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Abstract. A measure µ on Rn is called locally and uniformly h-dimensional
if µ(Br(x)) ≤ h(r) for all x ∈ Rn and for all 0 < r < 1, where h is a real valued
function. If f ∈ L2(µ) and Fµf denotes its Fourier transform with respect to
µ, it is not true (in general) that Fµf ∈ L2 (e.g. [10]).

However, in this paper we prove that, under certain hypothesis on h, for any
f ∈ L2(µ) the L2-norm of its Fourier transform restricted to a ball of radius
r has the same order of growth than rnh(r−1), when r → ∞. Moreover, we
prove that the ratio between these quantities is controlled by the L2(µ)-norm
of f (Theorem 3.2). By imposing certain restrictions on the measure µ, we
can also obtain a lower bound for this ratio (Theorem 4.3).

These results generalize the ones obtained by Strichartz in [10] where he
considered the particular case in which h(x) = xα.

1. introduction

We will say that a measure µ is locally and uniformly h-dimensional (or shortly
µ is an h-dimensional measure) if and only if, the following condition holds

(1.1) µ(Br(x)) ≤ h(r) ∀ x ∈ Rn,∀ 0 < r < 1,

where Br(x) is, as usual the ball of radius r centered at x. We consider functions
h : [0,+∞] → R that are non-decreasing, continuous and such that h(0) = 0.
We further require h to be doubling, i. e. there exists a constant c > 0 such that
h(2x) < ch(x). Such a function will be called dimension function. A particular
example is h(x) = xα, which was analyzed by Strichartz in [10]. In that case we
will say indistinctly that µ is h-dimensional or that µ is α-dimensional.

Allowing h to be more general has already proven to be useful (see for example
[6],[5], [2]) and it enables us to obtain a lower bound on measures which were not
included in previous results (see Section 5).

If µ is locally and uniformly 0-dimensional, meaning that the measure of any
ball of radius one is bounded, then each f ∈ L2(µ) defines a tempered distribution,
mapping each test function ϕ in the Schwartz space S into

∫
fϕdµ. Therefore, its

Fourier transform is also a tempered distribution defined by

ϕ &→
∫

ϕ̂fdµ ϕ ∈ S ,
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where ϕ̂ is the usual Lebesgue Fourier transform. We will denote by Fµf this
‘distributional’ Fourier transform of an f ∈ L2(µ). If f ∈ L1(µ) ∩ L2(µ) then it is
easy to see that Fµf(ξ) =

∫
f(x)eiξxdµ(x), see for example [1].

Strichartz proved ([10]) that if f ∈ L2(µ) and µ is zero dimensional then Fµf

belongs to L2(e−t|ξ|2) for any t > 0 and therefore to L2
loc. Note that if h is one of

our dimension functions, we have inmediatly that µ is 0-dimensional.
In this paper, our goal is to prove for any h-dimensional measure µ, an analogue

to Plancherel’s Theorem in L2(Rn) with the Lebesgue measure. In fact we are
going to show existence of upper and lower bounds for the ratio between rnh(r−1)
and the norm of the Fourier transform in L2(µ) restricted to the ball of radius r.
The hypothesis under which we obtain the existence of the upper bound are more
general than the ones we need for the existence of the lower ones.

The h-dimensional Hausdorff measure is defined as (see for example [6]):

Hh(E) = lim
δ→0



inf






∞∑

i=1

h(|Ui|) : E ⊂
⋃

i≥1

Ui and |Ui| ≤ δ








 ,

and Hh
!E will denote its restriction to a set E.

The h-lower density of a set E in x is (see for example [3]):

(1.2) D(Hh!E , x) = lim inf
r→0

Hh(E ∩Br(x))
h(2r)

.

The upper density is defined by taking lim sup in the above equation. We will
introduce one aditional definition.

Definition 1.1.

• A set E will be said to be an h-regular set if both, upper and lower densities,
are equal to one in Hh almost every point of E. In symbols,

D(Hh!E , x) = D(Hh!E , x) = 1,

for Hh almost every point of E.
• If the lower density is greater than a positive constant for Hh-almost every

point of E we will say that E is an h-quasi regular set.

The lower bound that we obtain (see Theorem 4.2) will be stated for the measure
Hh restricted to an h-dimensional and quasi regular set. In section 5 we will show
an example of a set E and a function h such that Hh!E is h- dimensional and E
is quasi regular. Additionally, we will prove that there does not exist any α such
that Hα!E is xα-dimensional and E is quasi regular simultaneously. This example
satisfies the hypothesis of our theorem 4.1 but does not satisfy the hypothesis of
the analogous theorem 5.5 in [10].

2. Some technical results

Any h dimensional measure µ is, in particular, locally finite, which means that
for µ almost every x there exists an r > 0 such that 0 < µ(Br(x)) < ∞. Therefore,
as Strichartz proved in [10], the strong (p, p) estimate (for p > 1) and the weak (1, 1)
estimate hold for the maximal operator, defined for each f ∈ L1

loc(µ) as follows:

(2.1) Mµf(x) = sup
r>0

1
µ(Br(x))

∫

Br(x)
|f | dµ.
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Precisely, we have the following theorem:

Theorem 2.1. Let µ be a locally finite measure on Rn. For each locally integrable
function f we have:

(1)
µ({x : Mµf(x) > s}) ≤ cn

s
‖f‖1 ∀f ∈ L1(µ).

(2) For 1 < p ≤ ∞,

‖Mµf‖p ≤ cp ‖f‖p ∀f ∈ Lp(µ).

This theorem has many consequences which will be useful for our work. In
particular, we have the following two corollaries:

Corollary 2.2. Let f ∈ L1(µ). For µ-almost every x,

lim
r→0

1
µ(Br(x))

∫

Br(x)
fdµ = f(x).

Corollary 2.3. Let E be a h-regular set and let f ∈ L1(µ). For Hh-almost every
y ∈ E and for all ε > 0 there exists δ > 0 such that

∣∣∣∣∣

∫

Br(y)
fdµ− h(r)f(y)

∣∣∣∣∣ ≤ εh(r) ∀r ≤ δ.

The proofs of the Theorem and these Corollaries are straightforward applications
of Besicovitch’s covering Theorem and can be found in [10].

We also need the following quite technical Lemma, which will allow us to bound
the ratio between h and its dilation by r (h(rt)/h(t)) by a function in the weighted
space L1(e−cr2

).

Lemma 2.4. Let h : [0,∞) → R be a continuous, non-decreasing and doubling
function (h(2x) ≤ cdh(x)). Then there exists a constant κ > 0 such that

h(rt) ≤ cdh(t) max{1, rκ} ∀r, t > 0.

Proof. First, note that cd ≥ 1, since in fact, the doubling condition can be restated
as cd ≥ h(2x)/h(x) and this quantity is not smaller than 1 because h is a non
decreasing function.

If r < 1, since h is non-increasing, we have h(rt) ≤ h(t). If r ≥ 1 we choose the
only non negative integer k such that 2k−1 < r ≤ 2k. So, h(rt) ≤ h(2kt) ≤ ck

dh(t).
Observe that k was chosen such that k ≤ log r

log 2 + 1, and therefore it then follows
that ck

d ≤ cd.rlog cd/ log 2. The proof is complete by taking κ = log cd/ log 2. "

Recall that we are dealing with h-dimensional measures which means that the
measure of the balls of radius r < 1 is bounded. The next lemma provides a control
of the measure of the “big” balls, ie, those balls of radius greater than one, for
which the estimate (1.1) does not hold.

Lemma 2.5. Let µ be a locally h-dimensional measure on Rn. If r > 1, then
µ(Br(x)) ≤ Crn, for some C independent of x.

Proof. Denote by Q the minimal cube centered at x that contains the ball Br(x):

Q = Q(x, r) = {y ∈ Rn : ‖x− y‖∞ < r} ⊃ Br(x).
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Let k be the (unique) integer such that k − 1 < r
√

n ≤ k. Q can be divided into
kn smaller cubes of half-side r

k . Each of these cubes is contained in a ball of radius
r0 =

√
n r

k ≤ 1. So, we obtain:

µ(Br(x)) ≤ µ(Q) ≤ knµ(Br0(x
′)) ≤ kn h(

√
nr

k
).

Since
√

n r
k ≤ 1, it follows that h(

√
n r

k ) ≤ h(1). On the other hand, by the choice
of k, kn < (r

√
n + 1)n ≤ rn(

√
n + 1)n, and we obtain,

µ(Br(x)) ≤ (
√

n + 1)nh(1)rn.

"

3. Upper bounds

Our first result is an upper estimate for the L2-norm of the Fourier transform of
a function f ∈ L2(µ).

Theorem 3.1. Let µ be a locally and uniform h-dimensional measure, where h is
a dimension function. Suppose that h defines a dimension not greater than n in
the sense that limt→0 tn/h(t) = 0. Then,

(3.1) sup
0≤t≤1

√
tn

h(
√

t)

∫
e−t|ξ|2 |Fµf(ξ)|2 dξ ≤ c ‖f‖22 := c

∫
|f |2 dµ ∀f ∈ L2(µ).

Proof.

First Step We will prove that:

(3.2)
√

tn
∫

|Fµf(ξ)|2 e−t|ξ|2dξ = πn/2

∫∫
e−|x−y|2/4tf(x)f(y)dµ(x)dµ(y).

Remembering the inverse Fourier transform for the gaussian function,
∫

e−t|ξ|2eixξdξ =
√

t−nπn/2e−|x|
2/4t,

if f is integrable then equation (3.2) follows from Fubini’s theorem, since:
√

tn
∫

|Fµf(ξ)|2 e−t|ξ|2dξ =
√

tn
∫∫∫

f(x)f(y)ei(x−y)·ξe−t|ξ|2dµ(x)dµ(y)dξ

= πn/2

∫∫
e−|x−y|2/4tf(x)f(y)dµ(x)dµ(y).(3.3)

Now, consider any f ∈ L2(µ), not necessarily integrable. Let us define

fk(x) = f(x)χ{|x|≤k}(x)χ{|f(x)|≤k}(x).

This sequence converges to f in L2(µ). Also, since each fk is in L1(µ), it satisfies
(3.3). Using Beppo Levi’s theorem, we have:

∫∫
e−|x−y|2/4tfk(x)fk(y)dµ(x)dµ(y) →

∫∫
e−|x−y|2/4tf(x)f(y)dµ(x)dµ(y).

Since f ∈ L2(µ), it follows that Fµf ∈ L2(e−t|ξ|2dξ). Hence we can apply the
dominated convergence theorem, and

√
tn

∫
|Fµfk(ξ)|2 e−t|ξ|2dξ →

√
tn

∫
|Fµf(ξ)|2 e−t|ξ|2dξ,

which yields 3.2.
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Second step
We will prove that, for any y ∈ Rn and f ∈ L2(µ)

1
h(
√

t)

∫
e−|x−y|2/4tf(x)dµ(x) ≤ CMµf(y).

Using Fubini, on the left hand side of the inequality, we have that:
∫

e−|x−y|2/4tf(x)dµ(x) =
∫ ∞

0

r

2t
e−r2/4t

∫

Br(y)
f(x)dµ(x).

Since ∫

Br(y)
f(x)dµ(x) ≤ µ(Br(y))Mµf(y),

it follows that

(3.4)
∫

e−|x−y|2/4tf(x)dµ(x) ≤ Mµ(y)
∫ ∞

0
e−r2/4t r

2t
µ(Br(y))dr.

We need to prove that the last integral is finite. To establish that, we split the
integral into two parts, the first for r < 1 (where (1.1) is valid) and the second for
r ≥ 1 (where lemma 2.5 can be applied). For r < 1 we use the hypothesis to obtain:

∫ 1

0
e−r2/4t r

2t
µ(Br(y))dr ≤

∫ 1

0
e−r2/4t r

2t
h(r)dr

=
1
2

∫ 1/
√

t

0
e−r2/4rh(r

√
t)dr.

Or, equivalently,

1
h(
√

t)

∫ 1

0
e−r2/4t r

2t
µ(Br(y)dr ≤ 1

2

∫ 1/
√

t

0
e−r2/4r

h(r
√

t)
h(
√

t)
dr.

This integral is finite by Lemma 2.4.
For r ≥ 1

∫ ∞

1
e−r2/4t r

2t
µ(Br(y)dr ≤

∫ ∞

1
e−r2/4t r

2t
rndr

=
1
2
√

tn
∫ ∞

1/
√

t
e−r2/4 rn+1dr.

Since limt→0 tn/h(t) = 0, we deduce that
√

tn/h(
√

t) ≤ C and therefore

1
h(
√

t)

∫ ∞

1
e−r2/4t r

2t
µ(Br(y)dr ≤ C,

with C independent of t. This completes the second step of our proof.
Third (and last) step
We will now prove the thesis. Using the first and second steps we obtain:
√

tn

h(
√

t)

∫
|Fµf(ξ)|2 e−t|ξ|2dξ = πn/2

∫ (∫
e−|x−y|2/4tf(x)dµ(x)

)
f(y)dµ(y)

≤ C

∫
Mµf(y) |f(y)| dµ(y).(3.5)
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The last term is the inner product in the Hilbert space L2(µ), then we can bound
it using Cauchy-Schwartz. The L2(µ) norm of Mµf can be bounded by using the
(2, 2) estimate in (2.1). Then,

∫
Mµf(y) |f(y)| dµ(y) ≤ C ‖f‖22 ,

and this, together with (3.5) gives the desired result. "
Theorem 3.2. Under the hypothesis of Theorem 3.1, for each f ∈ L2(µ) we have:

sup
x∈Rn

sup
r≥1

1
rnh(r−1)

∫

Br(x)
|Fµf(ξ)|2 dξ ≤ C ‖f‖22 .

Proof. We need to show that for each x ∈ Rn,

(3.6) sup
r≥1

1
rnh(r−1)

∫

Br(x)
|Fµf(ξ)|2 dξ ≤ C ‖f‖22 .

But making the substitution t = r−2 in Theorem 3.1, we obtain, exactly (3.6)
for Br(0). Further,

∫

Br(x)
|Fµf(ξ)|2 dξ =

∫

Br(0)

∣∣Fµ(eixξf)
∣∣2 dξ ≤ C

∥∥eixξf
∥∥2

2
= C ‖f‖22 ,

which yields the Theorem. "
This Theorem provides an upper bound but does not tell us weather the limit

for r → ∞ exists or not. With our definition, if a measure is h dimensional it is
also g dimensional for any h ≤ g. For example, if h(x) ≥ xn, then the measure
µ = Hh!E+L (here, L is the n-dimensional Lebesgue measure and E is a set of
Hh finite measure) is an h-dimensional measure. However in this case it is clear
that µ has two distinct parts, one ‘truly’ h-dimensional (Hh

!E) but the other (L),
even tough by the previous remark, can be considered as h-dimensional, is in fact
n-dimensional.

The next Theorem will allow us to split up our measure in order to separate the
part of the measure that is ‘exactly’ h-dimensional, from the one that can also be
seen as having bigger dimension.

Definition 3.3. We say that a measure ν is null with respect to (another measure)
µ if and only if,

µ(E) < ∞⇒ ν(E) = 0.

We will denote this with ν ≪ µ.

Now, we will prove a Theorem that is analogous to Radon Nikodym.

Theorem 3.4. Let µ a measure on Rn without infinitely many atoms and let ν be
a σ-finite measure on Rn absolutely continuous with respect to µ. There exists a
unique decomposition of ν: ν = ν1+ν2, where ν1(E) =

∫
E fdµ for some measurable

and nonnegative function f , and ν2 ≪ µ.

Proof. Uniqueness. Let us suppose we have a decomposition

ν = ν1 + ν2 with ν1(E) =
∫

E
fdµ and ν2 ≪ µ.

Consider E ⊂ Rn. Let us analyze separately both cases, when E is σ-finite for µ
and when it is not.
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If E is σ-finite for µ then E = ∪j≥1Ej with µ(Ej) < ∞. Since ν2 ≪ µ we
have ν2(Ej) = 0 for all j ≥ and therefore ν2(E) = 0, which gives ν1(E) = ν(E).
If we have any other decomposition ν = ν′1 + ν′2, then ν′2(E) = 0 = ν2(E) and
ν′1(E) = ν(E) = ν1(E).

If E is not σ-finite for µ, then ν2 may be positive. However, by hypothesis
ν is still σ-finite and then E = ∪j≥1Ẽj with ν(Ẽj) < ∞ (Ẽj may be chosen
disjoint if necessary). Suppose we have another decomposition ν = ν′1 + ν′2 with
ν′1(E) =

∫
E g dµ and ν′2 ≪ µ. In particular, ν1 − ν′1 = ν′2 − ν2. We have that

(ν1 − ν′1)({x ∈ Ẽj : f(x) > g(x)}) < ∞

which by the definition of ν1 and ν1′ implies that µ({x ∈ Ẽj : f(x) > g(x)}) < ∞.
Since ν2 and ν′2 are both null with respect to µ we have

ν2({x ∈ Ẽj : f(x) > g(x)}) = ν′2({x ∈ Ẽj : f(x) > g(x)}) = 0.

We can do the same calculation for the complementary set for which f(x) < g(x)
and conclude that

ν2(Ẽ′j) := ν2({x ∈ Ẽj : f(x) 1= g(x)}) = ν′2(Ẽ
′
j) = 0

and therefore,
ν1(Ẽ′j) = ν(Ẽ′j) = ν′1(Ẽ

′
j).

In Ẽj \ Ẽ′j f and g coincide, and so ν1(Ẽj \ Ẽ′j) = ν1(Ẽj \ Ẽ′j). Since Ẽj =
Ẽ′j ∪ (Ẽj \ Ẽ′j) it follows that ν1 and ν′1 coincide on each Ẽj , and therefore on E, if
the Ẽj were chosen disjoint.

Now it follows that ν2 = ν′2.
Existence. Let consider -first- the case when ν is finite. We define the set

A = {A ⊂ Rn : A is measurable, ν(A) > 0, µ!A is σ − finite }.
If A = ∅, then the theorem follows taking ν2 = ν and ν1 = 0. If A 1= ∅, define
a := supA∈A ν(A). We have that a is finite, since ν is. Consider the set sequence
(Aj)j∈N ⊂ A such that ν(Aj) → a. Let B :=

⋃∞
j=1 Aj . We are going to see that

we can take ν1 = ν!B and ν2 = ν!Bc . In fact, since µ!B is σ-finite, we have f ,
the Radon Nykodim derivative of ν with respect to µ!B . Now, we take a set E
such that µ(E) < ∞. If ν2(E) > 0, then ν(E ∪ B) > a which is a contradiction.
Therefore ν2(E) = 0, and so, ν2 ≪ µ.

Let analyze now the case when ν is not finte (but still σ finite). Let (Ej) be a
collection of measurable sets with ν(Ej) < ∞ such that ∪Ej = E. Without loss of
generality, we can asume that Ej are disjoint. We define νj = ν!Ej y µj = ν!Ej .
Then νj is finite and regarding the previous case we can decompose νj = νj

1 + νj
2 .

Now, ν1 =
∑

j νj
1 and ν2 =

∑
j νj

2 verify the thesis. "
Corollary 3.5. If µ is an h-dimensional measure, then there exists ϕ ≥ 0 and
ν ≪ Hh such that µ = ϕdHh + ν.

Proof. In view of the previous Theorem, we only need to prove that µ is absolutely
continuous respect to Hh. Let us take a set E with Hh(E) = 0. Then, for any ε > 0,
there is a cover (Ui)i≥1 of E with

∑∞
i=1 h(|Ui|) < ε, where |Ui| is the diameter of

Ui. Then,

µ(E) ≤
∞∑

i=1

µ(Ui) ≤
∞∑

i=1

µ(B|Ui|(xi)),
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picking any xi ∈ Ui. Now, using that µ is h-dimensional and the previous estimate,
we have,

µ(E) ≤
∞∑

i=1

h(|Ui|) < ε.

Since ε is arbitrary µ(E) = 0 and the proof is complete. "

The next technical lemma will be necessary for our construction.

Lemma 3.6. If ν is a locally finite measure on Rn and ν ≪ Hh, then Dh(ν, x) :=

lim sup
r→0

ν(Br(x))
h(2r)

= 0 for Hh- almost every x.

Proof. For each k ∈ N, we define the sets

Ek =
{

x ∈ Rn : ∀ε > 0 ∃ r ≤ ε with
ν(Br(x))

h(2r)
≥ 1

k

}
.

Since,

{x ∈ Rn : Dh(ν, x) > 0} =
⋃

k≥1

Ek,

it is enough to prove that Hh(Ek) = 0 for all k.
We can suppose that ν(Ek) is finite, since Ek = ∪l≥1 (Ek ∩Bl(0)).
Let k be fixed and let ε > 0. For each x ∈ Ek, we can pick an r(x) ≤ ε such

that h(2r(x)) ≤ kν(Br(x)(x)). {Br(x)(x)}x∈Ek is a family of balls with uniformly
bounded radii. Therefore, by Besicovitch’s covering Theorem ([5]) we can take a
countable subcover {Brj (xj)}j≥1 of Ek such that at most c(n) of the balls intersect
at once (i.e.

∑
χBrj

≤ c(n)).
Now, since rj ≤ ε, it follows that Brj ⊂ Ek,ε := {x ∈ Rn : dist(x, Ek) ≤ ε}. So

we have:
∞∑

j=1

h(2rj) ≤ k
∞∑

j=1

ν
(
Brj (xj)

)
≤ kc(n)ν(Ek,ε),

and therefore, Hh(Ek) ≤ c(n)kν(Ek,ε).
But since Ek ⊂ ∩ε>0Ek,ε and ν(Ek) is finite, we have thatHh(Ek) ≤ c(n)kν(Ek).

In particular, Hh(Ek) is finite, which implies ν(Ek) = 0 by the hypothesis on ν.
Using again that Hh(Ek) ≤ c(n)kν(Ek), we obtain the desired result. "

We are now able to establish a finer bound for certain h-dimensional measures
(compare with Theorem 3.1 and Theorem 3.2).

Theorem 3.7. Let µ be any h dimensional measure and let µ = ϕdHh + ν (with
ν ≪ Hh) be the decomposition of Theorem 3.4. If f ∈ L2(µ) then

lim sup
t→0

√
tn

h(
√

t)

∫
e−t|ξ|2 |Fµf(ξ)|2dξ ≤ c

∫
|f(x)|2ϕ(x)dHh(x)

and

sup
y∈Rn

lim sup
r→∞

∫

Br(y)
|Fµf(ξ)|2dξ ≤ c

∫
|f(x)|2ϕ(x)dHh(x)
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Proof. For this proof we will use the maximal operator Mµ as defined in (2.1).
It suffices to prove that

(3.7) lim
t→0

√
tn

h(
√

t)

∫
e−t|ξ|2 |Fνf(ξ)|2dξ = 0

and

(3.8) lim
t→0

√
tn

h(
√

t)

∫
e−t|ξ|2Fνf(ξ) FHhf(ξ) dξ = 0.

Doing the same type of computations than the ones used to obtain (3.4), we
have:

(3.9)
1

h(
√

t)

∫
e−|x−y|2/4tf(x)dν(x) ≤ Mνf(y)

h(
√

t)

∫ ∞

0
e−r2/4t r

2t
ν(Br(y))dr.

On the other hand, by Lemma 3.6, for Hh-almost every y,

Dh(ν, y) = lim sup
ν(Br(y))

h(2r)
= 0,

and therefore for all ε > 0 we can choose 0 < δ < 1 such that ν(Br(y)) ≤ εh(r).
We split the integral on the right of (3.9) into two parts:

∫ δ
0 +

∫∞
δ . For the first

one, using that ν(Br(x)) ≤ µ(Br(x)), and so h-dimensional, we obtain:

Mνf(y)
h(
√

t)

∫ δ

0
e−r2/4t r

2t
ν(Br(x))dr ≤ Mνf(y)ε

∫ δ/
√

t

0
e−r2/4r

h(r
√

t)
h(
√

t)
dr

≤ cεMνf(y),

by hypothesis.
For the second one, we split again:

Mνf(y)
h(
√

t)

∫ ∞

δ
e−r2/4t r

2t
ν(Br(y))dr

≤ Mνf(y)c

(∫ 1/
√

t

δ/
√

t
e−r2/4r

h(r
√

t)
h(
√

t)
dr +

∫ ∞

1/
√

t
e−r2/4rn+1

√
tn

h(
√

t)
dr

)
−→t→0 0.

So, if we denote by

H(t, y) :=
1

h(
√

t)

∫
e−|x−y|2/4tf(x)dν(x),

we showed that limt→0 H(t, y) = 0. Using dominated convergence in the same way
than it was used in the first step of the proof of Theorem 3.1, we obtain,

0 =
∫

lim
t→0

H(t, y)f(y)dν(y) = lim
t→0

1
h(
√

t)

∫
e−|x−y|2/4tf(x)dν(x)f(y)dν(y)

= lim
t→0

√
tn

h(
√

t)

∫
e−t|ξ|2 |Fνf(ξ)|2dξ.

In the same way, if we integrate with respect to µ, we obtain

lim
t→0

√
tn

h(
√

t)

∫
e−t|ξ|2Fνf(ξ)Fµf(ξ)dξ = 0.

Now, the thesis is a consequence of Theorems 3.1 and 3.2 "
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4. Lower estimate.

In this section we estimate the lower bound for the µ-Fourier transform. We
start by the following theorem.

Theorem 4.1. Let µ = Hh!E for an h-regular set E (see 1.2).
Suppose that the function h satisfies that:

h(t) ≤ tn for t ≥ 1 and lim
t→0

tn

h(t)
= 0.

Also, suppose that the limit:

lim
t→0

h(rt)
h(t)

:= p(r),

exists. Then, for f ∈ L2(µ),

(4.1) lim
t→0

√
tn

h(
√

t)

∫
e−t|ξ|2 |Fµf(ξ)|2 dξ = Cn,h

∫
|f |2 dµ,

where Cn,h =
∫∞
0 e−r2/2rp(r)dr.

Proof. In view of (3.2), we will estimate
√

tn

h(
√

t)

∫ ∞

0
e−r2/4t r

2t

∫

Br(y)
f(x)dµ(x)dr.

We write the first integral as sum of:
∫ δ
0 +

∫∞
δ . For any δ the second one tends to

zero, since:

1
h(
√

t)

∫ ∞

δ
e−r2/4t r

2t

∫

Br(y)
f(x)dµ(x)dr(4.2)

≤ 1
h(
√

t)

∫ ∞

δ
e−r2/4t r

2t
µ(Br(y))Mµf(y)dr

≤ 1
h(
√

t)
Mµf(y)

(∫ 1

δ
e−r2/4t r

2t
h(r)dr +

∫ ∞

1
e−r2/4t r

2t
rndr

)

=
√

tn

h(
√

t)
Mµf(y)

(∫ 1/
√

t

δ/
√

t
rh(r)e−r2/4dr +

∫ ∞

1/
√

t
rn+1e−r2/4dr

)
−−−→
t→0

0,

using that limt→0
tn

h(t) = 0.
To analyze the other integral, note first that since E is regular by Corollary 2.3

we have that, for Hh-almost every y ∈ E (fixed), and for all ε > 0 there exists δ > 0
such that

(4.3)

∣∣∣∣∣

∫

Br(y)
fdµ− h(r)f(y)

∣∣∣∣∣ ≤ εh(r) ∀r ≤ δ.

On the other hand,
∫ δ

0

1
h(
√

t)
e−r2/4t r

2t
h(r)f(y)dr = f(y)

∫ 2δ/
√

t

0
e−r2

r
h(r

√
t)

h(
√

t)
dr,
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and so, since e−r2
r h(r

√
t)

h(
√

t)
is dominated by e−r2

r1+κ (see Lemma 2.4), we have that

∫ δ

0

1
h(
√

t)
e−r2/4t r

2t
h(r)f(y)dr −−−→

t→0
f(y)

∫ ∞

0
e−r2

rp(r)dr.

We conclude that

(4.4)
∫ δ

0

1
h(
√

t)
e−r2/4t r

2t

∫

Br(y)
f(x)dµ(x)dr −−−→

t→0
Cn,hf(y).

Combining (4.2) and (4.4) we obtain that

H(t, y) :=
1

h(
√

t)

∫ ∞

0
e−r2/4t r

2t

∫

Br(y)
fdµdr −−−→

t→0
Cn,hf(y).

Since H(t, y) is dominated by f(y)
∫∞
0 e−r2

rp(r)dr and f ∈ L2(µ), it follows that

(4.5) lim
t→0

∫
H(t, y)f(y)dµ(y) =

∫
lim
t→0

H(t, y)f(y)dµ(y) = Cn,h

∫

E
|f |2 dµ.

"

Note that equation (4.3), which was very important in our proof is a reformula-
tion of Corollary 2.2 substituting µ(Br(y)) by h(r). We are allowed to make this
substitution only because E is a regular set. However, this hypothesis on E is too
restrictive.

Actually, it has already been proven (see [5]) that there only exist regular sets,
for functions of the form xk with k integer. So, in order for the last Theorem to be
meaningful, it will be necessary to obtain a result with weaker hypothesis. We will
therefore consider h-quasi regular sets, meaning that there exists a constant θ > 0
such that for Hh almost every x ∈ E,

(4.6) lim inf
r→0

Hh(Br(x) ∩ E)
h(r)

≥ θ.

For this case, instead of the equality in (4.1) we obtain a lower bound.

Theorem 4.2. Let µ = Hh
E + ν. If ν ≪ Hh and E is h-quasi regular, we have:

(4.7) lim inf
t→0

∫
e−t|ξ|2 |Fµf(ξ)|2 dξ ≥ c

∫

E
|f |2 dHh

Proof. By the proof of Theorem 3.7, we can suppose µ = Hh!E .
Since E is quasi regular there exists δ1 > 0 such that if r < δ1 then,

(4.8) µ(Br(x)) ≥ ch(r).

On the other hand, there exists δ2 > 0 such that if r < δ2 (and f(y) 1= 0) then,

(4.9)

∣∣∣∣∣
1

µ(Br(y))

∫

Br(y)
f(x)dµ(x)− f(y)

∣∣∣∣∣ < ε |f(y)| .

Taking δ = δy,ε satisfying both estimates, we may write

1
h(
√

t)

∫∫
e−|x−y|2/4tf(x)f(y)dµ(x)dµ(y) =

∫
|f(y)|2 H(y, t, ε)dµ(y) + R(t, ε),
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where H(y, t, ε) =
∫ δy,ε

0
1

h(
√

t)
e−r2/4t r

2tµ(Br(y))dr and

R(t, ε) =
∫

f(y)
∫ δy,ε

0

e−r2/4t

h(
√

t)
r

2t

(∫

Br(y)
f(x)dµ(x)− f(y)µ(Br(y))

)
drdµ(y)

+
∫

f(y)
∫ ∞

δε,y

1
h(
√

t)
e−r2/4t r

2t

∫

Br(y)
f(x)dµ(x)drdµ(y).

We are now going to bound |R(t, ε)|. Using (4.9) and the fact that there exist a

bound independent of t for
∫ δ

0

e−r2/4t

h(
√

t)
r

2t
µ(Br(y))dr we can bound the first term

by C1ε‖f‖2. The second one is bounded by
∫

|f(y)|
∫ ∞

δε,y

1
h(
√

t)
e−r2/4t r

2t
µ(Br(y))drMµf(y)dµ(y),

and remembering a previous calculation, the integral
∫∞

δ
e−r2/4t

h(
√

t)
r
2tµ(Br(y))dr can

be bounded by ε if we take t small enough. Therefore, by Cauchy Schwartz and
the (2,2) hard estimate, the second term is bounded by C2‖f‖2. So, both estimates
tell us that |R(t, ε)| ≤ C‖f‖2 for small enough t.

On the other hand, H(y, t, ε) is bounded bellow by
∫ δ

0

e−r2/4t

h(
√

t)
r

2t
h(r)dr, us-

ing (4.8). Substituting and using that lim inft→0
h(r
√

t)

h(
√

t
< ∞ we conclude that

lim inft→0 H(y, t, ε) ≥ C3.
Therefore by Fatou’s Lemma

lim inf
t→0

1
h(
√

t)

∫∫
e−|x−y|2/4tf(x)f(y)dµ(x)dµ(y) ≥ c

∫
|f |2 dµ.

"

Theorem 4.3. Let µ an h-dimensional measure such that µ = Hh!E+ν with
ν ≪ Hh being E h-quasi regular. Then, the following inequality holds:

lim inf
r→∞

1
rnh(r−1)

∫

Br(y)
|Fµf(ξ)|2 dξ ≥ c

∫

E
|f |2dHh,

where the constant c does not depend on y.

Proof. For any λ > 0 such that λ ≤ t|ξ|2 we have e−t|ξ|2 ≤ e−λ/2e−(1/2)t|ξ|2 . Then,
√

t
n

h(
√

t)

∫

{ξ:t|ξ|2≥λ}
e−t|ξ|2 |Fµf(ξ)|2dξ

≤ 2n/2 h((t/2)1/2)
h(
√

t)
(t/2)n/2

h((t/2)1/2)
e−λ/2

∫
e−(1/2)t|ξ|2 |Fµ(ξ)|2dξ

≤ c e−λ/2

∫

E
|f |2dHh

by Lemma 2.4 and Theorem 3.7. Using 4.7 and picking λ big enough, we obtain:

lim inf
t→0

√
tn

h(
√

t)

∫

{ξ:t|ξ|2≤λ}
e−t|ξ|2 |Fµ(ξ)|2dξ ≥ c̃

∫

E
|f |2dµ,
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picking the constant c smaller if it is needed. Now, taking t = λ/r2, we obtain

h(λ1/2)
λn/2

√
tn

h(
√

t)

∫

{ξ:t|ξ|2≤λ}
e−t|ξ|2 |Fµ(ξ)|2dξ ≤ cλ

1
rnh(r−1)

∫

Br(0)
|Fµ(ξ)|2dξ,

where cλ is such that h(r−1)/h(λ1/2r−1) ≤ cλ. This completes the proof. "

5. An example

We conclude the paper by exhibiting an example of a function h and a set C
such that Hh

!C is h-dimensional and C is quasi regular. For this example Theorem
4.3 holds. However, since C is α dimensional but with zero Hα measure the results
of Strichartz in [10] do not apply. This shows that by considering more general
dimension functions we obtained a useful generalization.

Let h : [0,∞) → R be a dimension function such that h(2x) < 2h(x). Let sk be
such that h(sk) = 2−k. We will construct a set of Cantor type. Consider the two
(closed) subintervals of [0, 1] I1,1 and I1,2, of length s1 obtained by suppressing the
central open interval of length 1 − 2s1. In each of these intervals we take the two
closed subinterval of length s2 obtained by removing the central interval of length
s1 − 2s2 this time (note that this number is positive because h(2x) < 2h(x)). We
obtain four intervals denoted by I2,1, I2,2, I2,3, I2,4. These intervals will be called
intervals of step 2. Following in the same manner at each step, we obtain 2k closed
intervals of length sk. Our Cantor set will be:

C =
⋂

k≥1

2k⋃

j=1

Ik,j .

We assign to each interval Ik,j measure 2−k obtaining a probability measure µ
supported on C. We can see ([3]) that this measure is Hh!C .

We are going to show that this set satisfies the hypothesis of the Theorem 4.2,
what means, essentially, that it is h-quasi regular. It suffices to see that µ(B(x,ρ))

h(2ρ) ≥ c

(where c is a positive constant) for all x ∈ C and for all ρ > 0.
Given x ∈ C and ρ > 0, denote by k the minimum integer such that there exists

j between 1 and 2k satisfying Ik,j ⊂ B(x, ρ). By minimality sk−1 ≥ ρ. Then,

µ(B(x, ρ))
h(2ρ)

≥ µ(Ik,j)
h(2ρ)

=
2−k

h(2ρ)
≥ cd

2
1

2k−1h(ρ)
≥ cd

2
1

2k−1h(sk−1)
=

cd

2
,

using that Ik,j ⊂ B(x, ρ), the definition of µ , the Lemma 2.4, the minimality of k
and the definition of sk. Therefore (4.6) follows.

We also need to prove that µ = Hh!C is an h- dimensional measure. In fact,
C ∩Bρ(x) ⊂ Ik−1,j for some j. Consequently

µ(Bρ(x)) ≤ µ(Ik−1,j) = 2−(k−1) = 2h(sk) ≤ h(ρ).

If we take h(x) = xα log(1/x), then we obtain a set C of dimension α but such
that Hα(C) = 0. Therefore for any α, C will not be α-quasi regular, and hence we
can not apply Strichartz’s Theorem.

However, since C is h-quasi regular for h(x) = xα log(1/x), we can apply Theo-
rem 4.3
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