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What is super-resolution?

Broadly speaking, super-resolution is concerned with recovering fine
details (high-frequency) from coarse information (low-frequency).

There are two main categories of super-resolution:

Spectral extrapolation – Optical, radar, geophysics, astronomy,
medical imaging, e.g., MRI, problems;
Spatial interpolation – Geometrical or image-processing, e.g.,
in-painting problems.

Remark We shall deal with spectral extrapolation. We shall not deal
with the critical setting of noisy environments. Also, we shall not deal
with the highly motivated spatial setting of super-resolution, where
non-uniform sampling and multiple measurements can play an
essential role.

John J. Benedetto and Weilin Li Super-resolution by means of Beurling minimal extrapolation



Introduction
Theorems
Examples

Conclusion

Background and notation

Our super-resolution model is based on the theory of Candès and
Fernandez-Granda [5], [6] for discrete measures, and our main idea
was inspired by classical work of Beurling [3], [4].

Td is the d-dimensional torus group.
M(Td ) is the space of complex Radon measures on the torus.
‖ · ‖ is the total variation norm.
The Fourier transform of µ is the function µ̂ : Zd → C, defined as

µ̂(m) =

∫
Td

e−2πimx dµ(x).

Λ ⊆ Zd is a finite set.
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The super-resolution problem

The unknown information is modeled as µ ∈ M(Td ), not only discrete
measures. There are two reasons for µ ∈ M(Td ):

Objects (images) are not necessarily supported by discrete sets;
Fine features can be supported in measure 0 non-discrete sets.

The given low-frequency information is modeled as spectral data,
F (n), n ∈ Λ, i.e., there is ν ∈ M(Td ) such that ν̂ = F on Λ. To recover
µ from F , we pose the super-resolution problem,

inf ‖ν‖ subject to ν ∈ M(Td ) and ν̂ = F on Λ. (SR)
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The super-resolution problem, continued

Remark
a. Using weak-∗ compactness arguments, we can show that Problem
(SR) is well-posed (the inf can be replaced with a min), but not
without significant theoretical and computational challenges.

b. Problem (SR) is a convex minimization problem, and we interpret a
solution as a least complicated high resolution extrapolation of F .

c. Independently, DeCastro-Gamboa [7] also use Beurling [3], [4], but
to super-resolve a discrete measure µ, whose support is contained in
the level set of a certain family of generalized polynomials, given
partial generalized moments of µ. In contrast to their problem and
techniques, we use Beurling’s ideas to obtain super-resolution
reconstruction of an arbitrary bounded measure µ, given a finite
subset of its Fourier coefficients.
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Connection with compressed sensing
If the unknown measure µ is of the form,

µ =
N−1∑
m=0

xmδm
N
∈ M(T),

where x ∈ CN , x = (x0, . . . , xN−1), then

µ̂(n) =
N−1∑
m=0

xm e−2πimn/N = FN(x)(n),

the DFT of x . This shows that Problem (SR) is a generalization of the
basis pursuit algorithm [9] for under-sampled DFT data F :

For given F (n), n ∈ Ω ⊆ Z/NZ, solve

min ‖y‖`1 subject to y ∈ CN and FNy = F on Ω ⊆ Z/NZ,
For this reason, super-resolution is a continuous theory of
compressed sensing.
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A theorem of Candès and Fernandez-Granda, d = 1

The following theorem for d = 1 shows that one can reconstruct a
discrete measure whose support satisfies a minimum separation
condition.

Theorem, Candès and Fernandez-Granda [6]

Let ΛM = {−M,−M + 1, . . . ,M} for some integer M ≥ 128 and let
F = µ̂ on ΛM , where µ ∈ M(T) is a discrete measure for which

inf
x,y∈supp(µ), x 6=y

|x − y | ≥ 2
M
.

Then, µ is the unique solution to Problem (SR) given F on ΛM .
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A theorem of Candès and Fernandez-Granda, d > 1

The following theorem for d > 1 shows that one can reconstruct a
discrete measure whose support satisfies a minimum separation
condition.

Theorem, Candès and Fernandez-Granda [6]

Given S = {sj}J
j=1 ⊆ Td and µ ∈ M(Td ) for which supp (µ) ⊆ S. Let

ΛM = {−M,−M + 1, . . . ,M}d , let F be spectral data on ΛM , and let
µ̂ = F on ΛM . There exist Cd , Md > 0 such that if M ≥ Md and

inf
1≤j<k≤J

‖sj − sk‖`∞(Td ) ≥
Cd

M
,

then µ is the unique solution to Problem (SR).
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Definitions based on Beurling’s theory

Let ε be the smallest value attained by Problem (SR), i.e.,

ε = ε(Λ,F ) = inf{‖ν‖ : ν̂ = F on Λ}.

Let E be the set of all solutions to Problem (SR), i.e.,

E = E(Λ,F ) = {ν ∈ M(Td ) : ‖ν‖ = ε and ν̂ = F on Λ}.

If ν ∈ E , then we say ν is a minimal extrapolation from Λ.
Our theory depends essentially on the set,

Γ = Γ(Λ,F ) = {m ∈ Λ: |F (m)| = ε}.
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Functional analysis properties of ε = ε(Λ,F ) and
E = E(Λ,F )

Definitions for µ ∈ M(Td ), Λ ⊆ Zd finite, and µ̂ = F on Λ.

C(Td ; Λ) = {f ∈ C(Td ) : f (x) =
∑
m∈Λ

am e2πim·x , am ∈ C}.

U = U(Td ; Λ) = {f ∈ C(Td ; Λ) : ‖f‖∞ ≤ 1}.

Lµ ∈ C(Td ; Λ)′ defined as

∀f ∈ C(Td ; Λ), Lµ(f ) =

∫
Td

f (x) dµ(x) =
∑
m∈Λ

amF (m).

‖Lµ‖ = supf∈U |Lµ(f )|.
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Functional analysis properties of ε = ε(Λ,F ) and
E = E(Λ,F ), continued

Properties for µ ∈ M(Td ), Λ ⊆ Zd finite, and µ̂ = F on Λ.

E ⊆ M(Td ) is non-empty, weak-∗ compact, and convex.
C(Td ; Λ) is a closed subspace of C(Td ).
U is a compact subset of C(Td ; Λ).
ε = ‖Lµ‖ = maxf∈U |〈f , µ〉|.
There exists ϕ(x) =

∑
m∈Λ am e2πim·x ∈ U such that 〈ϕ, µ〉 = ε.

If ϕ ∈ U and 〈ϕ, µ〉 = ε, then

∀ν ∈ E , ϕ = sign(ν) ν-a.e., and supp(ν) ⊆ {x ∈ Td : |ϕ(x)| = 1},

where |sign(ν)| = 1 arises in R-N Theorem.
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Theorem

Theorem [1]

Let Λ ⊆ Zd be a finite set and let F be spectral data defined on Λ.
(a) Suppose Γ = ∅. Then, there exists a closed set S of

d-dimensional Lebesgue measure zero such that each minimal
extrapolation is a singular measure supported in S.

(b) Suppose #Γ ≥ 2. For each distinct pair m,n ∈ Γ, define
αm,n ∈ R/Z by e2πiαm,n = F (m)/F (n). Define the closed set,

S =
⋂

m,n∈Γ
m 6=n

{x ∈ Td : x · (m − n) + αm,n ∈ Z},

which is an intersection of
(

#Γ
2

)
periodic hyperplanes. Then, each

minimal extrapolation is a singular measure supported in S.
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Illustration of the theorem

p
q

Figure: Second case of the Theorem for d = 2 and #Γ = 3. Note
(

#Γ
2

)
takes

the values 1, 3, 6, 10, . . .. Thus, for this case, the 3 hyperplanes of the
Theorem are not unique, and are represented by the 2 periodic sets of
dashed lines. The vectors p = (1/4, 3/8) and q = (−1/4, 1/8) are normal to
the hyperplanes and their lengths determine the separation of the
hyperplanes.
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Admissibility range

A numerical approximation of ε can be obtained by solving Problem
(SR), but its exact value is typically unknown. On the other hand, if
we are given finite Λ ⊆ Zd , spectral data F on Λ, and µ ∈ Td for which
µ̂ = F on Λ, then

sup
m∈Λ
|F (m)| ≤ ε(Λ,F ) ≤ ‖µ‖.

If the lower bound is attained, then Γ 6= ∅. Our theory is
particularly strong for large #Γ.
The upper bound ε = ‖µ‖ is a necessary condition for
uniqueness of the super-resolution of µ from F .
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The role of uniqueness

Why uniqueness is important:
If µ ∈ E(Λ,F ) is unique, then any numerical solution to Problem
(SR) approximates µ.
Without uniqueness, even if µ ∈ E(Λ,F ), it is possible that a
numerical solution to Problem (SR) does not approximate µ.
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Uniqueness and Meyer’s theory (1970) of
quasi-crystals

Define α ∈ (0,1/2) and define the sampling set

Λα = {(m,n) ∈ Z× Z : ∃r ∈ Z, such that |m
√

2 + n
√

3− r | ≤ α}.

Let Md,+,N(T2) be the set of positive discrete measures ν onT2,
where card supp(ν) ≤ N .

Theorem (Basarab Matei 2014)

Let µ ∈ Md,+,N(T2). If ν is a positive measure on T2 and ν̂ = µ̂ on Λα,
then ν = µ.

Remark Besides Matei’s theorem, see the collaboration of Matei and
Meyer [14], [15], [16], and [11], [12], [10], [17].
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Uniqueness and super-resolution reconstruction

Let Λ = {−1,0,1}. Define F in the following ways.
F (0) = 0, F (±1) = 2. Define µ = δ0 − δ1/2 ∈ M(T). Γ = {−1,1}.
F (0) = 0,F (±1) = 1± i . Define µ = δ0 − δ1/4 ∈ M(T).
Γ = {−1,1}.
F (−1) = 0, F (0) = 1 + eπi/3, F (1) = 1 + e−πi/3. Define
µ = δ0 + eπi/3δ1/3 ∈ M(T). Γ = {0,1}.

In each case µ can be proved to be the unique minimal extrapolation,
and so super-resolution reconstruction of µ from the values of F on Λ
is possible.
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Cantor measures and #Γ = 1

Cq =
⋂∞

k=0 Cq,k , integer q ≥ 3, is the middle 1/q-Cantor set, where

Cq,0 = [0,1] and Cq,k+1 =
Cq,k

q
∪ (1− q) +

Cq,k

q
,

and let σq be the continuous singular Cantor-Lebesgue measure with

σ̂q(m) = (−1)m
∞∏

k=1

cos(πmq−k (1− q)),

∀n ∈ Z \ {0}, σ̂q(qn) 6= 0 takes the same constant value.

Let Λ ⊆ Z be finite, assume 0 ∈ Λ, and suppose F defined on Λ
satisfies F (0) = 1, noting σ̂q(0) = ‖σq‖ = 1. If σq ∈ E(Λ,F ), then
#Γ = 1, and our present theory does not determine if σq is the unique
minimal extrapolation.
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Non-uniqueness: µ = δ0 + δ1/2 ∈ M(T) and #Γ = 1

Given Λ = {−1,0,1} and F (0) = 2, F (±1) = 0. If
µ = δ0 + δ1/2 ∈ M(T), then µ̂ = F on Λ.
µ is a minimal extrapolation, ε = 2, and Γ = {0}.
There are uncountably many discrete minimal extrapolations. In
fact, x ∈ T and any integer N ≥ 2 define the discrete measure

νN,x =
2
N

N−1∑
n=0

δx+ n
N
,

and each νN,x is a minimal extrapolation.
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µ = δ0 + δ1/2 ∈ M(T) and #Γ = 1, continued

There are also uncountably many positive absolutely continuous
minimal extrapolations. In fact, for any integer N ≥ 2 and
constant 0 < c ≤ (2N + 2)/(3N + 1), extend F on Λ to the
sequence {(aN,c)n}n∈Z, where

(aN,c)n =


2 if n = 0,

c
(

1− |n|
N+1

)
if 2 ≤ |n| ≤ N,

0 otherwise.

The non-negative real-valued function

fN,c(x) = 2 +
−2∑

n=−N

(aN,c)n e2πinx +
N∑

n=2

(aN,c)n e2πinx

is a positive absolutely continuous minimal extrapolation.
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Optimality in higher dimensions

In higher dimensions, geometry plays an important role.

Let Λ = {−1,0,1}2 \ {(1,−1), (−1,1)} and let
µ = δ(0,0) + δ(1/2,1/2) ∈ M(T2).
Then, µ is a minimal extrapolation, ε = 2, and
Γ = {(0,0), (1,1), (−1,−1)}.
We can construct other discrete minimal extrapolations. For any
x ∈ R and any integer N ≥ 2, define the measure

νN,x =
2
N

N−1∑
n=0

δ(
x+ n

N ,1−x− n
N

).
Then, each νN,x is a minimal extrapolation.
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Optimality in higher dimensions, continued

For this example, with d = 2 and #Γ = 3, we can also construct
a continuous singular minimal extrapolation. According to the
Theorem, each minimal extrapolation is supported in the set,

S = {x ∈ T2 : x1 + x2 = 1}.

In particular, all 3 hyperplanes are identical. Let σ =
√

2σS,
where σS is the surface measure of the Borel set S. We readily
verify that σ is a minimal extrapolation.

This example shows that the second statement of our theorem is
optimal.
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On minimum separation
In view of the CFG theorem, it natural to ask whether separation is
necessary in order to recover a discrete measure. We show that if
two Dirac masses are too close, super-resolution is impossible.

Let Λ ⊆ Zd be a finite set and let µy = δ0 − δy for some non-zero
y ∈ Td .
Let νy be the absolutely continuous measure,

νy (x) =
∑
m∈Λ

µ̂y (m)e2πim·x .

By construction, ν̂y = µ̂y on Λ. As y → 0,

‖νy‖ =

∫
Td

∣∣∣∑
m∈Λ

µ̂y (m)e2πim·x
∣∣∣ dx → 0.

For |y | sufficiently small, we see that µy 6∈ E .
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Epilogue

And lest one thinks it is all 20th century spectral estimation
theory – from the profound underlying harmonic analysis to
MEM, MUSIC, ESPRIT, well . . . .
Our theory shows that Γ provides significant information about
the minimal extrapolations. In particular, when #Γ 6= 1, they are
always singular measures, but when #Γ = 1, they could be
absolutely continuous.
We have not discussed how to solve Problem (SR)
computationally. Candès and Fernandez-Granda provided an
algorithm, that is effective in some situations.
The theorem opens up the possibility of the super-resolution of
continuous singular measures. Since we are concerned with
Fourier samples, medical imaging is a natural application of this
theory.
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Epilogue, continued

For example, consider the case of fast MRI signal reconstruction
in the spatial domain using spectral data from spiral-scan echo
planar imaging (SEPI), e.g., [8]. A new frame-based theoretical
and computational methodology for fast data acquisition on
interleaving spirals in k -space (the spectral domain) was
developed with Alfredo Nava-Tudela, Alex Powell, Yang Wang,
and Hui-Chuan Wu [2].
In terms of super-resolution, this approach can be considered
resolution by means of multiple spectral snapshots from bounded
subsets of k -space, and because of the frame theoretic modeling
there are inherent noise reduction and stability features.
Dynamic MRI machines are now made by Siemens using David
Donoho’s patents on compressed sensing and sparsity to gather
data 15 times faster than previous machines! See [13].
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Epilogue, continued

Our theorem does not require additional assumptions on
µ ∈ M(Td ) or on the finite subset Λ ⊆ Zd . Since the theorem also
describes the support set of the minimal extrapolations of µ from
Λ, it is useful for determining whether a given µ can be recovered
by solving the super-resolution problem.
The second statement of the theorem provides sufficient
conditions for when the minimal extrapolations are supported in a
lattice. As we have seen, such measures correspond to vectors
solving the discrete compressed sensing problem. Thus, our
theorem is a continuous-discrete correspondence result.
Our results are closely related to Beurling’s work on minimal
extrapolation. He dealt with R1 instead of Td , so our theorem is
an adaptation to the torus and a generalization to higher
dimensions. There are non-trivial technical differences between
working with R1 and Td .
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