↪→ C̃•(K(Mr+1)).
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Note that φ1(α ∗ β) = (α ∗ β)′ and φ2(α ∗ β) = α′ ∗ f̃∗(β′). Using the Acyclic Carrier Theorem
[15, Theorem 13.3] we will prove that φ1 and φ2 are chain homotopic. We define an acyclic
carrier Φ: Ky ∗Ky → K(Mr+1). If σ ∪ τ is a simplex in Ky ∗Ky, with σ ∈ Ky and τ ∈ Ky,
we define

Φ(σ ∪ τ) =

{
K
(
Mr+1≤f̃(τ)

)
if τ 6= ∅.

K
(
Mr+1≤σ

)
if τ = ∅.

If σ1 ∪ τ1 ⊆ σ2 ∪ τ2 are simplices of Ky ∗Ky where σi ∈ Ky and τi ∈ Ky are possibly empty,

we have σ1 ⊆ σ2 and τ1 ⊆ τ2. In M we have σ1 ≤ σ2 ≤ y ≤ f̃(τ1) ≤ f̃(τ2) so in any case Φ(σ1 ∪
τ1) ⊆ Φ(σ2 ∪ τ2). So Φ is a carrier. It is obviously acyclic.

Now we prove that φ1 and φ2 are carried by Φ. To show that φ1 is carried by Φ we need
to show that φ1(σ ∪ τ) = (σ ∪ τ)′ is supported on Φ(σ ∪ τ). If τ is empty it is clear. If τ is
nonempty, we consider x ∈ f−1(y). In M , by (ii) we have σ ∪ τ ≤ f(σ ∪ τ) ≤ f(x ∪ τ) = f̃(τ).

Therefore (σ ∪ τ)′ is supported on Φ(σ ∪ τ) = K
(
Mr+1≤f̃(τ)

)
. It is easy to see that φ2 is also

carried by Φ.
Finally by the Acyclic Carrier Theorem we have

[(α ∗ β)′] = [φ1(α ∗ β)] = [φ2(α ∗ β)] = [α′ ∗ f̃∗(β′)]

and we are done.

Remark 3.2. We can consider ϕ : X →Mr+1 given by

ϕ(x) =

{
x if h(x) < r + 1

f(x) if h(x) ≥ r + 1
.

Then jr+1 ≤ ϕ. Therefore jr+1∗ ' K(ϕ) and j∗ = ϕ∗. In the previous proof we actually have

ϕ∗((α ∗ β)′) = α′ ∗ f̃∗(β′) in Zn(Mr+1).

4. Partial bases and free factors

Recall that a subgroup H of a group G is a free factor if there is a subgroup K ≤ G such
that the natural map H ∗K → G is an isomorphism. A partial basis of a free group Fn is a
subset of a basis of Fn. If H is a free factor of Fn and B is a basis of H then B is a partial
basis of Fn. If B is a partial basis of Fn then H = 〈B〉 is a free factor of Fn.

Proposition 4.1 ([11, p. 117]). Suppose H is a free factor of Fn and K ≤ H. Then K is
a free factor of H if and only if K is a free factor of Fn.

The free factor poset FC(Fn) of the free group Fn is the poset of nontrivial proper free factors
of Fn ordered by inclusion. This poset was studied by Hatcher and Vogtmann [8]. There is an
order preserving map

g : X
(

PB(Fn)(n−2)
)
→ FC(Fn)

σ 7→ 〈σ〉
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and if B is a partial basis we have the restriction g : X
(
PB(Fn)(n−2)

)
>B
→ FC(Fn)>〈B〉.

Instead of working with this map, we will work with the map g̃ : X
(
lk
(
B,PB(Fn)(n−2)

))
→

FC(Fn)>〈B〉 given by σ 7→ 〈B ∪ σ〉 which can be identified with g.

Theorem 4.2 (Hatcher–Vogtmann, [8, §4]). If H ≤ Fn is a free factor, FC(Fn)>H is (n−
rk (H)− 2)-spherical.

We will also need to consider the following simplicial complex Y with vertices the free factors
of Fn that have rank n− 1. A set of free factors {H1, . . . ,Hk} is a simplex of Y if there is a
basis {w1, . . . , wn} of Fn such that for 1 ≤ i ≤ k we have Hi = 〈w1, . . . , ŵi, . . . , wn〉. If H ≤ Fn
is a free factor, we can consider the full subcomplex YH of Y spanned by the vertices which
are free factors containing H. There is another equivalent definition for Y and YH in terms of
sphere systems, see [8, Remark after Corollary 3.4].

Theorem 4.3 (Hatcher–Vogtmann,[8, Theorem 2.4]). Let H be a free factor of Fn. Then
YH is (n− rk (H)− 1)-spherical.

There is a spherical map f : X (Y
(n−rk(H)−2)
H )→ (FC(Fn)>H)op that maps {H1, . . . ,Hk} to

H1 ∩ · · · ∩Hk. The map f was used in Hatcher and Vogtmann’s proof of Theorem 4.2. The
following lemma will be required in Sections 5 and 6.

Lemma 4.4. Let B = {v1, . . . , vl} be a partial basis of Fn and let H = 〈B〉.
Let {Hl+1, . . . ,Hn} be a simplex of YH . Then B can be extended to a basis
{v1, . . . , vl, wl+1, . . . , wn} of Fn such that

Hi = 〈v1, . . . , vl, wl+1, . . . , ŵi, . . . , wn〉

for l + 1 ≤ i ≤ n.

Proof. By definition of YH there is a basis {w1, . . . , wn} of Fn such that

Hi = 〈w1, . . . , ŵi, . . . , wn〉

for l + 1 ≤ i ≤ n and we have H ≤
⋂n
i=l+1Hi = 〈w1, . . . , wl〉. Then by Proposition 4.1 H is

a free factor of 〈w1, . . . wl〉 and since the rank of both groups is l they must be equal. Thus
{v1, . . . , vl, wl+1, . . . , wn} is a basis of Fn with the desired property.

5. Connectivity and simple connectivity

Definition 5.1. Let K be a CW complex. By a 0-loop in K we mean a pair of vertices of
K which we think of as a map S0 → K. By a 1-loop we mean a closed edge path in K.

Definition 5.2. Let K be a CW complex. A set of 0-loops in K satisfies the π0-spanning
property if the space obtained from K by attaching 1-cells using these maps is 0-connected. A
set of 1-loops in K satisfies the π1-spanning property if the space obtained from K by attaching
2-cells using these maps is 1-connected.

The following result is immediate and can be seen as the case n = 0 of Theorem 3.1.
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Theorem 5.3. Let f : X → Y be a 0-spherical map. If we choose:
• A set {γi}i∈I of 0-loops in X such that {f∗(γi)}i∈I has the π0-spanning property in Y .
• For each y ∈ Y a set {αi}i∈Iy of 0-loops with the π0-spanning property in |f−1(y)|.

Then the set

{γi : i ∈ I} ∪ {αi : y ∈ Y, i ∈ Iy}

has the π0-spanning property in X.

Now using Theorem 5.3 we prove that in PB(Fn) the links of (n− 3)-simplices are 1-spherical.

Proposition 5.4. Let B0 be a partial basis of Fn with |B0| = n− 2. Then lk(B0,PB(Fn))
is connected.

Proof. Let H0 = 〈B0〉. We will apply Theorem 5.3 to the map

g̃ : lk(B0,PB(Fn)(n−2))→ FC(Fn)>H0
.

We need to choose the γi and the αi.
By Theorem 4.3 YH0

is connected. Thus the boundaries of the 1-simplices give a set of

0-loops in Y
(0)
H0

with the π0-spanning property. Since the map f : X (Y
(0)
H0

)→ (FC(Fn)>H0
)op

is surjective we see that this set of 0-loops has the π0-spanning property in (FC(Fn)>H0
)op.

Now by Lemma 4.4, for each 1-simplex {H,H ′} in YH0
we can consider a 1-simplex {v, w}

in lk(B0,PB(Fn)) such that H = 〈B0, v〉 and H ′ = 〈B0, w〉. Then by applying g̃∗ to the set of
0-loops {γi}i∈I given by the {v, w} we obtain a set of 0-loops with the π0-spanning property.

If H ∈ FC(Fn)>H0
, we can take {αi}i∈IH to be the set of all 0-loops in g̃/H. Consider w

such that Fn = 〈H,w〉. If v, v′ ∈ g̃/H, then v − w − v′ is an edge path in lk(B0,PB(Fn)). Thus
these 0-loops also are null-homotopic.

By Theorem 5.3 we have a set of 0-loops in lk(B0,PB(Fn)(n−2)) with the π0-spanning
property which are null-homotopic in lk(B0,PB(Fn)) and so we are done.

If α = {x, x′} and β = {y, y′} are 0-loops in X and Y respectively, the join α ∗ β is the 1-loop
in X ∗ Y given by x− y − x′ − y′ − x.

Lemma 5.5. Let X and Y be simplicial complexes of dimension 0. Suppose {αi}i∈I and
{βj}j∈J are sets of 0-loops in X and Y with the π0-spanning property. Then the set of loops
{αi ∗ βj}(i,j)∈I×J has the π1-spanning property in X ∗ Y .

Proof. Choose x0 ∈ X, y0 ∈ Y . Then {{x0, y} : y ∈ Y } ∪ {{x, y0} : x ∈ X} is a spanning
tree for X ∗ Y . Thus π1(X ∗ Y, x0) is free with basis the 1-loops x0 − y0 − x− y − x0 with
x 6= x0, y 6= y0. Then it is enough to show that these loops are null-homotopic in the space
Z obtained from X ∗ Y by attaching 2-cells using the 1-loops αi ∗ βj for (i, j) ∈ I × J . Now
since {αi}i∈I and {βj}j∈J have the π0-spanning property we can consider x1, . . . , xk = x and
y1, . . . , yl = y such that for s = 0, . . . , k − 1 there is is ∈ I such that {xs, xs+1} = αis and for
every t = 0, . . . , l − 1 there is jt ∈ J such that {yt, yt+1} = βjt . Now if 0 ≤ t ≤ l − 1, since the
1-loops αi0 ∗ βjt , . . . , αik−1

∗ βjt are null-homotopic in Z, the loop γt = (x0 − yt − xk − yt+1 −
x0) is null-homotopic in Z. Finally since γ0, . . . , γt−1 are null-homotopic in Z we have that
x0 − y0 − xl − yk − x0 is null-homotopic in Z, concluding the proof.

In the following standard lemma C(A) denotes the cone over A.
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Lemma 5.6. Let X be a connected CW complex and let {Ai}i∈I be a family of connected
subcomplexes of X. For each i ∈ I take a set {γj}j∈Ji of 1-loops in Ai with the π1-spanning

property in Ai. Let X̃ be the space obtained from X by attaching 2-cells using the maps γj
with i ∈ I and j ∈ Ji. Then the inclusion X → X ∪i∈I C(Ai) extends to a map

X̃ → X ∪i∈I C(Ai)

inducing an isomorphism on the fundamental group.

Proof. Let Ãi = Ai ∪j∈Ji e2j . Then X̃ is the pushout of
∐
i∈I Ãi ←

∐
i∈I Ai → X. For every

i ∈ I let Bi be a contractible space obtained from Ãi by attaching cells of dimension greater
than 2. Let Y be the pushout of

∐
i∈I Bi ←

∐
i∈I Ai → X. Then the inclusion X̃ ↪→ Y induces

an isomorphism on π1 since Y is obtained from X̃ by attaching cells of dimension greater than
2. Now for each i ∈ I we can extend the inclusion Ai ↪→ C(Ai) to a map Bi → C(Ai). Using
the gluing theorem [4, 7.5.7] we obtain a homotopy equivalence Y → X ∪i∈I C(Ai) which is
the identity on X.

Theorem 5.7. Let f : X → Y be a 1-spherical map. Assume Y is 1-spherical. Then X is
1-spherical and there is an epimorphism f∗ : π1(X)→ π1(Y ).

Moreover, if we choose:
• A set {γi}i∈I of 1-loops in K(X) such that {f∗(γi)}i∈I has the π1-spanning property in
K(Y ).

• For each y ∈ Y a set {αi}i∈Iy of h(y)-loops in K(f/y) with the πh(y)-spanning property.
• For each y ∈ Y with h(y) = 0, a set {βj}j∈Jy of 0-loops in K(Y>y) with the π0-spanning

property.
• For each y ∈ Y with h(y) = 0, each i ∈ Iy and each j ∈ Jy a 1-loop ηi,j in K(X) as follows.

If αi = {x, x′} and βj = {y′, y′′} then ηi,j is the concatenation of an edge path from x to
x′ in K(f/y′) and an edge path from x′ to x in K(f/y′′).

Then the set

{γi : i ∈ I} ∪ {αi : y ∈ Y with h(y) = 1 and i ∈ Iy}
∪ {ηi,j : y ∈ Y with h(y) = 0 and (i, j) ∈ Iy × Jy}

has the π1-spanning property in K(X).

Proof. We have that X is connected by Quillen’s result in its original formulation (i.e. the
first part of Theorem 3.1). Let γ = (y1 − y′1 − y2 − y′2 − . . .− yn − y′n − yn+1) be an edge path
in K(Y ) with h(yi) = 0 and h(y′i) = 1. Since f/yi is 0-spherical, we can take xi ∈ f/yi for each
i. Since f/y′i is 1-spherical, we can take an edge path ξi from xi to xi+1 in f/y′i for each i.
Then if γ is the concatenation of ξ1, ξ2, . . . , ξn we have that f∗(γ) is path homotopic to γ. Thus
f∗ : π1(X)→ π1(Y ) is surjective.

Now we prove the second part of the result. The proof is similar to the proof of Theorem 3.1.
Let M = M(f) and consider the subposets Mr as before. We have M2 = X and M0 = M ' Y .
As before, we have

K(M1) = K(X) ∪
⋃

h(y)=1

C(K(f/y))

Then by Lemma 5.6,the map

K(X) ∪
⋃

h(y)=1
i∈Iy

e2i → K(M1)
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induces an isomorphism on π1. Now

K(M) = K(M1) ∪
⋃

h(y)=0

C(K(Y>y ∗ f/y)).

Now consider y ∈ Y with h(y) = 0, i ∈ Iy, j ∈ Jy. If αi = {x, x′} and βj = {y′, y′′}, then in

M1 the loop ηi,j is homotopic to the loop αi ∗ βj . By Lemma 5.5, {αi ∗ βj}j∈Jy,k∈Ky
has the

π1-spanning property in K(Y>y ∗ f/y). Then by Lemma 5.6

K(X) ∪
⋃

h(y)=1
i∈Iy

e2i ∪
⋃

h(y)=0
(i,j)∈Iy×Jy

e2i,j → K(M)

induces an isomorphism on π1. Now in M the loop γi is homotopic to f∗(γi). Since π1(Y ) =
π1(M), the set {f∗(γi)}i∈I has the π1-spanning property in M . Thus

K(X) ∪
⋃

h(y)=1
i∈Iy

e2i ∪
⋃

h(y)=0
(i,j)∈Iy×Jy

e2i,j ∪
⋃
i∈I

e2i

is simply connected.

Proposition 5.8. Let B0 be a partial basis of Fn with |B0| = n− 3. Consider the map
g̃ : lk(B0,PB(Fn)(n−2))→ FC(Fn)>〈B0〉. Consider the set of 1-loops {γi : i ∈ I} given by the
barycentric subdivisions of the boundaries of the 2-simplices of lk(B0,PB(Fn)). Then the set
of 1-loops {g̃∗(γi) : i ∈ I} has the π1-spanning property in K(FC(Fn)>〈B0〉).

Proof. Again, consider Y〈B0〉 which is simply-connected by Theorem 4.3. The boundaries

of the 2-simplices of Y〈B0〉 give a set of 1-loops with the π1-spanning property in Y
(1)
〈B0〉. Thus

by the first part of Theorem 5.7, if we apply f∗ to these 1-loops we obtain a set of 1-loops in
K(FC(Fn)>〈B0〉) with the π1-spanning property.

Now using Lemma 4.4, for each 2-simplex {Hn−2, Hn−1, Hn} in Y〈B0〉 we can take a basis
{v1, . . . , vn} such thatHi = 〈v1, . . . , v̂i, . . . , vn〉 and B0 = {v1, . . . , vn−3}. Then {vn−2, vn−1, vn}
is a 2-simplex in lk(B0,PB(Fn)). Moreover the 1-loop obtained by applying g∗ to the barycentric
subdivision of the boundary of {vn−2, vn−1, vn}, is the loop obtained by applying f∗ to the
barycentric subdivision of the boundary of {Hn−2, Hn−1, Hn}. This completes the proof.

Proposition 5.9. Let B0 be a partial basis of Fn with |B0| = n− 3. Then lk(B0,PB(Fn)
is simply connected.

Proof. By Proposition 5.4 the map g̃ : X (lk(B0,PB(Fn)(n−2)))→ FC(Fn)>〈B0〉 is 1-
spherical. Thus by the first part of Theorem 5.7 the link lk(B0,PB(Fn)) is connected. It remains
to prove that it is simply connected. To this end, we need to choose the three families of loops.
The set {γi}i∈I is the one given by Proposition 5.8.

If H ∈ FC(Fn)>〈B0〉 has height 1, we consider a set of 1-loops in lk(B0,PB(H)) with the
π1-spanning property. The set {αi}i∈IH is then given by the barycentric subdivision of these
1-loops. Now since H is a free factor of rank n− 1, there is an element w ∈ Fn such that
Fn = 〈w〉 ∗H. Then by considering the cone w ∗ lk(B0,PB(H)), which is a subcomplex of
lk(B0,PB(Fn)), we see that αi is null-homotopic for every i ∈ IH .

For each H ∈ FC(Fn)>〈B0〉 of height 0 we choose the sets {αi}i∈IH and {βj}j∈JH arbitrarily.

We explain how to choose the loops ηi,j for (i, j) ∈ IH × JH . Suppose αi = {x, x′} and βj =
{H ′, H ′′}. By Proposition 4.1, we can take z′, z′′ ∈ Fn so that H ′ = 〈H, z′〉 and H ′′ = 〈H, z′′〉.
Then ηi,j is the 1-loop given by x− z′ − x′ − z′′ − x. To prove that ηi,j is null-homotopic
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we note that z′, z′′ ∈ lk(B0 ∪ {x},PB(Fn)) = lk(B0 ∪ {x′},PB(Fn)) which is connected by
Proposition 5.4.

Therefore by Theorem 5.7 we have a set of loops in lk(B0,PB(Fn)(n−2)) = lk(B0,PB(Fn))(1)

with the π1-spanning property which are, as we have seen, null-homotopic in lk(B0,PB(Fn)).
Thus lk(B0,PB(Fn)) is simply connected.

6. PB(Fn) is Cohen–Macaulay

We first prove the following technical lemma.

Lemma 6.1. Let B be a partial basis of Fn, |B| = l. Let γ ∈ H̃n−l−2(FC(Fn)>〈B〉). There
exists γ ∈ Bn−l−2(lk(B,PB(Fn))) such that g̃∗(γ

′) = γ.

Proof. We define a map φ : Cn−l−1(Y〈B〉)→ Cn−l−1(lk(B,PB(Fn))) as follows. For each
(n− l − 1)-simplex σ = {Hl+1, . . . ,Hn} of Y〈B〉 we use Lemma 4.4 to obtain a basis B ∪
{wl+1, . . . , wn}. Therefore σ̃ = {wl+1, . . . , wn} is an (n− l − 1)-simplex of lk(B,PB(Fn)). Then
we define the map φ on σ by φ(σ) = σ̃.

Now since f : X (Y
(n−l−2)
〈B〉 )→ (FC(Fn)>〈B〉)

op is (n− l − 2)-spherical [8, §4], by Theorem 3.1

we have an epimorphism f∗ : H̃n−l−2(X (Y
(n−l−2)
〈B〉 ))→ H̃n−l−2(FC(Fn)>〈B〉) and since Y〈B〉 is

(n− l − 2)-connected, there is c ∈ Cn−l−1(Y〈B〉) such that f∗(d(c)′) = γ . We define γ = dφ(c).
We immediately have γ ∈ Bn−l−2(lk(B,PB(Fn))). It is easy to verify that g̃∗(dφ(σ)′) = f∗(dσ

′)
and from this it follows that g̃∗(γ

′) = g̃∗(dφ(c)′) = f∗(dc
′) = γ.

Theorem 6.2. The complex PB(Fn) is (n− 1)-spherical. Moreover, it is Cohen–Macaulay.

Proof. We need to prove that lk(B0,PB(Fn)) is (n− |B0| − 1)-spherical for any partial basis
B0 of Fn. We proceed by induction on k = n− |B0|. For k = 1 the link is 0-dimensional and
obviously nonempty. For k = 2 and k = 3 it follows from Propositions 5.4 and 5.9 respectively.
Now if k ≥ 4 we want to apply Theorem 3.1 to the map

g̃ : X
(

lk
(
B0,PB(Fn)(n−2)

))
→ FC(Fn)>〈B0〉

By Theorem 4.2, FC(Fn)>〈B0〉 is (n− |B0| − 2)-spherical. In addition g̃ is (n− |B0| − 2)-
spherical, since FC(Fn)>H is (n− rk (H)− 2)-spherical if H ∈ FC(Fn)>〈B0〉 and by the induc-
tion hypothesis g̃/H = X (lk(B0,PB(H))) is (rk (H)− |B0| − 1)-spherical. Then by Theorem
3.1, X (lk(B0,PB(Fn)(n−2))) is (n− |B0| − 2)-spherical.

Now we check the hypotheses (i), (ii) and (iii) of Theorem 3.1. If g̃(B1) ⊆ g̃(B2) it is easy to
see that lk(B2, lk(B0,PB(Fn)(n−2))) ⊆ lk(B1, lk(B0,PB(Fn)(n−2))) so (i) holds. Obviously (ii)
holds. And by the induction hypothesis (iii) holds. Thus, the second part of Theorem 3.1 gives a
basis of H̃n−|B0|−2(lk(B0,PB(Fn)(n−2))). By Lemma 6.1 we can choose the γi to be borders. We

need to prove that the remaining elements of this basis are trivial in H̃n−|B0|−2(lk(B0,PB(Fn))).
We only have to show that for all H ∈ FC(Fn)>〈B0〉, i ∈ IH , j ∈ JH

αi ∗ βj ∈ Bn−|B0|−2(lk(B0,PB(Fn)))

By Proposition 4.1, we can take a basis B of H with B0 ⊂ B. Then lk(B0,PB(H)) ∗
lk(B,PB(Fn)) is a subcomplex of lk(B0,PB(Fn)). By the induction hypothesis we have
H̃n−|B|−2(lk(B,PB(Fn))) = 0. So there is ω ∈ Cn−|B|−1(lk(B,PB(Fn))) such that d(ω) =
(−1)|αi| βj . Therefore

d(αi ∗ ω) = d(αi) ∗ ω + (−1)|αi| αi ∗ d(ω) = αi ∗ βj .



Page 12 of 12 THE COMPLEX OF PARTIAL BASES OF A FREE GROUP

Therefore lk(B0,PB(Fn)) is (n− |B0| − 1)-spherical and we are done.

References

1. Jonathan A. Barmak. Algebraic topology of finite topological spaces and applications, volume 2032 of
Lecture Notes in Mathematics. Springer, Heidelberg, 2011.

2. Jonathan Ariel Barmak and Elias Gabriel Minian. Simple homotopy types and finite spaces. Adv. Math.,
218(1):87–104, 2008.

3. Mladen Bestvina and Mark Feighn. Hyperbolicity of the complex of free factors. Adv. Math., 256:104–155,
2014.

4. Ronald Brown. Topology and groupoids. BookSurge, LLC, Charleston, SC, 2006.
5. Matthew Day and Andrew Putman. The complex of partial bases for Fn and finite generation of the

Torelli subgroup of Aut(Fn). Geom. Dedicata, 164:139–153, 2013.
6. S. M. Gersten. A presentation for the special automorphism group of a free group. J. Pure Appl. Algebra,

33(3):269–279, 1984.
7. John L. Harer. Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math.

(2), 121(2):215–249, 1985.
8. Allen Hatcher and Karen Vogtmann. The complex of free factors of a free group. Quart. J. Math. Oxford

Ser. (2), 49(196):459–468, 1998.
9. Arnaud Hilion and Camille Horbez. The hyperbolicity of the sphere complex via surgery paths. J. Reine

Angew. Math., 730:135–161, 2017.
10. Ilya Kapovich and Kasra Rafi. On hyperbolicity of free splitting and free factor complexes. Groups Geom.

Dyn., 8(2):391–414, 2014.
11. Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory. Dover Publications,

Inc., New York, revised edition, 1976. Presentations of groups in terms of generators and relations.
12. Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math.,

138(1):103–149, 1999.
13. J. McCool. A presentation for the automorphism group of a free group of finite rank. J. London Math.

Soc. (2), 8:259–266, 1974.
14. James McCool. Some finitely presented subgroups of the automorphism group of a free group. J. Algebra,

35:205–213, 1975.
15. James R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park,

CA, 1984.
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